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Abstract: Unmanned surface vehicle (USV) formation is a hot topic of current research. Path planning
is the core technology for USV formation. This paper focuses on a USV formation path planning
problem considering kinetic constraints. Firstly, an improved A* algorithm is proposed to solve
the point-to-point path planning of a USV considering kinetic constraints. In this algorithm, the
yaw constraint is introduced on top of the position constraint to extend the state space of the USV
to three dimensions, and the convergence speed is accelerated by building a heuristic map. The
dynamics model of the USV is used to generate the minimum trajectory elements to ensure that the
path conforms to the kinetic constraints. Secondly, the mathematical model of USV formation based
on the virtual structure method is established, and the path planning scheme of formation navigation
and formation reconfiguration is given according to the improved A* algorithm. Finally, we carry
out a USV model identification experiment for SL900 USV and simulation experiments based on
the model. The experimental results show that the output path of the proposed method is smoother
compared with the traditional method. This method can provide a globally safe path with kinetic
constraints for USV formation navigation and formation reconstruction.

Keywords: minimal trajectory elements; heuristic value map; formation navigation; formation
reconfiguration; model identification experiment

1. Introduction
1.1. Background Introduction

The ocean accounts for approximately 70% of the Earth’s total area [1]. It is rich in
mineral resources and biological resources. It is an important place for human economic,
cultural, and scientific research. However, the harsh and changeable marine environment
makes us face many difficulties in the process of surveying marine resources and safe-
guarding maritime rights and interests. The traditional way of using manned vessels
often has difficulty ensuring the safety of personnel and has low efficiency. We need to
develop auxiliary development platforms for efficient and safe water resources to better
control water resources and safeguard maritime rights. As a surface mobile platform with
autonomous operation ability, unmanned surface vehicles (USVs) have the advantages
of dangerous environmental operation, low cost, and high efficiency, and have attracted
extensive attention from countries and economies all over the world [2–5]. USV formation
refers to several USVs cooperating to complete one or more tasks in a certain formation.
Compared with a single USV, the formation of USVs has stronger robustness, higher op-
erating efficiency, and wider operating range. It can be applied to more complex mission
scenarios. The formation of USVs has high practical engineering application value and is a
current and future development direction.
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USV formation can be divided into three layers: task management layer, formation
path planning layer, and task execution layer [6], as shown in Figure 1. The task manage-
ment layer decomposes and assigns tasks to each USV according to the task requirements
and the currently managed USV’s state information. The formation task configuration
information obtained by each USV includes the task start point, the task endpoint, the
formation shape information, the formation reconfiguration information, and the position
information of the USV in the formation. The mission management layer passes this forma-
tion configuration information to the formation path planning layer. The path planning
module plans the motion trajectory of each USV according to the formation configuration
information, environmental information, and kinetic model. The formation path planning
layer transmits the trajectory of each USV to the task execution layer. The trajectory tracking
module calculates the real-time control output according to the trajectory and the pose
information of the USV so that the USV can track the trajectory. The control output of the
USV is thrust and rudder.
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Figure 1. The layered structure of unmanned surface vehicles formation.

From the hierarchical structure of USV formation, we can see that the formation path
planning layer plays a very important role, connecting the task management layer and the
task execution layer. Formation tasks of USVs can be divided into forming a designated
formation, sailing according to a fixed formation, and formation transformation. Therefore,
the path planning layer also needs corresponding path planning strategies; that is, the
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path planning layer needs to solve three types of planning problems: formation generation,
formation transformation, and formation navigation. The formation path planning of USVs
is based on the path planning of a single USV.

The aim of path planning is to find a feasible path in a specific environment. This path
begins at the starting point and ends at the target point [7]. The path planning problem
can be regarded as a multiobjective optimization problem [8]. The trajectory should be
optimized in distance, time, energy consumption, risk cost, and other aspects. In addition,
the smoothness of the trajectory and whether it meets the kinetic constraints of the mobile
robot cannot be ignored. The solution methods of multiobjective optimization problems
are mainly of two categories: traditional optimization methods and intelligent optimization
methods. Traditional optimization algorithms include weighting method [9], constraint
method [10], and linear programming method [11], which essentially transform the multi-
objective function into single-objective function and achieve the solution of multiobjective
function by using the single-objective optimization method. Intelligent optimization algo-
rithms include genetic algorithms [12], artificial neural networks [13,14], and so on. A good
USV formation path planning method needs to meet the following indicators [15]:

• Rationality: Any path of return is reasonable, or any path is feasible for formation
movement.

• Completeness: If, objectively, there is a collision-free path from the starting point
to the endpoint, the algorithm can find it; if no path is available, a planning failure
is reported.

• Optimality: The resulting path planned by the algorithm is optimal on some measures
(such as time, distance, energy consumption, etc.).

• Real-time: The complexity of the planning algorithm (time requirements, storage
requirements, etc.) can meet the needs of USV movement.

• Satisfy constraint: Supporting the nonintegrity constraint of USV movement.

Much research has been carried out on formation path planning methods for un-
manned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), and mobile robots
c̃itezuo2016coverage, qiu2014receding, vicmudo2014path. In recent years, some research
on path planning of USV formation has emerged. Tam [19] proposed a multiboat coordi-
nated path planning algorithm that conforms to the COLREGS rule. The simulation results
show that the output of the algorithm is effective and consistent in various traffic scenarios.
Liu [6] proposed a constrained fast-marching method to address the dynamic problem in
path planning of USV formation. The simulation results showed that collision-free paths
can be generated for formations for complex, practical, and for both static and dynamic
environments. Sang [20] presented a hybrid path planning algorithm based on improved
A* and multiple subtarget artificial potential field (MTAPF). The MTAPF belongs to the
local path planning algorithm, which refers to the global optimal path generated by an
improved heuristic A* algorithm. The simulation results showed that the algorithm can
greatly reduce the probability that USV will fall into the local minimum and help USV
to move out of the local minimum by switching target points. Ouyang [21] proposed an
algorithm for USV formation path planning based on an improved rapidly-exploring ran-
dom tree (RRT) algorithm for global path planning and obstacle avoidance. This research
showed that the improved algorithm has such advantages as high efficiency, good stabi-
lization, and high-quality planning paths. Wang [22] proposed a path planning algorithm
for USV formation based on the variable fast-marching method. The method regards the
feasible area as anisotropy and considers that the safety of a point is linearly related to the
distance between the point and the obstacle. The method was experimentally proven to
have good real-time performance. In addition, the traditional A* algorithm [23], particle
swarm optimization [24], genetic algorithm [25], and ant colony algorithm [26] are also
used to solve the problem of multirobot formation path planning, but they are seldom
applied to USV formation path planning.

