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Abstract: Oily wastewater has been recognized as a threat to the environment due to its hazardous
nature and it can negatively affect the ecosystem, and threaten wildlife and human health. Physi-
cal, chemical, and biological technologies demonstrated a mixed performance in oily wastewater
treatment, and, therefore, a proper treatment technology for oily wastewater needs to be addressed.
Membrane filtration using a hollow fiber (HF) membrane is a promising alternative to remove emul-
sified oil from oily wastewater. This review discusses different sources of oily wastewater, various
treatment methods, and membrane technology. The assessment has been focused on the parameters
affecting HF membrane performance and applications of HF membrane-based technology to treat oily
wastewater. This review paper reveals that HF membrane filtration systems have been previously
used for the treatment of oily wastewater in bench-scale studies and few pilot-scale applications,
which proved to be favorable in the treatment of recalcitrant wastewater containing oil and high
salinity. Limitations associated with membrane fouling and the reduction of membrane permeability
and membrane lifespan can be tackled and alleviated through modifying membrane chemistry and
adjusting operational parameters. The compilation of studies showed that a low food/microorganism
(F/M) ratio, long solid retention time (SRT) with high sludge age, long hydraulic retention time (HRT),
and moderate aeration were the preferred operational parameters when treating oily wastewater.
Based on this review, future studies should focus on optimizing the hydrodynamic conditions of the
HF system, the commercialization of modified HF membranes, and the utilization of green technology
in HF membrane construction to broaden HF membrane technology applications.

Keywords: membrane technology; hollow fiber membrane; oily wastewater treatment; physical
separation; membrane bioreactor

1. Introduction

In the past two decades, different industrial sectors have generated large volumes
of oily wastewater and discharged it into the environment [1–4]. Oily wastewater is
characterized by high biochemical oxygen demand (BOD), total suspended solids (TSS),
chemical oxygen demand (COD), ammonia, sulphides, total organic carbon (TOC), and
total petroleum hydrocarbon (TPH), with their concentration varying depending on the
operations and products from the manufacturing industries [5]. It also contains many toxic
compounds, such as volatile organic compounds (VOCs) (e.g., benzene, toluene, ethylben-
zene, and xylene (BTEX)), polycyclic aromatic hydrocarbons (PAHs), phenols, and heavy
metals [4,6–8]. When oily wastewater is discharged into water bodies, land, and/or sewer
lines without adequate treatment, it negatively affects drinking water and groundwater
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sources, wildlife, and human health, and also causes atmospheric pollution [9,10]. The
global increase in the discharge of oily wastewater, and strict environmental regulations for
effluent discharge, necessitate the need for effective and adequate oily wastewater treat-
ment [5]. Previously, a variety of treatments, including physical, chemical, and biological
methods have been widely used to treat oily wastewater and mitigate its environmental
impacts [11]. However, physical methods require large space for installation, high energy
for dispersing coagulants, long periods of time to separate oil using gravitational force, and
a low treatment efficiency [3,6,9,12]. Chemical methods consume toxic compounds, have
high chemical costs, generate secondary pollutants, and are not suitable for the environ-
ment [3,6,9,13]. The efficiency of biological methods is affected by changes in environmental
factors such as the level of oxygen, temperature, and variation of feed composition. Oil
compounds are highly toxic and have poor nutrients for microorganisms; and several
compounds such as saturates, aromatic, asphaltenes, and resins cannot be decomposed
efficiently using this method [13,14]. Therefore, the focus of researchers has shifted to
emerging and advanced treatment technologies for sustainable, cost-effective, eco-friendly,
and efficient treatment of oily wastewater [5].

Among all of the advanced methods, membrane-based technology is a promising
method for oily wastewater treatment due to its capability in separating oil droplets smaller
than 20 µm [15–17]. The membrane filtration technology has benefits such as high effluent
quality, low requirement for chemical additives, low generation of sludge, and a small
footprint [8,18,19]. Additionally, membrane technology has a low energy cost compared
to conventional and other advanced technologies. Membrane filtration treatment does
not have any moving parts, has the possibility of using intermittent aeration, and has
low chemical substance usage, which contributes to its low energy requirement [20–22].
Hollow fiber (HF) is the desired membrane configuration for oily wastewater treatment
as it has the highest surface area per unit volume, is mechanically self-supported, and
can stimulate the movement of hollow fibers through air scouring, and backwashing,
which helps mitigate membrane fouling [23,24]. This technology can either be used as
a physical separation approach or integrated with a biological component (i.e., membrane
bioreactor (MBR)) for treating oily wastewater [18,25]. The application of HF membranes
for oily wastewater treatments is contingent on various factors such as membrane material,
features, and operational factors such as flux, aeration flow rate, and activated sludge
characteristics [26,27]. There needs to be a delicate balance between operational parameters
to attain optimal membrane permeability, and, consequently, high effluent quality [28].

