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Abstract: Artificial neural networks are applied to model the manoeuvrability characteristics of a
ship based on empirical information acquired from experiments with a scaled model. This work
aims to evaluate the performance of the proposed method of training the artificial neural network
model even with a very small quantity of noisy data. The data used for the training consisted of
zig-zag and circle manoeuvres carried out in agreement with the IMO standards. The wind effect is
evident in some of the recorded experiments, creating additional disturbance to the fitting scheme.
The method used for the training of the network is the Levenberg–Marquardt algorithm, and the
results are compared with the scaled conjugate gradient method and the Bayesian regularization. The
results obtained with the different methodologies show very suitable accuracy in the prediction of
the referred manoeuvres.

Keywords: ship’s manoeuvrability; model tests data; artificial neural networks

1. Introduction

The prediction of ship dynamics in the seaway is complicated as it depends on the
joint effect of the various environmental factors, independently of whether the interest is to
predict the ship dynamics in straight trajectories or when performing manoeuvres.

Methods are available to determine manoeuvring trajectories from a given manoeu-
vring mathematical model. Several popular mathematical models for ship manoeuvrability
have been widely applied, such as the Abkowitz model [1–3], the Manoeuvring Mathemat-
ical Group (MMG) model [4], the well-known Nomoto model [5], or even more detailed
models proposed recently [6]. Reviews covering several elected issues associated with
vessel mathematical models employed in ship manoeuvring, principally for simulation
purposes, are presented in [7,8]. The need to have an accurate and fast prediction of ship
responses is associated with ship manoeuvring, in particular, in decision support systems
for ship handling or manoeuvring simulators led to the development of several empirical
models [9].

The manoeuvring model’s parameters may be estimated using different methods,
including different types of regressions when captive model tests are performed [10,11]
or several system identification techniques, which typically are applied on free-running
model tests or full-scale tests [12,13]. Various system identification methods for vessels are
available, such as the ones presented in [14–18]. When a model has parameters already
identified, then it can be used to simulate the ship trajectories [19].

Artificial intelligence methods have been used to model different types of responses [20,21].
Neural networks have been used to predict manoeuvring capabilities [22]. A ship’s mini-
mum time manoeuvring system based on artificial neural networks (ANNs) and a nonlinear
model predictive compensator was presented in [23], allowing the user to execute the opti-
mization for any desired set of equality and non-equality constraints. The work presented
in [24] is focused on getting optimized ship trajectories in narrow waterways under wind
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disturbances considering time as an objective function, i.e., the ship tends to sail by taking
the optimized rudder output for minimum time manoeuvre. Later, in [25], the same authors
studied the application of an ANN controller for ship course-changing manoeuvres. In [26],
a method that uses genetic algorithms to simultaneously optimize the number and weights
of backpropagation neural network neurons to predict the ship’s trajectory is studied.

Another ANN class that has been used to model ship dynamics is the Recurrent
Neural Network (RNN). In an RNN, the connections between nodes form a directed or
undirected graph along a temporal sequence, allowing it to exhibit a temporal dynamic
behaviour. RNNs have been used in different maritime applications, such as the study
presented in [27] that presents the use of an RNN for the prediction of the propulsion
power of a vessel. In [28], a real-time ship vertical acceleration prediction algorithm based
on the long short-term memory (LSTM) and gated recurrent units (GRU) models of an
RNN is proposed. In [22], an RNN is used to model the surface ships’ manoeuvrability
characteristics. In [22], an RNN with four inputs, one hidden layer, and two outputs was
used to learn the manoeuvring model of a ship from data generated through simulations.
Inputs to the model are the commands of rudder angle and ship’s speed, in addition to
the recursive outputs sway and yaw velocities. The outputs of the system were the rate of
sway and yaw at the current time instant.

A posteriori, the model presented in [22] was used to analyse the potential of ANNs
in ship simulation when the training data are corrupted with noise, as is usually the case
in full-scale tests [29]. An RNN to simulate catamaran manoeuvres was presented as
a different methodology from the conventional approach of developing manoeuvring
mathematical models [30]. The work presented here aims to assess the performance of
ship manoeuvrability models developed by applying RNNs trained with a low quantity
of noisy data from zig-zag and circle experiments carried out in agreement with the IMO
standards [31].