Path planning can be divided into three stages: route planning, trajectory planning,
and motion planning, according to whether the kinematics and dynamics of the USV are
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considered in the planning process [27]. In the route planning stage, the USV is regarded
as a particle model. The shape, dynamics, and kinematics constraints of the USV are not
considered. In the trajectory planning stage, some constraints, such as the shape of the
USV and the minimum turning radius, are considered in the planning. At the stage of
motion planning, considering the kinetic model of USV, the path suitable for USV tracking
is planned. However, most of the previous studies [28–31] are only at the route planning
level and lack the consideration of the USV kinetic model. The path may not satisfy the
nonintegrity constraints of the USV. In addition, formation problems include formation
generation, formation transformation, and formation navigation. Most of the previous
studies focused on formation navigation, but few systematically studied the three problems.
Therefore, this paper focuses on solving the path planning problem of USVs considering
the kinetic model and provides corresponding solutions to formation generation, formation
navigation, and formation transformation of USVs.

1.2. The Main Work and Contributions of the Article

1. The article proposes a path planning algorithm for USVs based on improved A*
algorithm. The output path of the algorithm is composed of the minimum trajectory
elements generated by the dynamic model, which can ensure that the trajectory fully
conforms to the kinetic constraints of USV, and the path can be directly tracked by
USV without subsequent processing.

2. The article proposes a heuristic value map construction method. A* algorithm can
query the heuristic value map to obtain the appropriate heuristic value during search,
which can significantly speed up the algorithm search speed.

3. For the first time, the article divides USV formation path planning into formation navi-
gation path planning and formation reconfiguration path planning. We give solutions
for these two kinds of path planning based on the above improved A* algorithm.

4. In this paper, model identification experiments are conducted for the SL900 USV,
and simulation experiments are conducted for the above algorithm based on the
experimental results to verify the rationality of the algorithm.

1.3. The Main Structure of the Article

Section 1 gives the introduction to the article. Section 2 introduces an improved A*
algorithm based on the minimum trajectory elements for a single USV. In Section 3, the
mathematical model of USV formation based on the virtual structure method is established,
and the path planning algorithm of USV formation navigation and formation reconfigu-
ration is given. In Section 4, we conduct a model identification experiment of USV. The
above algorithms are verified by simulation experiments. In Section 5, we discuss the
advantages and disadvantages of the proposed method. Section 6 summarizes the paper
and introduces future work.

2. The Path Planning Method for a Single Unmanned Surface Vehicle

An improved A* path planning algorithm for USV based on minimum trajectory
elements is proposed in this section. Compared with the traditional A* algorithm, the path
generated by this method is guaranteed to comply with the USV kinetic constraints. The
method is described in detail below.

2.1. The Introduction of Traditional A* Algorithm

A* algorithm is a search method to find the path with the least cost in the grid map,
where the cost can be distance, risk cost, etc. It was first proposed by Hart in 1968 [32].
This method combines the advantages of the Dijkstras algorithm [33] and the best-first
algorithm [34]. Based on an evaluation function, the A* algorithm can not only improve the
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efficiency of heuristic search, but it also ensures finding an optimal path. The evaluation
function is expressed in Equation (1).

f (n) = g(n) + h(n) (1)

where f (n) is the estimated cost from the start point S to the target point T through the
node n; g(n) is the actual cost from start point S to the node n; h(n) is the estimated cost of
reaching the target point T from the node n, h(n), also known as heuristic values.

Different heuristic value functions have a great influence on the speed and accuracy of
path search by the A* algorithm [35]. If the heuristic value of a point is exactly equal to the
actual cost of the point to the target point, the A* algorithm can ensure that the optimal
path can be found at a fast speed. If the heuristic value of a point is greater than the actual
cost of the point to the target point, A* can find the path to the target point at a faster speed,
but it does not guarantee that the path is optimal. If the heuristic value of a point is less
than the actual cost of the point to the target point, the A* algorithm can ensure that the
optimal path to the target point can be found, and the search speed will be correspondingly
slower, but also faster than Dijkstras algorithm. In the practical application process, it is the
best choice to choose the heuristic value function equal to the actual cost, but it is difficult to
obtain this function. In general, the optimal path will be guaranteed first, and the function
whose heuristic value is slightly less than the actual cost will be selected.

The pseudocode of the traditional A* algorithm is shown in Algorithm 1, where S is the
start point, T is the target point, OPENLIST is the set of nodes to be searched, CLOSELIST
is the set of searched nodes, OBSTACLESLIST is a collection of obstacles, G(n) represents
the set of neighbor nodes of node n, and C(n, n′) represents the actual cost from node n
to node n′. If "Path is found" is displayed after the algorithm runs, the optimal path is
obtained by connecting the node from the target point to its parent until the start node.

Algorithm 1 Traditional A* algorithm.

Input: start point S, target point T and environment map M
Output: Whether there is a path from the start point to the target point.

1: Add the start point S to OPENLIST.
2: while OPENLIST 6= ∅ do
3: Take the point n with the smallest value of the evaluation function f (n) from

OPENLIST.
4: Delete n from OPENLIST and add it to CLOSELIST.
5: if n = T then
6: return “Path is found.”
7: else
8: Get the set G(n) composed of all neighbor points of n.
9: for all point n′ ∈ G(n) do

10: if n′ /∈ CLOSELIST and n′ /∈ OBSTACLESLIST then
11: if n′ ∈ OPENLIST then
12: if g(n′) > g(n) + C(n, n′) then
13: Set the parent of n′ in OPENLIST to be n and g(n′) = g(n) + C(n, n′).
14: end if
15: else
16: Insert n′ into OPENLIST. Set the parent of n′ is n, g(n′) = g(n) + C(n, n′),

f (n′) = g(n′) + h(n′).
17: end if
18: end if
19: end for
20: end if
21: end while
22: return “The path does not exist.”
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As a classical graph search algorithm, the A* algorithm is widely used in the short-
est path search problem. Although the A* algorithm can ensure the shortest path, the
continuity and smoothness of the path are poor, so it is not suitable for mobile robots to
follow, especially mobile robots with non-holonomic constraints. Therefore, the applica-
tion of the A* algorithm in the scenario of USV formation path planning still needs some
improvements, which will be introduced in detail below.