Although membrane-based technologies are dependable treatment systems, mem-
brane fouling is a notable problem impeding widespread and large-scale applications of
this technology [2,29]. Membrane fouling increases transmembrane pressure (TMP), which,
in turn, reduces permeate production and decreases membrane lifespan. Consequently, fre-
quent membrane cleaning and replacement are required, therefore, increasing operational
costs [2,28]. Thus, further research is required for developing new methods for enhancing
membrane performance.

The objective of this review paper is to investigate the application of HF membrane-
based technology and identify its challenges in order to improve its performance in treating
oily wastewater. The first section of this paper discusses the sources of oily wastewater
and its treatment methods. The assessment then focuses on membrane-based technology,
HF membrane characteristics, important parameters affecting its performance, and HF
membrane applications in oily wastewater treatment. The paper explores recommendations
to improve the treatment of oily wastewater using an HF membrane filtration system.

2. Oily Wastewater and Treatment Methods
2.1. Oily Wastewater Sources

Different industrial sources generate an immense volume of oily wastewater which
adversely affects the environment, wildlife, and human health due to the existence of
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BTEX, phenols, and total acid and grease with quantities ranging between 0.73–24.1 mg/L,
0.001–10,000 mg/L, and 2–560 mg/L, respectively [30].

Food, metallurgical, petroleum, and transportation industries are among the signifi-
cant sources of oily wastewater [4,31].

In the food industry, palm, soybean, olive, cottonseed, and sunflower are major sources
of extracting edible oil. The global oil market is predicted to increase from 83.4 billion US$
(2015) to 130.3 billion US$ by 2024 with a compound annual growth rate (CAGR) of
5.1% [32]. Palm oil is the most common edible oil in the world with 37% of the total
vegetable oil production [33]. During oil processing, a high volume of oily wastewater is
generated (e.g., during the production of palm oil, 0.5–0.75 tons of palm oil mill effluent
per one ton of fresh fruits were generated) [34]. This type of oily wastewater has a high con-
centration of COD, BOD, total dissolved solids (TDS), TSS, oil and grease, fats, phosphate,
and sulphate [32].

Another significant source of oily wastewater is generated from the lubricating and
cooling of metal pieces in machinery [35]. They are spilt into two categories, one is oil-based
metalworking fluids (MWFs) and the other is water-based MWFs [36]. The waste generated
as a result of using these MWFs is known as spent cutting oil [37]. On a global scale,
more than 2,000,000 m3 of MWFs are used annually, however, the volume of wastewater
can be ten times higher because of the dilution of MWFs [36]. MWF is comprised of
heavy metals, acids/alkalines, radioactive metals, phenols, PAHs, hydrazines and imine-
carbohydrazides, and thiophenes as well as hydrocarbons containing BTEX which are
persistent in the environment [38].

Oily wastewater is generated from every step of the petroleum industry including
exploration, drilling, processing, and storage, with the wastewater produced from these
processes referred to as produced water [4]. Among them, oil drilling and oil refinery
processes produce the largest amount of oily wastewater [39]. For instance, the total amount
of produced water globally generated from the petroleum industry is 39.746×109 L/d [9].
The characteristics of the produced water are varied depending on the location of the
refinery and oil well [4,31]. Petroleum wastewater contains a complicated mixture of oil,
water, and suspended and dissolved solids. PAHs, phenols, heavy metals, and radioactive
elements are among the most concerning components [16,40–42]. Marine transport is
a major source of oil pollution; the emergence of the worldwide shipping industry increased
illicit discharge of bilge and ballast water and oil spill disasters [11]. For instance, the
International Tanker Owners Pollution Federation (ITOPF) recorded the largest volume
of oil spilled in the past 24 years (i.e., SANCHI, off the coast of China) occurred in 2018,
releasing ~98,000 tonnes of oil [43]. In addition, the oil spill volume for 2021 is the second
highest estimate (i.e., ~82,000 tonnes) in the last ten years globally as a result of six oil
spill incidents [43]. Harmful compounds that are released in the water as a result of
a spill include hydrocarbons, hazardous metal ions, detergents, surfactants, and petroleum
products, such as crude oil, diesel oil, gasoline, lubricant, and kerosene [11].

