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Abstract: In this paper, the k-ω SST (Shear Stress Transport) turbulence model is employed to study
the effect of flow rate on regular patterns of pressure load distribution characteristics on the helico-
axial pump impeller blade surface. The results show that all the curves of pressure load distribution
of helico-axial pump impeller blade surface at different blade heights under different flow rates show
a similar trend of increasing first and decreasing then. At the impeller blade inlet area, with the
increase of flow rate, the range of negative blade pressure load in this area gradually increases. When
the pump runs under small flow rate conditions, within the range of relative position from 0 to 0.2 of
the hub, the work capacity of the hub is obviously stronger than that of other areas of the impeller,
while within the range of relative position from 0.2 to 1, the work capacity from hub to rim gradually
enhances. With the increase in flow rate, the area with a strong work capacity of the hub gradually
expands while the area with a strong work capacity of the rim gradually narrows. The research results
can provide a theoretical reference for the optimization design of pump supercharging performance.

Keywords: helico-axial pump; pressure load; impeller blade; flow rate

1. Introduction

The helico-axial pump is mainly used for transporting crude oil, and it is a type of
excellent fluid machinery [1–3]. The helico-axial pump performance directly determines
the efficiency of transporting medium. Though the helico-axial pump can transport the gas-
liquid multiphase medium with a large gas volume fraction [4,5], its operation efficiency is
relatively low, which mainly owes to the relatively worse work capacity of the helico-axial
pump impeller blade [6,7].

Now, the research on helico-axial pumps mainly focuses on internal flow mechanism,
hydraulic performance, stability and other aspects. Suh et al. [8] analyzed the internal
flow mechanism of a multiphase flow blade pump after a numerical optimization of both
the impeller and diffuser of a multiphase pump. Shi et al. [9] studied the effect of inlet
gas void fraction on the flow characteristics in the tip clearance combined the numerical
and experimental methods. Based on the Oseen vortex theory, Liu et al. [10] proposed a
method to optimize the performance of multi-stage multiphase by a theoretical method.
Kim et al. [11] used a commercial computational fluid dynamics code and a response
method in optimization to design a multiphase pump impeller and improve its perfor-
mance. Xu et al. [12] found that the design of a splitter blade can significantly reduce
pressure fluctuation and improve the stability and safety of a multiphase pump impeller
operation by studying and experimenting with the transient pressure characteristics. Zhang
et al. [13,14] mainly carried out the visualization test on a multiphase pump to investigate
the liquid–gas flow pattern and its influencing factors like flow rate, rotation speed and
gas proportion. Liu et al. [15] carried out the optimization design of the inlet and outlet
design angle of the impellers and other factors by the orthogonal design method. Zhang
et al. [16] studied the internal flow characteristics of slug flow in a helico-axial multiphase
pump with different in let gas void fractions and found that affected by the flow from the
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slug, the flow pattern in the helico-axial multiphase pump changes sharply and resulting in
severe fluctuations. Suh [17] established a numerical analysis method which was used com-
mercial CFD packages to evaluate the multiphase flow with high reliability and proposed a
numerical method to investigate the effect of different GVFs on the flow characteristics. Liu
et al. [3] provided a dynamic mode and applied it to investigate the gas–liquid flow field in
a three-stage helico-axial multiphase pump. Cao et al. [18] proposed a mathematical model
for describing the pressure distribution inside the working chamber of a multiphase pump.
Moreover, a large number of other relevant significant studies about multiphase pumps
have been carried out [19–23].

At the same time, there have been many reports on the research of the work capacity of
many kinds of pumps. Li et al. [24] investigated the effect of the blade loading distribution
on the head, radial force and pressure pulsation of a low specific-speed centrifugal pump
with cylindrical impeller blades. Shi et al. [25] investigated pressure load distribution on
helico-axial pump blades under different gas volume fraction conditions. Zhang et al. [26]
studied the unsteady hydrodynamic forces on a diffuser pump impeller excited by the
interaction between the impeller and the vaned diffuser with the same number of vanes as
the impeller by experimental and computational methods. Aimed at studying the influence
of impeller rear rim radius on the axial force and pump hydraulic performance, Zhou
et al. [27] investigated a centrifugal pump with different impeller rear rim radii under
multi-conditions numerically and experimentally. Li et al. [28] adopted a numerical method
to investigate the hydraulic force on the impeller of a model reversible pump turbine
quantitatively. Zhu et al. [29] investigated the influence of leading-edge cavitation on
impeller blade axial force in the pump mode of a reversible pump-turbine. Kang et al. [30]
studied the operational stability of an impeller pump; the numerical method considered
the dynamic influence of fluid flow, temperature and structure and found that pressure
distributions remain similar at the flow rate inspected. Zhou et al. [31] researched the
fluid-induced force of a centrifugal pump impeller under eccentric assembly conditions
with compound whirling based on the numerical method.