2.2. Improved A* Algorithm

In order to plan a trajectory that conforms to the kinetic constraints of the USV, we
need to consider more constraints. On the basis of only considering the two-dimensional
space of position, we additionally consider the yaw of USV, so that the state space of USV
has to be increased to three-dimensional space.

There are infinite state points on the high-dimensional continuous space, and it is
not feasible to search directly on the space. Before the search, it is usually necessary to
discretize the state space of the USV, and transform the arbitrary state search problem into
a specific state search problem to reduce the complexity of the search algorithm.

In this paper, a raster map is used to discretize the USV state space. As shown in
Figure 2, USVs are represented by vector points with yaw information on the raster map.
Each grid is a cell, and the USV can be in any position on each grid. In order to simplify
the state space, discrete sampling is conducted on the yaw of the USV within the range of
[0, 2π). According to the yaw information obtained by sampling, the state of the USV in the
above grid cells is restricted; specifically, there can only be one state point with the same
yaw information in each grid cell. In addition, the concept of neighborhood is defined. For
a certain state of USV, the neighborhood of this state refers to the set of all state points with
the same yaw information in the same grid. The neighborhood of a state is denoted by
Neighborhood(P).

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

10

12

14

16

18

20

Figure 2. Representation of USV status and trajectory on raster map.

In addition to the above improvements, we also propose heuristic value maps and a
minimum trajectory elements method. The heuristic value map records the appropriate
heuristic value, which is used to speed up the path search; the minimum trajectory elements
are used to connect the state points of the USV and ensure that the path conforms to the
kinetic constraints, and these two methods are detailed in Sections 2.3 and 2.4, respectively.



J. Mar. Sci. Eng. 2023, 11, 176 7 of 27

The improved A* algorithm proposed in this paper, which is suitable for the path
planning of USV, is shown in Algorithm 2, where C(ζPi) represents the cost of ζPi; Par(P)
represents the last state of state P and the minimum trajectory element ζPi between the two
states. That is, Par(P) = P, ζPi.

Algorithm 2 Improved A* algorithm for USV path planning.

Input: start point S(x, y, ϕ), target point T(x, y, ϕ) and environment map M.
Output: The optimal path L.

1: Establish heuristic value map HM according to target state T(x, y, ϕ) and Algorithm 3.
2: Clear sets OPENLIST,CLOSELIST. Add the initial state S(x, y, ϕ) to OPENLIST.
3: Query HM to get H(S) of state S. Set F(S) = C(S, S) + H(S) = H(S).
4: while OPENLIST 6= ∅ do
5: Pick the waypoint P with the smallest value of F(P) from OPENLIST.
6: Delete P form OPENLIST. Add P to CLOSELIST.
7: if P ∈ Neighborhood(T) then
8: Take the state P that belongs to Neighborhood(T) from CLOSELIST. Set the opti-

mal path of USV L = ∅.
9: while P 6= S do

10: Update P, ζPi = Par(P). Add ζPi to L.
11: end while
12: Reverse the order of the minimum trajectory elements in L.
13: return L
14: end if
15: Generate the minimum trajectory elements set UP = {ζP1, ζP2, · · · ζPn} from the P.

The state P superimposes the UP to reach the state set P′ = {P′1, P′2, · · · P′n}
16: for all P′i ∈ P′ do
17: Query HM to get H(P′i ) of state P′i . Set C(S, P′i ) = C(S, P) + C(ζPi).
18: if there is a state P′′i ∈ Neighborhood(P′i ) in CLOSELIST and C(S, P′′i ) > C(S, P′i )

then
19: Deletes the state P′′i from CLOSELIST.
20: end if
21: if there is a state P′′′i ∈ Neighborhood(P′i ) in OPENLIST and C(S, P′′′i ) > C(S, P′i )

then
22: Deletes the state P′′′i from OPENLIST.
23: end if
24: if there is no state point in OPENLIST and CLOSELIST that belong to

Neighborhood(P′i ) then
25: Add P′i to OPENLIST. Set F(P′i ) = C(S, P′i ) + H(P′i ), Par(P′i ) = P, ζPi.
26: end if
27: end for
28: end while
29: return ∅

2.3. The Method of Building Heuristic Value Map

As described in Section 2.1, the heuristic value affects the search speed and the quality
of the obtained path of the A* algorithm. Some researchers proposed various heuristic value
design methods for different robots [36,37]. Euclidean distance and Manhattan distance are
currently commonly used heuristic value functions. Euclidean distance is the straight-line
distance between two points. This distance must be less than or equal to the actual cost
between the two points, so it has optimality. The Manhattan distance is the sum of the
absolute values of the difference between the coordinates of two points. This distance must
be greater than or equal to the actual cost between the two points, so it may not be optimal.

The previous analysis of Manhattan distance and Euclidean distance does not take into
account obstacles in the environment and the yaw constraints of USV, both of which may
increase the actual cost. This causes the Euclidean distance to become smaller compared to
the actual cost of the path and prolongs the algorithm search time. Therefore, it is necessary
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to find a heuristic value calculation method that considers the obstacles in the environment
and the yaw constraints of USV.

Inspired by the literature [38], we design a method of building a heuristic map based
on Dijkstras algorithm to solve the above problems. With the help of Dijkstras algorithm,
the reverse search is carried out from the target point. In the search process, the neighbor
grid and the different costs of the USV from the current grid to the neighbor grid are set
according to the current yaw of the USV to achieve the purpose of avoiding obstacles and
restraint of the USV. For the specific settings, see Figure 3, where the red arrow represents
the current state; the black arrow represents the next state. The black square is the obstacle;
the cross is the neighbor grid not considered; the cost of reaching the next state is recorded
in the lower right corner of the grid, and γ is the unit cost. In the process of constructing the
heuristic value map, four effective directions of the USV are set, and the five neighboring
grids are the effective next state (as shown in (a), (b), (c), and (d) in Figure 3). (I), (II), (III),
(IV), and (V) take the state in (a) as an example to show the selection rule when there are
obstacles in the neighbor grid. The minimum path cost to reach each raster is used as the
heuristic value of the waypoint in that raster. The heuristic value is filled into each raster.
The heuristic value in the obstacle raster is set to positive infinity. Thus, we obtain a map
recording the heuristic value at each raster.