2.2. Treatment Methods

Different types of treatment have been used to separate oil from oily wastewater in-
cluding physical, chemical, and biological methods [44,45]. A suitable treatment technology
is selected based on the source of wastewater, wastewater characteristics, operational cost,
and the end-use of effluent [4,5].

2.2.1. Physical Methods

Physical treatment methods include gravity separation, dissolved air floatation (DAF),
coagulation, and membrane separation which are used to treat oily wastewater [11,46–48].
The gravity separation method is operated based on the difference in densities of hydrocar-
bons and water phases, this method is suitable for removing suspended solids (SS) and
free oil (i.e., oil–water mixture with droplet diameters >150 µm) [49,50]. Gravity separation
is usually used as a pre-treatment or primary treatment; since this method is incapable of
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separating dispersed oil (i.e., oil droplet size ranging between 20 and 150 µm) or emulsified
oil (i.e., droplet size of smaller than 20 µm) [51]. In this approach, gravity as the driving
force is very slow, incomplete, and time-consuming in many situations [51].

Compared to gravity separation, DAF is a faster technology and has a smaller foot-
print. DAF can effectively separate dispersed and emulsified oils, using gas bubbles that
are introduced into the oil-containing liquid which sticks to the oil droplets. The gas
bubbles quickly rise to the surface demulsifying the solution; the oil layer on top is then
removed [52]. Previous studies showed that increasing oil concentration and flow rate
decreased the oil removal efficiency in DAF. Increasing the flow rate into the DAF tank can
cause the oil droplets to flow straight to the effluent without having much time to attach to
the air bubbles and float to the surface [47,53]. Increasing the pH range decreases the oil
removal efficiency since it increases the repulsion between the oil and water surface and
hinders oil droplets from attaching to the air bubbles in the clarifier due to the absorption of
(OH)− ions at the oil–water interface [53,54]. Increasing the temperature of the oil-in-water
mixture decreases the viscosity and the surface tensions which increases the separation rate
of oil and water [55,56]. Due to the continuous generation of air bubbles, DAF technology
has the disadvantage of high energy consumption [6].

Another technique, coagulation, is often used prior to DAF [57,58]; the coagulation
mechanism is based on using coagulants to destabilize the colloids through the neutral-
ization of the repulsive forces between the fine colloids [11,59]. This method is capable
of removing emulsified and dispersed oils in addition to some difficult to biodegrade or-
ganic polymers [60]. Previous studies used different types of coagulants such as poly-zinc
silicate, polyaluminum chloride, polyferric sulphate, polyferricsilicate sulphate, and chi-
tosan to remove oil efficiently [61–64]. Parameters such as molecular weight, dosage, and
charge density of coagulants determine the coagulation efficiency [65]. The coagulants with
a low molecular weight capable of neutralizing the negative charge on the oil droplet have
been commonly used [66]. Studies showed that a low coagulant dosage is not adequate to
destabilize all of the colloidal particles and increasing the coagulant dosage increases the oil
removal efficiency. However, when the dose of coagulants saturates the solution, there is
a decreasing trend in the oil removal efficiency [67]. Coagulants with higher charge density
demonstrated good results in oily wastewater treatment, for example, polyaluminum chlo-
ride with a high charge density showed an excellent result in oily wastewater treatment
because the flocs were large and dense during the coagulation process [68]. Although
coagulation is an effective process, it has some drawbacks such as requiring a large amount
of coagulants that are hazardous to the environment, causing corrosion problems when pH
is reduced, and the generation of sludge that needs further treatment [60].

The membrane filtration system overcomes the weaknesses of other methods in terms
of a prolonged process, large-space requirement, high amount of waste generation, and
low treatment efficiency [3,6,16]. The membrane technology utilized for oily wastewater
treatment is driven by pressure. The membrane pore size acts as a selective barrier allowing
the smaller particles to pass through, while the larger-sized oil particles are blocked and
retained in the feed solution [69,70]. This method is an excellent approach for the treatment
of oily wastewater, particularly for effluents containing emulsified oil with minimal den-
sity difference in comparison with water [16,71,72]. The summary of physical treatment
methods in terms of advantages and disadvantages is shown in Table 1.