Later, deep structured learning architectures such as long short-term memory (LSTM)
networks, which are a type of RNN able to process not only single data points but also
entire sequences of data, have been applied to the dynamic model identification [32]. Other
methods are also available and have been used in specific data-based motion predictor
applications such as support vector machines (SVMs) [16,33–35], deep learning, or auto-
regressive (AR) methods. On the other side, there exist model-based predictors such
as dynamic models [19]. Several applications have been developed in the scope of the
improvement of manoeuvring performance.

The main objective of the development of the RNN model is to obtain an alternative
to the usual manoeuvring simulators that use traditional mathematical models, which
are a function of the hydrodynamic forces and moment derivatives. These values are
normally achieved through captive experiments performed with models in tanks. This
procedure is time-consuming and costly, requiring exclusive use of a large specialized,
purpose-built facility. Another possibility is to use the trajectories of small or even large self-
propelled models to train neural networks or to identify the parameters of the traditional
mathematical models. Furthermore, this is one of the valid methods that can be used in the
design stage of a ship.

The alternative RNN model presented in this paper represents an implicit mathemati-
cal model for ships in which time histories of manoeuvring motions are previously known.
The main advantage of the RNN consists in that the parameters used for the training are
easily obtained from full-scale trials of existing ships or self-propulsion tests of models.
RNNs can handle noisy data because they can generalize after training on noisy data
instead of merely memorizing the noise.

The RNN model used in this paper for the manoeuvring simulation is based on the
one used in [31], but it takes much less data for the network training using the methods
presented in a previous study, which handled only simulated data [36], while here real mea-
surements are used. The RNNs studied have the advantage of having very few parameters
making them very fast to train. The performance of the network is analysed regarding the
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limited data set used for training. RNNs are autonomous but highly susceptible to errors.
If the data set is small enough not to be inclusive, biased predictions may come from a
biased training set.

In recent years, ANNs have been effectively used in an extensive range of maritime
applications. The vessel dynamics may also be considered as a black box and modelled
using a proper tool. ANNs have been used for the problem of parameter estimation in [37],
where the weights of the network correspond to the parameters of the Nomoto model. The
network learns these parameters from data acquired experimentally. One more application,
presented in [38], uses a feedforward ANN to learn the behaviour of the nonlinear terms of
the manoeuvring model from data obtained through numerical simulations. This ANN is
then used in simulations to replace the calculation of the nonlinear terms. In [39], RNNs
were used as manoeuvring simulation tools. Inputs to the simulation, cast in the form of
forces and moments, were redefined and extended in a manner that accurately captures the
physics of ship motion.

In the present case study, the main innovation is to train the network using a different
methodology, the Levenberg–Marquardt algorithm, instead of the backpropagation method.
This methodology is used to solve nonlinear least squares problems, and it is a combination
of two other methods: gradient descent and Gauss–Newton. As there are two possible
options for the algorithm’s direction at each iteration, the Levenberg–Marquardt is more
robust than the Gauss–Newton. As an advantage, it shows to be faster to converge than
either the Gauss–Newton or gradient descent. In addition, it can handle models with
multiple free parameters that are not precisely known. If the initial guess is far from the
mark, the algorithm can still find an optimal solution. In this paper, the results obtained
with the Levenberg–Marquardt algorithm are compared with the ones obtained with the
training performed with two different methods: the scaled conjugate gradient method and
Bayesian regularization. The Levenverg–Marquardt algorithm allowed training the system
with a relatively short training time series.

Section 2 carries out the description of the manoeuvring tests, along with a summary
of the acquired results and the pre-processing steps executed before using them for training
and testing. Section 3 reports the configuration and training method of the presented RNN
model. Section 4 presents the results acquired with the proposed model. Lastly, Section 5
outlines and analyses the results, comparing them with values attained with models being
used for analogous assignments under identical situations.

2. Description of the Manoeuvring Tests

The manoeuvring experiments executed to collect the data used in this article paper
are presented in [40,41]. The experiments were conducted on the “Piscina Oceaˆnica de
Oeiras”, Portugal, with the chemical tanker ship model in March 2016. This swimming
pool has a length of 50 m and a breadth of 30 m. The model is a scaled model of a chemical
tanker built at the “Estaleiros Navais de Viana do Castelo”, Portugal.