3γ 3γ

2γ2γ γ

3γ

3γ2γ

2γ

γ 3γ3γ

2γ 2γγ

3γ

3γ 2γ

2γ

γ

3γ 3γ

2γ2γ γ

3γ 3γ

2γ2γ γ

3γ

2γ2γ γ

3γ

2γ2γ γ

(a) (b) (c) (d)

(Ⅰ) (Ⅱ) （Ⅲ) （Ⅳ) （Ⅴ)

Figure 3. Selection rules of neighbor nodes in the process of building heuristic value map ((a–d) show
the neighbor nodes selection rules for different initial states; (I–V) take the state in (a) as an example
to show the selection rule when there are obstacles in the neighbor grid).

When A* algorithm searches the path, the value recorded on the raster is directly
queried as the heuristic value. This method makes the heuristic value closer to the actual
cost, which can improve the search speed of the algorithm and make it have better real-time
performance. The establishment steps of the heuristic value map are shown in Algorithm 3.
An example of a heuristic value map is shown in Figure 4, where the blue arrow indicates
the target state of the USV. The minimum cost from the target raster to that raster is stored
in each raster; the raster that stores the value ∞ in the figure represents an obstacle or map
boundary. Setting the heuristic value to infinity can avoid obstacles in path planning.
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Algorithm 3 Heuristic map building algorithm.

Input: target point T(x, y, ϕ) and environment map M
Output: heuristic map HM

1: Copy the grid environment map M as the initial heuristic map HM.
2: Fill each grid with the heuristic value ∞, empty sets OPENLIST and CLOSELIST.
3: Add target point T(x, y, ϕ) to set OPENLIST, C(T, T) = 0.
4: while OPENLIST 6= ∅ do
5: Pick the waypoint P with the smallest value of C(T, P) from OPENLIST.
6: Delete P form OPENLIST. Add P to CLOSELIST. Update the heuristic value in the

grid where P is to C(T, P).
7: Obtain the waypoint set G(P) in all neighbor grids of the grid where P is. And delete

the waypoints in the set CLOSELIST or UNREACHABLE from G(P).
8: for all point P′ ∈ G(P) do
9: if P′ /∈ OPENLIST then

10: Add P′ to OPENLIST. Set C(T, P′) = C(T, P) + C(P, P′).
11: end if
12: if P′ ∈ OPENLIST and C(T, P′) > C(T, P) + C(P, P′) then
13: Set C(T, P′) = C(T, P) + C(P, P′).
14: end if
15: end for
16: end while
17: return HM
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Figure 4. An example of a heuristic value map (γ = 10).

2.4. The Generation Method of Minimum Trajectory Elements

The traditional A* algorithm directly connects the adjacent state points to generate
the path. The path generated by this method lacks continuity and smoothness, which does
not meet the kinetic constraints of USV. Inspired by the literature [39], this paper proposes
a method to generate the minimum trajectory elements according to the kinetic model of
USV to solve the above problem. The minimum trajectory elements are used to connect
two path points searched by the algorithm. The path composed of the minimum trajectory
elements can satisfy the kinetic constraints of the USV.

In order to reduce the complexity of the research, it is usually only necessary to study
the motion of the USV in the horizontal plane, that is, the three degrees of freedom of
forward motion, transverse drift, and yaw are considered. The three degree of freedom
motion model of the USV is shown in Figure 5. The kinetic model of USV is complex, and
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there are many simplified forms, but the methods are generally similar. This paper will
generate the minimum trajectory elements based on the model [40,41] in Equation (2).

ẋ = u cos ϕ− ν sin ϕ
ẏ = u sin ϕ + ν cos ϕ

ϕ̇ = r
u̇ = auu + buT
ṙ = crr + drδ

(2)

where x and y represent the position of the USV in the inertial coordinate system; ẋ and
ẏ represent the velocity of the USV in the inertial coordinate system; u represents the
forward speed of the USV; u̇ represents the forward acceleration of the USV; v represents
the transverse speed of the USV; ϕ represents the yaw of the USV; r and ϕ̇ are the yaw
velocity of the USV; ṙ represents the yaw acceleration of the USV; T represents the thrust of
the USV; δ represents the rudder of the USV. au, bu, cr, and dr are coefficients, which can be
determined through identification experiments.

 X

Y

u

v

ϕ

x

yiO

bO

Figure 5. Three degrees of freedom motion model of USV.

The system state variable of the USV is defined as x =
[

x y ϕ u v r
]T. The

control input is u =
[

T δ
]T, and the system output is y =

[
x y ϕ

]T. Thus, the
state space model of the USV is:

ẋ = f (x, u) =



u · cos ϕ− ν · sin ϕ
u · sin ϕ + ν · cos ϕ

r
auu + buT

0
crr + drδ

 (3)

y = Px (4)

where P =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

.

If the above Equation (3) is expanded by Taylor at any point (x0, u0) and the first-order
term is retained, we can obtain:

ẋ = f (x, u) = f (x0, u0) +
∂ f
∂x

∣∣∣∣ x=x0u=u0

(x− x0) +
∂ f
∂u

∣∣∣∣ x=x0u=u0

(u− u0) (5)
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By combining Equations (3) and (5), we can obtain:

˙̃x = Ax̃ + Bũ (6)

where x̃ is the deviation between the actual system and the reference system, x̃ = x− x0; ũ
is the deviation between the control quantity of the actual system and the reference system
of the USV, and ũ = u− u0; A is the Jacobian matrix of f relative to x; B is the Jacobian of f
relative to u; and there are:

A = ∂ f
∂x

∣∣∣ x=x0u=u0

=



0 0 −u sin ϕ− v cos ϕ cos ϕ − sin ϕ 0
0 0 u cos ϕ− v sin ϕ sin ϕ cos ϕ 0
0 0 0 0 0 1
0 0 0 au 0 0
0 0 0 0 0 0
0 0 0 0 0 cr


B = ∂ f

∂u

∣∣∣ x=x0u=u0

=

[
0 0 0 bu 0 0
0 0 0 0 0 dr

]T

Equation (6) was discretized by Euler’s method to obtain a state space model of the
USV in discrete form, as shown in Equation (7).{

x̃(k + 1) = Ak x̃(k)+ Bkũ(k)
ỹ(k) = Px̃(k)

(7)

where Ak = A · dt + I; Bk = B · dt; dt is the time step; I is the identity matrix; k is any time.
According to Equation (7), after applying certain control input to the USV, we can

obtain the next determined motion trajectory of the USV. Therefore, based on the current
state of the USV, we can obtain a group of different motion trajectories of the USV after a
period of time by giving a group of different control inputs, which is the set of minimum
trajectory elements. In order to ensure that the path assembled by the minimum trajectory
elements is smooth and the velocity on the path is continuous, the generation process of
the minimum trajectory elements set meets the following conditions:

1. Thrust T is a constant, and rudder δ is sampled uniformly and discretely between
the maximum and minimum to obtain {δ1, δ2, · · ·, δn}, which is combined to obtain
control input u1 = {(T, δ1), (T, δ2), · · ·, (T, δn)},u2 = {(T, 0), (T, 0), · · · · · ·, (T, 0)},
from which a set of minimum trajectory elements consisting of n minimum trajectory
element is obtained.