It can be known from the summary of the aforesaid literature that there are few
reports within the literature on the research on the work capacity of the helico-axial pump.
Referring to relevant research methods, the regular patterns of pressure load distribution of
the helico-axial pump impeller blade surface are studied in this paper. Through the present
research, the work capacity of the pump impeller can be grasped, providing a theoretical
reference for further optimization design of the pump.

2. Prototype Pump

A helico-axial multiphase pump, which was researched and developed independently
by the authors, is selected as the research object in the present study [32]. Table 1 shows
the main parameters of the selected helico-axial pump. Figure 1 shows the prototype
helico-axial multiphase pump, which is mainly composed of the following parts, i.e., flow
parts, axial force balance device, cooling system, sealing system, bearing support mode and
structures. The helico-axial pump has a single compression cell, and the compression cell is
constituted of a rotating impeller and a static diffuser.

Table 1. Major parameters of the helico-axial pump.

Parameters Value Unit

Design volume flow rate 90 m3/h
Design rotational speed 3600 r/min

Number of impeller blade 3 -
Number of diffuser blade 11 -

Outer diameter of impeller 161 mm
Outer diameter of diffuser 161 mm
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3. Numerical Methods
3.1. Governing Equations

The Reynolds averaged RANS (Navier–Stokes equations) combined with the k-ω two-
equations turbulence model based on the SST (Shear Stress Transport) model are adopted as
the governing equations in the present study. The turbulence model takes the transmission
of turbulent shear stress into account, which can predict the flow separation amount
under negative pressure gradient more precisely so that the model owns a wider scope
of application and more advantages compared to other turbulence models [3,4,33], and
the obtained computing results are more reliable. The RANS equations are Equations (1)
and (2).
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where i, j = 1, 2, 3, t is time, ui is the averaged component of velocity, p denotes the pressure,
ρ is the density of fluid, ν is the kinematic viscosity, ui

′ and u′ iu′ j denote the fluctuating
component of flow velocity and Reynolds stress tensor, respectively. The Reynolds stress
tensor is calculated based on the Boussinesq hypothesis equation [34], i.e.,
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where νt is the eddy viscosity, k is the turbulent kinetic energy, δij is the Kronecker symbol.
The turbulent kinetic energy k and the specific dissipation rate ω are solved by Equations (4)
and (5).
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The eddy viscosity is solved by Equation (6).

νt =
α1k

max
(

α1ω,
√

2SijSijF2

) (6)

All the above equations make up the governing equations in the present study. A
more detailed description of the equations and parameters can be found in reference [35].

3.2. Model of Helico-Axial Pump

In order to make the inlet and outlet flow to be more fully developed, extensions are set
at the inlet and outlet of the helico-axial pump pressurization unit. The computation domain
model is composed of four parts, i.e., inlet extension (inlet pipe), impeller, diffuser and
outlet extension (outlet pipe). The integrated BladeGen software, which is a professional
modeling software for turbomachinery in ANSYS Workbench, is adopted to model the
helico-axial pump impeller and diffuser. The final computation models are shown in
Figure 2.
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3.3. Mesh Arrangement and Mesh Independence Validation

Through three-dimensional modeling software, in this paper, the blade profile of
the impeller and diffuser and the curves of the rim and hub of the helico-axial pump
are extracted from the established three-dimensional model. The control points of each
profile are obtained in Bladegen software, and then the control points are introduced into
Turbogrid software to carry out the structural grid division of a single passage in impeller
and guide vane areas. Then, the single passage is rotated into the whole passage for setting.
It is better to import the inlet and outlet extensions of the computational flow domain
for hexahedral structural grid division. The near-wall meshes are refined to capture the
complex flow field in the boundary layer and ensure the value of y+ in the simulation
within 30.

In the numerical simulation, the quality and the number of cells can affect the accuracy
and the cost of computing time directly. In this paper, four groups of grids were selected
for independent verification under the same conditions. Table 2 shows the results of the
relative head under different grid groups. It can be seen from Table 2 that the relative
head of the pump gradually tends to stabilize with the increase in the number of grids.
When the number of grids is larger than the third group, the change values of the pump
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head are small, and the influence of the grid number on the calculation can be ignored.
Considering the computing resources and accuracy, the grid number of the computing
domain is finally selected as 4.26 million. The structural grids of the computational domain
are finally obtained, as shown in Figure 3.

Table 2. Mesh independence verification.