The scaled (1/65.7) model of the chemical tanker is shown afloat in Figure 1, and its
main dimensions are stated in Table 1, together with the ones of the real ship. The vehicle
is built from single-skin glass-reinforced polyester with plywood framings, and its design
speed is 0.98 m/s.

The hardware architecture comprises all the sensors and actuators that are used in the
real-time navigation and control platform. The hardware structure is further split into a
command and monitoring unit (CMU) and a communication and control unit (CCU).

The main goal of the shore-based CMU is to assist in the manual and autonomous
control of the vehicle by providing a human–machine interface (HMI). The CMU mostly
consists of various instrumentations: laptop, global positioning system (GPS) unit, indus-
trial Wi-Fi unit, compact-RIO, main AC power supply unit, DC power supply unit, and an
anemometer to measure the relative wind speed and direction.
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Figure 1. Photo of the chemical tanker model.

Table 1. Main dimensions of the real ship and model.

Chemical Tanker Real Ship Model

Length (m) 170 2.588
Breadth (m) 28 0.426
Draft (estimated at the tests) (m) 6.7 0.102
Propeller diameter (m) 5.4 0.082
Design speed (m/s) 8 0.984
Scaling coefficient - 65.7

The main goal of the onboard CCU is to execute real-time control algorithms that are
related to the course and speed controls of the model. The CCU comprises the following
instrumentations: laptop, CompacRIO units, industrial Ethernet switch (IES), GPS unit,
inertial measurement system (IMS) (capable of measuring the 3-axis angles of heading, roll,
and pitch, the 3-axis angular velocities of heading, roll, and 3-axis linear accelerations of
surge, sway, and heave), industrial Wi-Fi unit, DC motors with encoders able to take the
measurements of the 3-axis angles of heading, roll, and pitch, the 3-axis angular velocities
of heading, roll, and 3-axis linear accelerations of surge, sway, and heave, position sensor,
fibre-optic gyrocompass, laptop computer, batteries, and fuse units.

Measurement and registration of the kinematical parameters listed in Table 2 were en-
visaged, and all parameters indicated in the table were measured during the tests. The uncer-
tainty estimates are approximate and were obtained from the instruments’ documentation.

Table 2. Measured Parameters.

# Parameter Unit Equipment

1 Geographical coordinates deg Real-time kinematic GPS
2 Surge and sway m IXSEA inertial sensor
3 Roll and pitch angles deg IXSEA inertial sensor
4 Heading angle deg IXSEA inertial sensor
5 Relative wind speed m/s Ultrasonic anemometer
6 Relative wind direction deg Ultrasonic anemometer
7 Rudder angle deg Incremental encoder
8 Propeller rev. rpm Incremental encoder
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The GPS unit generates instantaneous ship coordinates in terms of latitude ϕ and
longitude λ. These are transformed to the standard Cartesian earth coordinates of the
ship’s origin ξC and ηC for the manoeuvre’s starting point (Figure 2):

ξC = κ(φ− φ0) (1)

ηC = κ(λ− λ0)cosφ0 (2)
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The subscript ‘0’ denotes the initial values of the corresponding variables, and κ is
the conversion coefficient from minutes to meters equal to 1852 m/min. In Figure 2 β is
the drift angle, χ is the course angle provided by the GPS, ψ is the heading angle, δR is the
rudder angle, r is the yaw rate, V is the speed of the ship, VA is the relative wind speed, βA
is the wind drift angle, and χA is the wind course angle.

After this initial transformation, the coordinate ξ is assumed to be measured along the
true meridian while η is along the parallel. However, when analysing the trajectories, the
coordinates are transformed further so that the origin of the earth axes matches the ship’s
position at the start of a manoeuvre, and the ξ-axis is directed along the approach path.