2. Each minimum trajectory element is divided into two parts. The first part applies the
control input u1, and the second part applies the control input u2 to ensure that the u,
v, and r of the USV at both ends of the minimum trajectory element are the same.

3. The operation time of control input is the same for each group.

An example of the set of minimum trajectory elements is shown in Figures 6 and 7
shows the change in yaw velocity and corresponding rudder of one of the minimum
trajectory elements.
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Figure 6. Minimum trajectory elements generated by different rudder loads and given thrust.
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Figure 7. The change curve of yaw velocity and rudder in minimum trajectory element.

3. The Path Planning Method for Unmanned Surface Vehicles Formation

We classify path planning for USV formation into two types, which are USV formation
navigation and USV formation reconfiguration, where USV formation reconfiguration
includes formation generation and formation transformation. Both path planning processes
are based on the path planning of an individual USV. The methods for both formation path
planning are described in detail below.

3.1. Mathematical Model of USV Formation

In this paper, the virtual structure method will be used to organize the formation of
the USV. The virtual structure method requires the virtual rigid body to be determined
in advance according to the formation requirements of the USV. The virtual rigid body is
an abstraction of the rigid whole composed of multiple USVs [42]. The coordinate system
of the USV formation is established as shown in Figure 8, where XOinertialY is the inertial
coordinate system, xOrigidy is the rigid body coordinate system (RBCS), and uObodyv is the
hull coordinate system. The USV constitutes a certain spatial distribution under the rigid
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body coordinate system, which is the formation of the USV. The position of each USV under
the rigid body coordinate system xOrigidy at the moment t is expressed as Equation (8).

Psrigid(t) =
{

Prigid,1(t), Prigid,2(t), · · ·, Prigid,n(t)
}

(8)

where Prigid,i(t) denotes the position
[

xrigid,i, yrigid,i

]T
of the USV i in the rigid body coor-

dinate system. When Prigid,i(t) is a constant function, a fixed virtual rigid body structure
is formed and the formation remains fixed. When Prigid,i(t) is a time-varying function,
formation transformation can be realized.
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Figure 8. The coordinate system of USV formation.

The position and posture of the virtual rigid body in the inertial coordinate system
are POrigid(t) and ψOrigid(t), respectively, where the posture of the virtual rigid body in the
inertial coordinate system refers to the included angle between the two coordinate systems.
According to the position and posture of the virtual rigid body and the position of each
USV in the virtual rigid body coordinate system, the expression of the position of each USV
under the inertial coordinate system can be calculated as Equation (9).

Pinertial,i(t) = POrigid(t) + Rrigid2Inertial(t) · Prigid,i(t) (9)

where Pinertial,i(t) is the position of the USV i in the inertial coordinate system at moment t;
Rrigid2Inertial(t) is the transformation matrix from the rigid body coordinate system to the
inertial coordinate system, as shown in Equation (10).

Rrigid2inertial(t) =

 cos
(

ψOrigid(t)
)
− sin

(
ψOrigid(t)

)
sin
(

ψOrigid(t)
)

cos
(

ψOrigid(t)
)  (10)

3.2. The Path Planning for USV Formation Navigation

During the formation navigation, the formation of USVs remains unchanged, that is,
the position of each USV in the virtual rigid body coordinate system does not change with
time and the virtual structure is fixed. The motion trajectory of any point on the virtual
rigid body is parallel to the motion trajectory of the virtual rigid body coordinate system. If
the virtual rigid body coordinate system moves along the minimum trajectory element, any
point on the virtual rigid body moves along the minimum trajectory element. Therefore,
during the USV formation navigation, the path planning process can only plan the path for
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the virtual rigid body coordinate system considering the kinetic constraints of the USV. In
addition, the formation of the USV needs to be considered in the planning process. The
current state and next state of each USV can be calculated according to the current state and
next state of the virtual rigid body coordinate system during the search by the improved A*
algorithm, and the minimum trajectory element between the states is judged as to whether
there is a collision with an obstacle. The mathematical model of path planning for USV
formation navigation is shown in Equation (11).

Pti =
(

POrigid(ti), ψOrigid(ti)
)

ζti = f (Pti , Mkinetic, dt)
lrigid = {ζt1 , ζt2 , · · ·, ζtn}

ζti ,j = ζti + Prigid,j(ti)
lj =

{
ζt1,j, ζt2,j, · · ·, ζtn ,j

}
(11)

where Pti represents the state of the virtual rigid body coordinate system at moment ti
in the inertial coordinate system; ζti represents the minimum trajectory element of the
virtual rigid body coordinate system at moments ti to ti+1, which is generated by Pti , the
kinetic model Mkinetic of USV (see Equation (7)), and time interval dt (see Section 2.4 for
the specific generation method); lrigid represents the optimal trajectory of the virtual rigid
body coordinate system generated by the improved A* algorithm from the initial state
to the target state in the inertial coordinate system, which is assembled by the minimum
trajectory elements and conforms to the kinetic constraints of the USV; ζti ,j represents the
minimum trajectory element of USV j at time ti to ti+1, which can be calculated from the
minimum trajectory element ζti of the virtual rigid body coordinate system and virtual
structure Psrigid(ti) at the time ti. li represents the optimal trajectory of the USV j from the
initial state to the target state in the inertial coordinate system.

The path planning algorithm for USV formation navigation is shown in Algorithm 4.