Group 1 Group 2 Group 3 Group 4

number of grids in inlet extension (106) 0.51 0.51 0.51 0.51
number of grids in impeller (106) 0.78 1.20 1.75 2.60
number of grids in diffuser (106) 0.61 0.97 1.44 2.08

number of grids in outlet extension (106) 0.56 0.56 0.56 0.56
number of total grids (106) 2.46 3.24 4.26 5.75

H/H1 1 1.021 1.036 1.040
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3.4. Numerical Simulation Setting

The inlet boundary condition is set as the velocity inlet boundary condition, and the
velocity is calculated by the flow rate and cross-sectional area of the inlet pipe. The outlet
boundary condition is a static pressure outlet boundary. The wall surface of the impeller
wheel adopted the rotating coordinate wall surface, while the others remained stationary.
The Frozen Rotor mode is used between rotatory and static parts while general connection,
that is, direct connection, is used between static parts. Non-slip and non-penetration
boundary conditions are used for all solid walls, and scalable wall function is used in the
near wall area.

Pure water is selected as the working fluid medium to study the regular patterns of
pressure load distribution on the helico-axial pump impeller blade surface. The density of
water is 1000 kg/m3, the kinematic viscosity is 1.01 × 10−6 m2/s, and the compressibility
has been neglected.

In this paper, CFX software is used to conduct the numerical simulation of the internal
flow of the helico-axial pump. The SIMPLE method is used for solving pressure and
velocity, and the calculation process is considered to be converged when the root-mean-
square residual is below 10−5.
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3.5. Numerical Method Verification

In order to verify the reliability of the numerical calculation method adopted in this
paper, the reliability of numerical calculation is verified by the experimental verification
method. This experimental system platform can test the hydraulic performance of the
helico-axial pump. In this study, the external characteristics test of a single pressurization
unit of a pump is mainly carried out. In order to more easily capture the flow state in the
impeller during the test, the diffuser and the pump body are made of transparent plexiglass,
as shown in Figure 4.
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The helico-axial pump experimental platform consists of a frequency converter, torque
meter, inlet and outlet throttle valve, inlet and outlet pressure sensor and electromagnetic
flow meter, and so on, as shown in Figure 5. The precision of the main equipment is shown
in Table 3. The accuracy of the above experiment equipment is reliable, and at the same
time, the head and efficiency obtained in this way are also real and credible.
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Table 3. The precision of main equipment.

Instrument Range Precision Unit

Inlet pressure gauge 0–0.8 0.3 class MPa
Outlet pressure gauge 0–1 ±0.2% MPa

Water flow meter 0–140 ±0.5% m3/h
Torquemeter 0–50 0.2 class N·m
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To verify the reliability of the numerical methods, the numerical results are compared
with the experimental results under the same operating conditions. Figure 6 shows the com-
parison of the experimental data and simulation results of head and efficiency, respectively.
It can be seen that the change tendencies in the numerical results and the experimental
results are consistent, and the relative error between each other are all within 5% in the
flow rate range of 60~120 m3/h. The comparison shows the results of the numerical
simulations are reliable. The numerical simulation method used in this study has high
reliability, and the calculation results can accurately predict the transport performance of
the helico-axial pump.
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4. Result Analysis

In the present work, five different flow rates, i.e., 80 m3/h, 90 m3/h, 100 m3/h,
110 m3/h and 120 m3/h, were selected to study the regular patterns of blade surface load
distribution on helico-axial pump impeller blade under different operation conditions. In
the numerical simulations, the internal flow field of the helico-axial pump is seen as a
three-dimensional steady flow field.

4.1. Static Pressure Distribution of Impeller Blade Surface under Different Flow Rates

In order to explore the work capacity of the helico-axial pump, the regular patterns of
static pressure distribution of the helico-axial pump blade at different blade heights under
different flow rates are studied. In this paper, three streamlines on the blade surface are
selected for analysis, which is span = 0 (intersected line of blade and hub), 0.5 (middle
streamline) and 1 (streamline at blade rim), which are shown in Figure 7.

The static pressure data of the three streamlines under each working condition is ex-
tracted, respectively. The relative positions of static pressure data points on each streamline
are conducted with normalization processing. The position where the relative position of
the blade is 0 means the impeller blade inlet, and the position where the relative position
of the blade is 1 means the impeller blade outlet. The static pressure distribution of the
helico-axial pump blade surface is finally obtained, as shown in Figure 8.
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It can be known from comparing the static pressure distribution curves on the blade
surface in Figure 8a–e that, under each flow rate, the variation patterns of the static pressure
of each streamline on the blade working surface and back surface are similar. The static
pressure value of the working surface increases gradually from hub to rim, while the static
pressure value of the back surface alternatively changes from hub to rim, showing uneven
static pressure distribution on the blade surface. It can also be seen from Figure 8 that,
compared with the working condition of large flow rate conditions, under the working
condition of small flow rate, the static pressure difference between each streamline of
the helico-axial pump working face is obviously larger, indicating that the static pressure
gradient of the working surface of helico-axial pump impeller blade gradually decreases
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with the increase of flow rate in the direction of blade height. The static pressure fluctuation
in the inlet area also gradually increases, indicating that with the increase in flow rate,
the energy loss of the impeller inlet area gradually increases, which is consistent with the
gradual decrease of impeller hydraulic efficiency with the increase of flow in the external
characteristic of helico-axial pump. It can also be seen from Figure 8 that, with the increase
in flow rate, the lowest point of static pressure at different blade heights on the back surface
of the helico-axial pump blade gradually transfers from the relative position of 0.2 to 0.4,
and the low-pressure area gradually increases, indicating that, with the increase of flow
rate, the low-pressure area gradually expands when helico-axial pump blade back surface
is in the relative position of 0.2~0.4.