Altogether, six test runs with the model are used for the training of the network,
namely, four zigzags and two circles. Table 3 presents a summary of the data collected. In
total, 5229 data points are provided (2348 from turnings and 2881 from zig-zag tests). Since
the forward speed was not recorded, because the GPS used to track the model position
only feedbacks the position and time, it was replaced in the model with the revolutions per
minute (RPM) values. In this case, the orders are rudder angle and RPMs for certain sailing
conditions. Increasing the RPM value increased the model forward speed, and decreasing
the RPM decreased the model speed. RPM means the rotations of the propeller, which is
directly related to the speed imparted to the ship. Changing RPM changes the speed.

The analysis of the experimental data suggests that the trajectories have been modified
by the effect of wind as the circles are not concentric and show a drift, which would be the
effect of wind and current [42].
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Table 3. Data recorded.

Maneuvere Data Points
Available

Rudder Angle
Range (Degrees) Average RPM Average Realwind

Speed (Knots) Wind Conditions

ZigZag1 748 [−30, 30] 856 2.7
(max 8.6) Light Air to Gentle Breeze

ZigZag2 614 [−30, 30] 873 2.2
(max 7.9) Light Air to Gentle Breeze

ZigZag3 565 [−20, 20] 844 2.1
(max 8.3) Light Air to Gentle Breeze

ZigZag4 954 [−20, 20] 669 3.0
(max 10.4) Light Air to Gentle Breeze

Turning1 992 [0, 20] 487 1.3
(max 11.4) Light Air to Moderate Breeze

Turning2 1356 [0, 26] 492 1.2
(max 11.8) Light Air to Moderate Breeze

3. Neural Network Training

The model used has the following six inputs:

• Rudder angle θ(k);
• RPM(k);
• Sway velocity at previous time step v(k − 1);
• Heading angle at previous time step ψ(k − 1);
• x position at previous time step x(k − 1);
• y position at previous time step y(k − 1);

and three outputs:

• Heading angle at current time step ψ(k);
• x position at current time step x(k);
• y position at current time step y(k).

Connecting inputs and outputs is a single hidden layer with five neurons. A sigmoid-
based activation function is applied to every neuron in the hidden layer, creating a structure
with the capability to provide smooth results. The function is given by:

f (xi) =
exi

exi + 1
(3)

where x is the input of neuron i.
It can be seen in Table 3 that the wind conditions during the zig-zag tests are very

similar but different from the wind conditions of the circles. Due to this difference in wind
conditions, it is not appropriate to train a model on zig-zag data and validate it on circle
data or vice versa. Two separate models are trained, one for each type of test. The training
data points are all concatenated into two arrays, one for zig-zag tests and another one for
circle tests. Each of these two arrays was then split according to the following proportions:

80% of the data points used for training;
10% of the data points used for validation;
10% of the data points used for testing.
Usually, multilayer perceptrons (MLPs) are trained with the backpropagation tech-

nique, but in this work, the damped least-squares method, also known as the Levenberg–
Marquardt algorithm, is employed, as well as the scaled conjugate gradient and Bayesian
regularization methods for comparison.
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Although backpropagation is a gradient descent technique, the Levenberg–Marquardt
algorithmic rule is deduced from Newton’s procedure that was defined to minimize func-
tions that are additions of squares of nonlinear functions [43], as the configuration below:

E =
1
2∑ k(ek)

2 =
1
2
‖e‖2 (4)

where ek is the error in the kth exemplar and e is the vector of the elements ek. If the
discrepancy between the preceding weight vector and the current one is small, the vector
of the errors can be approximated to the first order using Taylor series expansion:

e(j + 1) = e(j) +
∂ek
∂wi

(w(j + 1)− w(j)) (5)

Therefore, the error function can be displayed as:

E =
1
2
‖e(j) +

∂ek
∂wi

(w(j + 1)− w(j))‖
2

(6)

Minimizing the error function in regard to the current weight vector:

w(j + 1) = w(j)−
(

JT J
)−1

JTe(j) (7)

where (J)ki =
∂ek
∂wi

is the Jacobian matrix.
The Hessian matrix for the sum-of-square error function is expressed by:

(H)ij =
∂2E

∂wi∂wj
= ∑

{(
∂ek
∂wi

)(
∂ek
∂wi

)
+ ek

∂2ek
∂wi∂wj

}
(8)

Neglecting the second term in (8), the matrix can be updated as:

H = JTJ (9)

The weights modification needs to take the inverse of the Hessian. The matrix is
fairly uncomplicated to compute since it is grounded on first-order partial derivatives in
regard to the network weights that are easily managed by the training algorithm. Although
the updating equation is used repetitively to reduce the error function, this may generate
a large step size, which could refute the linear approximation on which the equation is
based. In the Levenberg–Marquardt algorithm, the error function is reduced to a minimum
while the step size is remained low intending to guarantee the effectiveness of the linear
approximation. This minimization is obtained through a modified error function of the
following configuration:

E =
1
2
‖e(j) +

∂ek
∂wi

(w(j + 1)− w(j))‖
2
+ λ‖w(j + 1)− w(j)‖2 (10)

where λ is a parameter governing the step size. Reducing the modified error to a minimum
with regard to w(j + 1):

w(j + 1) = w(j)−
(

JT J + λI
)−1

JTe(j) (11)

When λ is null, (11) simply describes Newton’s method, using the approximation to
the Hessian matrix. Once λ is large, the formula converts to the steepest descent with a
small step size. Newton’s method is faster and more accurate when it is close to an error
minimum; thus, the objective is to switch to Newton’s method promptly. Consequently, λ is
reduced after every successful step (reduction in performance function) and is increased just
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in case a tentative step would increase the performance function. Thus, the performance
function is decreased every time at all procedure iterations.

In this study, a single-hidden-layer MLP network is applied in MatLab and trained
using the Levenberg–Marquardt algorithm. For the training mechanism, four input vari-
ables and two output variables were employed, as aforementioned. The quantity of hidden
neurons of 5 was chosen after a methodical examination of the system convergence and
generalization ability.

A diagram of the designed framework is shown in Figure 3. Investigations concerning
the training performance of different variants of the Backpropagation algorithms establish
that the Levenberg–Marquardt algorithm is the fastest to converge. In addition, compar-
isons of predictions made by the different neural networks reveal that the neural network
trained using the Levenberg–Marquardt algorithm gives the most accurate predictions. Re-
sults supporting these affirmations can be found in [44]. The fast convergence teamed with
suitable predictive quality reported in the bibliography makes the Levenberg–Marquardt
algorithm the primary suitable choice for training the neural network for the application
developed in this work.
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Figure 3. An illustration of the designed framework diagram.

In summarizing, in this study, a single-hidden-layer MLP network is applied in
MatLab and trained by making use of the three different algorithms for comparison: the
Levenberg–Marquardt, the scaled conjugate gradient, and Bayesian regularization methods.
For the training mechanism, six input variables and three output variables are employed,
as aforementioned. In this case, the rule-of-thumb method to determine the number of
neurons to use in the hidden layer was based on the number of hidden neurons that should
be between the size of the input layer and the size of the output layer. Different trials
were performed with a different number of neurons between 3 and 6 in the hidden layer
taken for each trial to determine the sensitivity of the neural network to these number
of hidden neurons on the training performance. Then, 5 was chosen for the number of
neurons in the hidden layer. These results are omitted from the text because they do not
present interesting information.

4. Results

Figure 4a, Figure 5a, Figure 6a and Figure 7a show the predicted and experimental
heading angle for data sets ZigZag1 to 4, and Figure 4b, Figure 5b, Figure 6b and Figure 7b
show the respective predicted and experimental trajectories. The parameter used to assess
the model error in zig-zag tests is the average heading error, and the results are based on
the entire data set (All) using the scaled conjugate gradient method.

The correlation coefficient r is calculated to control how well the system output fits
the desired output. The correlation coefficient between a network output x and the desired
output d is stated by:

r =

∑
i
(xi−x)(di−d)

N√
∑
i
(di−d)

2

N

√
∑
i
(xi−x)2

N

(12)

where N is the number of observations.
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The best r values acquired for the approximation of the heading angle for the zig-zag
manoeuvres are registered in Table 4 for the training, validation, and test subsets, as well
as for the entire data set (all) for the three different methods considered.