3.3. The Path Planning for USV Formation Reconfiguration

USV formation reconfiguration path planning can be achieved by making each USV
individually planned to a target point. It differs from the individual USV path planning in
that the formation reconfiguration path planning needs to consider the collision avoidance
between USVs. During the reconfiguration process, the positions of the USV clusters in
the inertial coordinate system should not be equal for any given time. In the actual path
searching, the USV cluster shares a real-time updated environment map. The USVs in the
cluster plan their optimal paths from the current state to the target state one by one. After
each USV finds the optimal path, the position of the USV is added to the environment map
with the corresponding time stamp according to the time stamp on the path information,
and the position on the environment map is equivalent to the impassable area for other
USVs at that moment. When the last USV in the cluster finds the optimal path to the target
point, the formation reconfiguration path planning is completed. The algorithm of path
planning for formation reconfiguration is shown in Algorithm 5, and the mathematical
model of formation reconfiguration path planning is shown in Equation (12).



Psinertail(t0) =
{

Pinertail,1(t0), Pinertail,2(t0), · · ·, Pinertail,n(t0)
}

PInertial,i
(
ttarget

)
= POrigid

(
ttarget

)
+ Rrigid2Inertial

(
ttarget

)
Prigid,i

(
ttarget

)
L = {l1, l2, · · ·, ln}

li =
{

ζi,t1 , ζi,t2 , · · ·, ζi,ttarget

}
for∀tiand∀ζj,ti ζm,tihaveζj,ti ∩ ζm,ti=∅

(12)

where Psinertail(t0) represents the state given to the USV in the inertial coordinate system
before formation reconfiguration; Pinertial,i

(
ttarget

)
is the target point of the USV i in the

inertial coordinate system, L is the optimal path set of each USV during formation recon-
figuration, and li is the optimal path of the USV i, which is assembled by the minimum
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trajectory elements. The minimum trajectory elements of any USV do not intersect at the
same time.

Algorithm 4 The path planning algorithm for the sailing of USVs in fixed formation.

Input: starting point of RBCS PS(xS, yS, ψS), target point of RBCS PT(xT , yT , ψT), environ-
ment map M and virtual structure VS.

Output: The optimal trajectory set L = {l1, l2, · · · ln}.
1: Establish heuristic value map HM according to target state PT and Algorithm 3.
2: Clear sets OPENLIST and CLOSELIST. Add the initial state PS to OPENLIST.
3: Query HM to get H(PS) of state PS. Set F(PS) = C(PS, PS) + H(PS) = H(PS).
4: while OPENLIST 6= ∅ do
5: Pick the waypoint P with the smallest value of F(P) from OPENLIST.
6: Delete P form OPENLIST. Add P to CLOSELIST.
7: if P ∈ Neighborhood(PT) then
8: Take the state P that belongs to Neighborhood(PT) from CLOSELIST. Set the

optimal path of RBCS lrigid = ∅.
9: while P 6= PS do

10: Update P, ζP = Par(P). Add ζP to lrigid.
11: end while
12: Reverse the order of the minimum trajectory elements in lrigid.
13: According to the sequence and time interval t of the minimum trajectory elements

on the lrigid, time constraint is added to each minimum trajectory element to obtain
lrigid = {ζt1 , ζt2 , · · ·, ζtn}.

14: According to Equation (11) and lrigid, generating the trajectory li of USV i.
15: return L = {l1, l2, · · · ln}
16: end if
17: Generate the minimum trajectory elements set UP = {ζP1, ζP2, · · · ζPn} from the P.
18: According to Equation (11) and UP, generating the minimum trajectory elements set

UP,j = {ζP1,j, ζP2,j, · · · ζPn,j} of USV j.
19: if there have ζPi,j or ζPi collides with obstacle then
20: Delete the ζPi,j or ζPi from UP and UP,j.
21: end if
22: The state P superimposes the minimum trajectory elements set UP to reach the state

set P′ = {P′1, P′2, · · · P′n}.
23: for all P′i ∈ P′ do
24: Query HM to get H(P′i ) of state P′i . Set C(S, P′i ) = C(S, P) + C(ζPi).
25: if there is a state P′′i ∈ Neighborhood(P′i ) in CLOSELIST and C(S, P′′i ) > C(S, P′i )

then
26: Delete the state P′′i from CLOSELIST.
27: end if
28: if there is a state P′′′i ∈ Neighborhood(P′i ) in OPENLIST and C(S, P′′′i ) > C(S, P′i )

then
29: Delete the state P′′′i from OPENLIST.
30: end if
31: if there is no state point in OPENLIST and CLOSELIST that belong to

Neighborhood(P′i ) then
32: Add P′i to OPENLIST. Set F(P′i ) = C(S, P′i ) + H(P′i ), Par(P′i ) = P, ζPi.
33: end if
34: end for
35: end while
36: return ∅
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Algorithm 5 The algorithm of path planning for formation reconfiguration.

Input: Initial states Psinertail(t0), target states Psinertail
(
ttarget

)
of USV, environment map

M.
Output: The optimal trajectory set L = {l1, l2, · · · ln}.

1: Set the optimal trajectory of RBCS L = ∅
2: for all Pinertail,i(t0), Pinertial,i

(
ttarget

)
∈ Psinertail(t0), Psinertail

(
ttarget

)
do

3: Input Pinertail,i(t0),Pinertial,i
(
ttarget

)
and M to run Algorithm 2 to obtain the optimal

trajectory li of USV i.
4: According to the sequence and time interval of the minimum trajectory elements

on the li, time constraint is added to each minimum trajectory element to obtain
li =

{
ζt1,i, ζt2,i, · · ·, ζtn ,i

}
.

5: for all ζtj ,i ∈ li do
6: Add obstacles to ζtj ,i’s position on the environment map M at tj time.
7: end for
8: Add li to L.
9: end for

10: return L

4. Algorithm Validation

We carry out model identification experiments of USVs and design two types of
simulation experiments to verify the effectiveness of the proposed USV formation path
planning algorithm. The first experiment is the path planning of a single USV. The results are
compared with the conventional A* algorithm. The second one is the path planning of USV
formation, including three scenarios of formation navigation, formation reconfiguration,
and combination. The algorithms for these experiments were implemented in Python
3.9, and the simulations were run on a computer with an Intel(R) Core(TM) i7-7700 CPU
@ 3.60 GHz and 16 GB of RAM.