2.2.2. Chemical Methods

Advanced oxidation process (AOP), adsorption, and demulsification are categorized
as chemical treatments [77–83]. The AOP is described as the method that relies on the
production of hydroxyl free radicals, which has great electrochemical oxidant power and
strong oxidizing potential. Their excellent oxidizing potential allows them to easily degrade
organic compounds (i.e., oil) converting them to H2O, carbon dioxide (CO2), and inorganic
ions, through dehydrogenation or hydroxylation [84,85]. There are three main types of AOP,
such as electrochemical oxidation, Fenton process, and photocatalytic treatment which are
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commonly used in oily wastewater treatment [59]. The advanced oxidation methods are
associated with high mineralization efficiency, rapid oxidation reaction rates, and minimal
toxicity, which are favorable in the treatment of oily wastewater [86,87]. For instance,
Gotsi et al. [88] investigated the treatment efficiency of the wastewater generated from
olive oil mills using electrochemical oxidation. In this study, a flow-through electrolytic cell
with internal recycling at a voltage of 5, 7, and 9 V, NaCl concentrations of 1%, 2%, and 4%,
recirculation rates of 0.4 and 0.62 L/s, and initial COD concentrations of 1475, 3060, 5180,
and 6545 mg/L were examined. Results showed that increasing voltage, salinity, and recir-
culation rates led to a high oil removal efficacy. In photocatalytic research, previous studies
mostly used TiO2 and ultraviolet and/or solar light for oil degradation [89,90]. These stud-
ies showed good results when oxidizing PAHs, BTEX, and phenols in oily wastewater [81].
In this line, Sivagami et al. [91] examined the treatment of total petroleum hydrocarbons
in oil spill sludge using the combination of ultrasound and the Fenton process. Different
operating parameters such as pH, ultrasonic power, the weight ratio of hydrogen peroxide
to iron [H2O2/Fe2+], Fenton reagent dosage, addition of salts, and contact time were in-
vestigated. The high petroleum removal efficiency (84.25%) was obtained at a pH of 3.0,
sludge/water ratio of 1:100, ultrasonic power of 100 W with 40–50% ultrasonic amplitude,
an H2O2/Fe2+ weight ratio of 10:1, and an ultrasonic treatment time of 10 min. While
Liu et al. [81] investigated the treatment of offshore produced water using a photocatalytic
ozonation system with TiO2 nanotube arrays (TNA) and UV-light-emitted diode (UV-LED)
irradiation. Results showed that ozone significantly improved the oxidation rates and
removed the PAHs within 30 min. However, the high cost of the treatment process, high
energy consumption, corrosion problems in treatment facilities, harmful and toxic catalysts,
solid waste generation, and complex chemistry are the downsides of AOPs [87,92].

Table 1. Physical methods to treat oily wastewater.

Method Pros Cons Types of Removed Oil Reference

Gravity Separation Low cost,
simple device

Large footprint,
limited separation capacity

and poor treatment effect on
emulsified oil

Free oil [11]

Dissolved Air Flotation
(DAF)

High-quality effluent,
improved surface

loading

High operating cost,
large footprint

Dispersed oil,
emulsified oil [73,74]

Coagulation

Low cost,
small equipment,
easy to operate,

well-established and
practical

Poor treatment effect
with surfactant,

complicated composition,
a large amount of coagulant,

generation of sludge

Dispersed oil,
emulsified oil [11,75]

Membrane Separation

High-quality permeate,
small footprint, low
energy input, low

generation of waste

Membrane fouling requires
cleaning and backwashing,

and incurred cost

Dispersed oil,
emulsified oil [8,11,76]