4.2. Pressure Load Distribution of Impeller Blade under Different Flow Rate

The difference between the static pressure on the blade working surface and the back
surface of the helico-axial pump is used to obtain the pressure load distribution of the
impeller blade from the inlet to the outlet, as shown in Figure 9. It can be seen from Figure 9
that, under the working conditions of different flow rates, all the pressure load distribution
curves of the helico-axial pump impeller blade surface at different blade heights show a
trend of increasing first and decreasing then, indicating that the work capacity of helico-
axial pump impeller from inlet to outlet increases first and decreases then. It can also be
seen from Figure 9 that in the impeller inlet area, with the increase of flow rate, the range
of negative blade pressure load in this area increases gradually, indicating that, with the
increase of flow rate, the highly efficient work capacity area of impeller domain starts to
narrow while the negative work capacity area of impeller inlet gradually expands.

It also can be seen from Figure 9a,b that, under the working condition of a small
flow rate, within the range of relative position from 0 to 0.2, the pressure load of the hub
streamline reaches the maximum, and the difference between the pressure load values of
the middle streamline and the rim streamline are very small. Meanwhile, within the range
of relative position of from 0.2 to 1, the pressure load at the rim streamline is the largest,
followed by that of the middle streamline, and that of the hub is the minimum, indicating
that, under the working condition of small flow rate, the work capacity of the hub within
the range of relative position of 0~0.2 is obviously stronger than that of other areas of the
impeller and the work capacity from hub to rim within the range of relative position of
0.2~1 gradually increases. With the increase of flow rate, under the working conditions
of the designed flow rate and large flow rate, the area with a strong work capacity of the
hub gradually expands while the area with a strong work capacity of the rim gradually
narrows. Additionally, it can also be seen from Figure 9 that, with the increase in flow rate,
the fluctuation of pressure load curves of each streamline gradually increases, and its peak
value gradually deviates towards the outlet. It can be known from the literature [4] that the
blade load distribution is relative to the relative velocity. The fluctuation of load curves will
lead to fluctuation of relative velocity inside the impeller and the flow inside the impeller
becomes more turbulent. Contrarily, the more uniform the velocity distribution inside the
impeller, the more stable the internal flow. The maximum load value of the blade shall be
optimal in the middle of the impeller with a slight inclination to the inlet. As the maximum
load moves to the outlet, pump performance begins to degrade.
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5. Conclusions

To obtain the effect of flow rate on regular patterns of pressure load distribution on
helico-axial pump impeller blade surface, a numerical study of the helico-axial pump under
different flow rates has been carried out, and the following conclusions are obtained:

(1) With the increase of flow rate, the head of both the helico-axial pump and impeller
gradually decreases, while the hydraulic efficiency of the helico-axial pump increases
first and decreases then with a gradual lowering of impeller efficiency. Moreover,
with the increase in flow rate, the decreased rate of the impeller hydraulic efficiency
under the working condition of a large flow rate is apparently higher than that under
the working condition of a small flow rate.

(2) The static pressure difference between each streamline of the helico-axial pump im-
peller working surface under the working condition of a small flow rate is significantly
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larger than that under the working condition of a large flow rate. With the increase
in flow rate, the lowest point of static pressure on the back surface of the helico-axial
pump blade at different blade heights gradually shifts from the relative position of 0.2
to 0.4, and the low-pressure area gradually expands.

(3) Under different flow rates, the pressure load distribution curves of the impeller blade
surface at different blade heights all show the trend of increasing first and decreasing
then. In the impeller inlet area, with the increase in flow rate, the range of negative
blade pressure load in the area gradually expands. Under the working condition of
a small flow rate, the work capacity of the hub is significantly stronger than other
areas of the impeller within the range of relative position of 0~0.2, and the work
capacity gradually increases from hub to rim within the range of relative position of
0.2~1. With the increase in flow rate, the area of the strong work capacity of the hub
gradually expands while the area of the strong work capacity of the rim gradually
narrows.
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