4.1. Identification of Kinetic Model for USV

The minimum trajectory element method proposed in this paper is generated ac-
cording to the kinetic model of USV. Thus, the real kinetic model of a USV should be
obtained before the simulation experiment. In this paper, the SL900 USV independently
developed by the Guangzhou Institute of Industrial Intelligence is used to complete the
model identification experiment. The USV is equipped with remote control, GPS/IMU
integrated navigation, data transmission radio, 4G communication module, microcalcu-
lator, and router. It can realize remote control, ground station control, and autonomous
navigation. The platform is equipped with two reversible thrusters and belongs to the
catamaran category. Its directional control is achieved by the differential rotation of the two
propellers. In the control program, we standardized the thrust of the USV to 0 to 1 and the
rudder to −0.5 to 0.5. The SL900 USV is shown in Figure 9.

The kinetic model used in this paper is shown in Equation (2), and the unknown
parameters in this model need to be obtained through model identification experiments.
The simplified method of the USV kinetic model and the related content of the model
identification experiment can be found in [40,41,43,44]. Inspired by the literature men-
tioned above, we designed straight experiment, random acceleration experiment, turning
experiment, and zigzag experiment to obtain the sailing data of a USV for identifying the
kinetic model of the USV.
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Figure 9. The SL900 USV undergoing model identification experiments.

In the straight experiment, the SL900 USV is moving uniformly in a straight line by
giving it different fixed thrust. We set the thrust T = {0.1, 0.2, · · ·, 1} in the experiment.
The acceleration of the USV is zero in the process of uniform linear motion. Thus, we have:

auu = −buT (13)

The forward velocity of the USV was collected during the experiment. According
to the collected experimental data and the thrust set in advance, the least-square method
is used to fit the data of Equation (13) so that the quantitative relationship between au
and bu can be obtained. The results of data fitting are shown in Figure 10. We obtain
b̂u = −2.17666âu.
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Figure 10. Straight experimental data fitting results (R2 = 0.872).

The random acceleration experiment was to fix the SL900’s rudder to zero and ran-
domly set its thrust. This activates its dynamic properties. The forward acceleration,
forward velocity, and thrust data of SL900 were recorded during the experiment. Com-
bined with the results of straight experiments, the least-square method can be used to fit
the values of au and bu. We obtain âu = −1.68118 and b̂u = 3.65936.
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In the turning experiment, the thrust of SL900 is fixed at zero, and we set a different
rudder for it so that SL900 rotates at uniform yaw velocity. In the experiment, we set
the rudder δ = {−0.5,−0.4, · · ·, 0, 0.1, · · ·, 0.5}. The yaw acceleration of the SL900 is zero
during the cyclotron motion of the uniform yaw velocity. Thus, we have:

crr = −drδ (14)

According to the data of the yaw velocity and the rudder collected during the ex-
periment, the least-square method is used to fit the Equation (14), and the quantitative
relationship between cr and dr can be obtained. The results of data fitting are shown in
Figure 11. We obtain d̂r = −1.55183ĉr.
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Figure 11. Turning experiment data fitting results (R2 = 0.986).

The zigzag experiment is used to fix the thrust and set the appropriate amount of
rudder of the SL900 to make it move in a zigzag shape. Z-type motion can fully stimulate
the dynamic characteristics of the USV. Combining the experimental results of the turning
experiment and the yaw acceleration, yaw velocity, and rudder during the Z-shaped
movement, we can use the least-square method to determine the values of cr and dr. We
obtain ĉr = −3.17724 and d̂r = 4.93053. The trajectory of SL900 in the zigzag experiment is
shown in Figure 12.
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Figure 12. The trajectory of SL900 in the zigzag experiment.
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To sum up, the model identification experiment results of the SL900 kinetic model are
shown in Table 1. The data are used in the following path planning simulation experiment.

Table 1. Identification results of kinetic model of SL900.

âu b̂u ĉr d̂r

−1.68118 3.65936 −3.17724 4.93053

4.2. Path Planning Experiment of a Single USV

The path planning of a single USV is the basis of the formation path planning of USVs.
Therefore, we preferentially use a single USV to verify the effectiveness of the algorithm
and compare the results of the improved A* algorithm with those of the traditional A*
algorithm. The results of the simulation experiment are shown in Figures 13 and 14, where
the blue area represents obstacles, the white area is the passable area, the yellow boat
symbol is the starting point of path planning, the red boat symbol is the end point of path
planning, and the bow of the boat symbol can represent the yaw posture of the USV. The
black line is the trajectory planned by the traditional A* algorithm, and the purple line
is the trajectory planned by the improved A* algorithm. In addition, the information of
yaw on the path planned by the traditional A* algorithm and the improved A* algorithm
is shown in Figures 15 and 16. See Tables 2 and 3 for the parameter settings and running
results of the simulation experiment.
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Figure 13. Results of simulation Experiment I of the traditional A* algorithm and the improved
A* algorithm.

Table 2. Parameter settings of simulation experiment.

Parameter Value

The size of grid map 520 m × 320 m
The resolution of the grid 5 m × 5 m

The resolution of yaw 15°
The time interval for generating the minimum

trajectory element 4 s

The given thrust 0.5
The discrete quantity of rudder −0.10, −0.09, · · · , 0.10
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Figure 14. Results of simulation Experiment II of the traditional A* algorithm and the improved
A* algorithm.
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Figure 15. Yaw on the trajectory planned by the traditional A* algorithm and the improved A*
algorithm in Experiment I.

From the experimental results, we can find that the path generated by the improved A*
algorithm is smoother and has a continuous change in yaw compared with the traditional
A* algorithm. The path can be used for USV tracking without subsequent processing. In
addition, the improved A* algorithm takes into account the yaw of the starting and ending
points of USV and is applicable to more scenarios (such as berths). However, the improved
A* algorithm searches more state points and spends more time than the traditional A*
algorithm because of the yaw constraint. From Table 3, we can find that the improved A*
algorithm by querying the heuristic value map can reduce searching a large number of
state points and save the searching time. It is acceptable to spend a little more time in the
path search because the paths conform to the kinetic constraints of the USV.
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Figure 16. Yaw on the trajectory planned by the traditional A* algorithm and the improved A*
algorithm in Experiment II.

Table 3. The average time of each run of the algorithm over 1000 times.