The adsorption method refers to the physical adhesion of the polluting chemicals onto
the surface of a solid, which is used to eliminate soluble oil and chemically stable emul-
sions [93]. In this method, a wide range of materials such as activated carbon, bentonite,
sand, coal, polypropylene, and organoclay are used. In this line, Okiel et al. [94] investi-
gated the treatment of oily wastewater using bentonite, powdered activated carbon, and
deposited carbon. The impacts of contact time, adsorbent weight, and the concentration
of adsorbate on the oil removal were examined. The oil removal efficiency was improved
by increasing the contact time and the adsorbent weight. Deposited carbon and bentonite
had higher adsorptive capacities compared to the powdered activated carbon. Deposited
carbon and bentonite have a higher porosity and surface area; therefore, they are more
suitable for oil removal. In another study, Islam [95] investigated the efficacy of organoclay
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to remove the oil by measuring its adsorption capacity. It was found that organoclay was
effective in removing different concentrations of oil in the oily wastewater. The contact time
of 3 h between organoclay and the oil-in-water emulsion was optimal for high oil removal
efficiency. The oil removal efficiencies for initial oil concentrations of 750 ppm, 1000 ppm,
and 1500 ppm were 28.20%, 35.75%, and 40.036%, respectively. Although adsorption
is an effective treatment, the preparation of adsorbents is time-consuming, complicated,
and expensive; additionally, as the adsorbent is used there is a reduction in the active
ingredient percentage, mechanical strength, and adsorption selectivity, which restricts its
application [11,96].

Chemical treatment with demulsifiers (surface active agents) is also used to treat oil-in-
water emulsions as the chemical additives accelerating the separation of oil and water [97].
When demulsifiers are used, they move to the water and oil interface, weakening the
surface tension and improving coalescence. This method is rapid, efficient, and capable
of decreasing oil viscosity in an emulsion and separating oil and water [98,99]. Previous
studies showed that the demulsifier’s molecular weight had a significant impact on the
performance of demulsification. Increasing molecular weight resulted in better separa-
tion and there was a linear correlation between the removal efficiency and the molecular
weight [100,101]. Razi et al. [102] investigated the impact of various demulsifier formula-
tions on the efficacy of chemical demulsification of heavy crude oil. Results demonstrated
that the different surfactant demulsifiers varied in removal efficiency. The formulated
surfactant showed a higher efficiency in the demulsification of a medium crude oil emul-
sion compared to a heavy crude oil emulsion. The different surfactant efficiencies were
associated with asphaltene content which was lower in the medium crude oil. Different
studies reported the use of demulsifiers formulated from polymers, such as alkene oxides
diester, ethylcellulose (EC), Tween non-ionic polymer, and polyester to improve the effi-
ciency of oil removal [103–105]. As an example, the demulsification efficiency of 97.5% was
reported within 45 min of the demulsification process using a polyester-based demulsifier.
Demulsification mitigates the requirement for heating and retention time for the separation
process [98]. The overdose of demulsifiers negatively impacts treatment efficiency by
forming a rigid layer caused by aggregating particles; therefore, adding the ideal amount of
demulsifier during oily wastewater treatment is required to enable propagation expansion
at the interface when it is dissolved in the oil phase [82,99]. Table 2 shows the advantages
and disadvantages of chemical methods and the types of oil that can be removed.

Table 2. Chemical methods to treat oily wastewater.

Method Pros Cons Types of Removed Oil Reference

Adsorption

Depending on the type of adsorbents
it has high selectivity,

high adsorption capacity,
high reuse rate

Material preparation is
time-consuming and

complex,
adsorbing water by organic
adsorbents as much as oil

adsorption

Emulsified oil [11]

Electrochemical Oxidation
Low space requirements,

efficient treatment in a short time,
effective removal of oil and grease

High cost,
high power consumption,

complex device

Emulsified oil,
hazardous metal ions [11]

Photocatalytic
Process

Able to oxidize persistent
combinations which are not oxidized

during biological treatment

High energy consumption,
low efficiency Emulsified oil [59,81]

Fenton Process

Effective in removing toxic
wastewater,

short reaction time,
using easy-to-handle reagents

High cost of consuming
reagents,

harsh acidic atmosphere,
high generation of ferric

sludge

Emulsified oil [106,107]

Demulsification

Effective in accelerating the
separation of oil and water process,

easily used with reasonable cost,
minimizing the amount of heat and

settling time required

Expensive, toxic,
high consumption Emulsified oil [108]
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2.2.3. Biological Methods

In the biological treatment method, different types of microorganisms are cultured and
used to degrade the organic contaminants in wastewater [69]. The microbes use organic
matter such as oil as a source of carbon along with sources of phosphorus and nitrogen as
nutrients to perform metabolic processes. As a byproduct of microbial metabolism, the oil
contaminants are converted to less harmful products such as carbon dioxide, methane, oxy-
gen, and nitrogen gas [109]. Biological studies used activated sludge to treat oily wastewa-
ter [9,110–112]; for instance, Shokrollahzadeh et al. [111] achieved 89% and 80% COD and
total hydrocarbon removal, respectively, when treating petroleum wastewater. In another
study, Sanghamitra et al. [9] reported the removal efficiency of oil ranging from 54.6–80%
using an aerobic batch reactor for the treatment of oily wastewater.