The predictions for the zig-zag manoeuvres are very suitable, as can be seen in Figures 4–7
and in the results listed in Table 4. It can be noticed that the predictions in almost all
the runs are very similar, mainly because all the trials were performed under the same
environmental conditions. From the obtained results presented in Table 4, it can be seen
that it is possible to predict the heading angle with very suitable accuracy for all three
studied methods.
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Figure 7. Trial #4—Zig-Zag 20–20. (a) Heading angle estimation; (b) trajectory prediction.

Table 4. Zigzags error measures (r).

Set

Method Training Validation Test All

Levenberg–Marquardt 0.99332 0.994538 0.99202 0.99333
Scaled Conjugate Gradient 0.99339 0.990813 0.9961 0.9934

Bayesian Regularization 0.99259 0.993147 0.99753 0.99314

In Figure 4b, it can be seen that for x values larger than 50 m, there is a significant
deviation in the predicted value. This can be explained from the wind velocity plot for
this trial, presented in Figure 8, where it can be seen that around 400 s of the trajectory,
the wind speed decreases, which causes a slowdown in the trajectory. For this reason, the
neural network that had learned the trajectory of the previous instants had the tendency to
continue with the same progress on the y-axis.
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Figure 8. Trial #1—Wind velocity.

For assessing the performance of the model in circle tests, the tactical diameter is of
interest. The tactical diameter is defined as the distance between two points whose heading
differs by 180◦. Figures 9 and 10 show the predicted and experimental trajectories for data
sets Turning 1 and Turning 2 using the Lavenberg–Marquardt method.
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The best r results obtained for the positions x and y approximations for the circle
manoeuvres are registered in Tables 5 and 6, respectively. The predictions for the circle
manoeuvres are also very suitable, as can be seen from Figures 9 and 10 and through the
results listed in Table 5, despite only having two data sets available, with the only difference
between them being the rudder angle. The graphical results of Figures 9 and 10 indicate
the evaluation of the predictive accuracy of the model. The plots show how well the model
predicts and fit the values of the variables obtained in the real experiments. The plots are
computed by using the “all” data results.

Table 5. Circles error measures (r)—x position.

Set

Method Training Validation Test All

Levenberg–Marquardt 0.99998 0.999978 0.99998 0.99998
Scaled Conjugate Gradient 0.99998 0.999981 0.99998 0.99998

Bayesian Regularization 0.99998 0.99998 0.99998 0.99998

Table 6. Circles error measures (r)—y position.

Set

Method Training Validation Test All

Levenberg–Marquardt 0.99995 0.999954 0.99995 0.99995
Scaled Conjugate Gradient 0.99995 0.999949 0.99995 0.99995

Bayesian Regularization 0.99995 0.999948 0.99995 0.99995

Again, from the obtained results presented in Tables 5 and 6, it can be seen that it is possi-
ble to predict the x and y positions with very suitable accuracy for all three studied methods.

Since neural networks are expected to be suitable interpolators, it can be assessed if
the network generalizes well by giving input rudder angles between 20◦ and 26◦ because
the circle tests were performed for these two values of rudder commands. Since no data
are available, it is not possible to quantify the error of these simulations.

5. Conclusions

A method based on ANNs has been implemented to predict the heading angle and
trajectories of a model ship from the output rudder angle command, the RPM of the
propulsion shaft, the measurements of sway velocity, heading angle, and x and y positions
at the previous time step. The training results were presented for the Levenberg–Marquardt
algorithm and compared with the scaled conjugate gradient and Bayesian regularization
methods. The information used to train and validate the system was acquired through
manoeuvring tests with a chemical tanker model ship.

The obtained neural network system is suitable for producing precise approximations
of the mentioned variables, showing that it is possible to obtain suitable results with
an ANN trained using only five hidden neurons. The main feature of this study is to
demonstrate that the ANN is able to learn even from a short and noisy data set. In addition,
the method can be useful for predicting manoeuvring capabilities in the design stage of a
ship. In future work, it is expected to be applied to different types of ships.
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ANN Artificial neural network
RNN Recursive neural network
MMG Manoeuvring Mathematical Group
LSTM Long short-term memory
SVM Support vector machine
CMU Command and monitoring unit
CCU Communication and control unit
HMI Human–machine interface
IES Industrial Ethernet switch
MLP Multilayer perceptron
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