No. of Experiment Algorithm Length of Path Points of Search

I Traditional A*
algorithm 478 1209

I
Improved A*

algorithm with
heuristic value map

460 7052

I
Improved A*

algorithm without
heuristic value map

460 21,673

II Traditional A*
algorithm 539 2402

II
Improved A*

algorithm with
heuristic value map

580 18,583

II
Improved A*

algorithm without
heuristic value map

580 80,722

4.3. Path Planning Experiment of Unmanned Surface Vehicles Formation

In order to verify the effectiveness of the formation path planning algorithm, we
design four simulation experiments of formation navigation path planning, formation re-
configuration path planning, path planning for formation through narrow passageway, and
formation whole flow path planning. The experimental results are shown in Figures 17–20.
Black, green, and yellow USVs were set up in the formation of the above four experiments.
The trajectories of black, green, and yellow USVs planned by the algorithm are represented
by lines of corresponding colors in the figure. In addition, the blue area in the figure is the
impassable area, and the white area is the passable area. The relevant parameter settings of
this experiment are the same as the path planning of a single USV, as shown in Table 2.

As shown in Figure 17, we set the USV formation as a one-line in the formation
navigation path planning experiment, and use Algorithm 4 to plan the trajectory of each
USV from the starting position of the formation to the target position. As shown in Figure 18,
we set the initial formation of USV as a one-line and the target formation as a triangle in the
path planning experiment of formation reconfiguration, and use Algorithm 5 to plan the
trajectory of each USV from the initial position to the target position. Figure 19 shows the
path planning results of USV formation through the narrow passage. Figure 21 illustrates
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the relationship between the distance between any two USVs in this process as a function
of time. The initial state A of USV formation is a one-line formation and maintains the
one-line formation to navigate to point B. The USV formation encounters an impassable
narrow passage ahead, so it changes its formation to a line formation at point C. The USV
formation passes through the narrow passage to point D in a line formation, and finally
changes its formation back to a one-line formation. The path planning from A to B and C to
D uses Algorithm 4, and the path planning from B to C and D to E uses Algorithm 5. As
shown in Figure 20, the whole process path planning experiment of formation refers to the
path planning of a complete process of formation generation, formation navigation, and
formation reconfiguration. The distance between each two USVs in formation is shown
in Figure 22. In the beginning, the position of the three USVs was random and there was
no fixed formation. They are marked with the letter A in the picture. After receiving the
task from the mission module, the USV began to use Algorithm 5 to plan the trajectory
to target point B to form a triangular formation, and then used Algorithm 4 to plan the
trajectory to sail to point C in a triangular formation. Finally, Algorithm 5 was used to
plan the trajectory from point C to point D to complete the transformation from triangular
formation to line formation. As can be seen from Figure 22, when USVs sail in formation,
the distance between each two USVs remains stable, that is, a stable formation can be
formed between USVs. In addition, the minimum distance between USVs is 4.49 m, which
indicates that the algorithm can complete collision avoidance between USVs.

It can be seen from the simulation results that the path planned by the algorithm is
smooth and continuous, conforms to the kinetic constraints of USVs, and can safely avoid
known obstacles and other USVs in formation. This method can provide a globally safe
path with kinetic constraints for USV formation navigation and formation reconstruction.
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Figure 17. Path planning of USV formation sailing in line formation.
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Figure 18. The path planning of USV formation from one formation to triangle formation.
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Figure 19. The path planning for USV formation through narrow passageway.
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Figure 20. Simulation of whole process path planning of USV formation.
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Figure 21. Distance between each two USVs in path planning for passing narrow passageway.
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5. Discussion

In this section, we discuss the advantages and disadvantages of the proposed method.
The method has distinct advantages. First, since we take into account the additional

yaw constraint and use the dynamics equations of the USV to generate the minimum
trajectory elements, the path output by the proposed algorithm conforms to the kinetic
constraints of USV. We believe that this is the main contribution of this paper because
it allows USVs to track directly without subsequent processing of the path. In addition,
we divide the USV formation path planning into formation navigation and formation
reconfiguration path planning for the first time, and we give solutions for these two kinds
of path planning, i.e., the method proposed in this paper can solve both types of problems.

The algorithm also has some inherent limitations. First, the improved A* algorithm
requires more computational resources compared to the traditional A* algorithm. This is
understood because we extend the state space from two dimensions to three dimensions.
We propose the method of building heuristic value maps to speed up the path search, which
leads to some improvement of the problem. In addition, we only apply rudder in the first
half of the minimum trajectory element to ensure that the yaw and velocity are continuous
on the path stitched by the minimum trajectory elements when generating the minimum
trajectory elements. This makes the rudder change frequently on the whole path, which is
not friendly to the actuator. Finally, the robustness of the algorithm needs to be improved.
Since we adopt a formation-wide obstacle avoidance scheme, the algorithm needs to replan
the path for each USV when only one or some USVs encounter obstacles outside the global
information.

6. Conclusions and Future Works

For the formation path planning problem considering USV kinetic constraints, an
improved A* algorithm is proposed in this paper. The state space of the USV is extended
to three dimensions by considering the yaw constraint of the USV on the basis of the two-
dimensional spatial position of the plane. The state space model of the USV is introduced
by using the kinetic model of the USV. The minimum trajectory elements of the USV are
generated from the state space model. The optimal path of the USV is searched using
the A* algorithm, which consists of the minimum trajectory elements conforming to the
kinetic constraints of the USV. The heuristic value map considering the obstacles and the
beginning and end yaw is established before the search to obtain the heuristic value closer
to the actual cost. The search speed can be accelerated by querying the heuristic value map
to obtain the heuristic value. The improved A* algorithm generates a smoother path with a
continuous yaw compared with the traditional A* algorithm, which enables the USV to
track directly without subsequent processing.

We divide formation path planning into formation navigation and formation reconfig-
uration. The formation structure of the USV formation uses the virtual structure method.
For formation navigation path planning, the path of the virtual rigid body coordinate
system is planned considering the formation of the USV, and the path of each USV is
generated according to the position of each USV under the virtual rigid body coordinate
system. During formation reconfiguration path planning, the path of each USV is planned
in turn, and each minimum trajectory element in the path is added to the obstacle map
at the corresponding moment after each USV has planned its path to achieve collision
avoidance among USVs.

In addition, we conducted model identification experiments for SL900 USV and
simulation experiments based on the model to verify the effectiveness of the algorithm.
Experimental results show that this approach can provide a globally safe path with kinetic
constraints for USV formation navigation and formation reconstruction.

Finally, we discussed the advantages and disadvantages of the proposed method.
For future work, the algorithm proposed in this paper will be implemented on an

actual USV platform. The corresponding task allocation module and task execution module
described in Figure 1 will be designed. After the construction of the USV platform is
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completed, sea trials will be performed. The algorithm will be further modified according
to the results of the sea trials.
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