Using the biofilm method, layers of microorganisms are grown on a filter material.
When the microbes contact raw water, they begin to biodegrade the organic contaminants in
the wastewater [11]. The advantages of this method include eco-friendliness, compatibility
with carbonaceous stabilization, and it has a cheap and straightforward operation [9].
Sun et al. [113] studied the biofilm-MBR technology used to treat shipboard wastewater.
Two processes such as dead-end sidestream and recycle sidestream configurations of
a biofilm-MBR were used. A membrane permeate quality of less than 5 mg/L oil was
obtained in each process configuration. In this research, a remarkably enhanced membrane
performance and better quality of permeate were obtained by recycling the concentrate
solution back to the biofilm reactor because of better bio-flocculation and biodegradation
of oil compounds in the process. In another study, the impact of biofilm formation on
membrane performance was assessed in an MBR unit treating petrochemical wastewater.
The biofilm formation in the MBR system enhanced COD removal efficiency by up to
95% [114]. Biological methods have difficulty handling various microbial behaviors under
different environmental conditions [69]. The advantages and disadvantages of biological
methods are presented in Table 3.

Table 3. Biological methods to treat oily wastewater.

Method Pros Cons Types of Removed Oil Reference

Microbial
Metabolism

Low cost,
no additional chemical

operation, high removal of
BOD and SS

Time-consuming,
low efficiency,

difficult to handle on a large
scale, microbial mechanism

complexity

Emulsified oil [11,76]

Biofilm Low cost, simple operation,
high separation efficiency

Formation of diffusion resistance
to the substrate and nutrient

as a result of increasing cell layer,
immobilization process takes

several times at the beginning of
the experiment, limited

operation time

Emulsified oil [11,76]

Reviewing the benefits and drawbacks of different physical, chemical, and biological
processes demonstrated the characteristics of each technology that need to be considered
when selecting a suitable approach to treating oily wastewater. Membrane technology, ei-
ther in the form of physical separation or MBR, is a suitable solution to treat oily wastewater
compared to other methods since it has a selectivity feature, small footprint, high volu-
metric loading rate, and high effluent quality [3,6,16]. It is important to consider different
aspects of membrane technology such as material, fabrication method, and configuration
to improve oily wastewater treatment.
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3. Membrane-Based Technology
3.1. Membrane Fabrication

When a membrane module is in a direct contact with oily wastewater, the membrane
materials should sustain integrity for a long period of time and maintain a good perfor-
mance based on its chemical resistance, mechanical strength, durability in a wide range of
pH levels, heat resistance, hydrophilicity, surface roughness, and its membrane flux [11,115].
Therefore, an important aspect in the preparation of membranes with high efficacy is the
specification of a suitable fabrication method and membrane material [116].

The preparation of the membrane is dependent on the required morphology [116].
Some universal methods for membrane preparation to improve performance are phase
inversion, interfacial polymerization, stretching, and electrospinning. Polymeric mem-
branes designated for oily wastewater treatment are often prepared using phase inversion
or electrospinning [116]. The phase inversion method is a simple and straightforward
technique for preparing a membrane [117]. In this process, the thermodynamic state of
a homogeneous polymer solution is altered by contacting it with another phase (liquid or
vapor), this will improve the formation of a solid phase. This is a common method for the
production of microporous polymeric membranes [118]. In contrast to the phase inversion,
electrospinning leads to membranes with a relatively uniform pore size distribution with
high interconnectivity of pores and significantly higher porosity [119]. Electrospinning
continually generates ultrathin polymer fibers of nano to micrometer sizes. Electrospun
membranes include a nonwoven and persistent web of nanofibers with an intricate pore
structure [120]. The electrospinning method has a simple and versatile instrument and is
a continuous, scalable, and cost-effective process [121]. However, the use of organic solvents
in the electrospinning method is harmful to the environment and human health [121,122].

Commonly used polymers for membrane material are polyvinylidene difluoride (PVDF),
polyethylene (PE), polyacrylonitrile (PAN), and polytetrafluoroethylene (PTFE) [116,123].
Polymeric membranes are hydrophobic, hence they are prone to high rates of membrane
fouling, therefore, prior to use, the membranes are typically modified [116]. Polymeric mem-
branes can be enhanced by membrane surface modifications with hydrophilic polymers
or by coupling diverse manufacturing techniques to improve the membrane performance.
The resulting hydrophilicity not only helps prevent the oil droplets from blocking the
membrane surface and improving the treatment efficiency but also saves a significant
amount of cost in membrane maintenance and replacement [26,117,124].

The main surface modification methods are surface coating and surface grafting of
the membrane [124]. Surface coating is an economical practice for membrane functional-
ization and can be easily implemented in industrial-scale operations. The coating acts as
a protective layer against the harsh oily wastewater environment to prolong membrane
life [123–127]. There are different techniques involved such as sulfonation or cross-linking
that are used to secure the coating on the membrane surface. Surface grafting forms co-
valent bonds on the surface of the membrane with new functional groups [123,124]. This
type of surface modification also has the potential to expand or shrink membrane pore
size. Surface grafting is achieved through chemical processors with high-energy radiation
or UV irradiation. The hydrophilicity of the surface is accomplished by grafting polar
functional groups on the membrane surface [123,124,128,129]. When the membrane surface
is modified, the charge on the surface of the membrane is designed to be the same charge
as the foulants in the wastewater that it is treating, resulting in repulsive electrostatic forces
to reduce fouling [130,131]. Inorganic nanoparticles such as SiO2, Al2O3, clay, ZrO2, TiO2,
and ZnO are often used to enhance polymeric composite membranes, and increase thermal
stability, permeation, and antifouling properties [23].

3.2. Membrane Selectivity

The separation efficiency of the membranes depends on their selectivity since mem-
branes are semi-permeable barriers through which selectivity between species can be
obtained to allow for the separation between unwanted and wanted particles. They will
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allow the passage of desired species and block the passage of undesirable ones [115]. To
achieve selectivity, membrane pore size must be carefully chosen [115,132]. The type of
wastewater to be treated dictates the best membrane pore size to be used [26]. Based on the
molecular weight cut-off (MWCO), membrane filtration is divided into microfiltration (MF),
ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) [133]. The largest pore
size ranging from 100–1000 nm belongs to MF which is capable of separating suspended
solids and bacteria through the mechanism of convective pore flow [134]. The pore size of
UF is smaller than that of MF ranging from 5–100 nm. UF can be used in the filtration of
color, viruses, aroma, and colloidal organic substances [135]. NF has a pore size of 1–5 nm,
leading to higher organics removal than UF membranes [134,136]. RO is characterized by
a pore size of 0.1–1 nm and is capable of removing salinity from wastewater [137]. MF
and UF membranes have been extensively reported for oily wastewater treatment, and,
among these membranes, UF is the most favorable due to a low-pressure operation, and
low capital and operating costs [10].

3.3. Membrane Configuration

Configuration is another factor that influences the application and effectiveness of
the membrane when treating oily wastewater. Membrane configuration refers to the
geometry of the membrane and its position in space in relation to the flow of the feed
fluid and the permeate. As most industrial membrane installations are of modular design,
membrane configuration also determines the manner in which the membrane is packed
inside the modules [138]. The desired characteristics of a membrane configuration include
compactness (i.e., the capability of packing as much membrane surface as possible into
a module), low resistance to tangential flow (i.e., low friction and energy consumption,
low-pressure drop along the retentate flow channel), uniform velocity distribution, easy
cleaning and maintenance, and low cost per unit membrane area [138].

Two process configurations in membrane technology are submerged and sidestream
which are used in the treatment of oily wastewater [139,140]. In the submerged type, the
membrane is located inside the membrane tank while in the sidestream, the membrane
is placed outside the membrane tank [141]. Submerged configuration is easy to operate
and needs low energy compared to the sidestream setup, however, the cleaning process in
the submerged is more complicated than that of the sidestream [142]. Three strategies can
be used in submerged processes to limit fouling, such as increasing the aeration flow rate,
decreasing the membrane flux, and using physical or chemical cleaning. Aeration produces
a shear force on the membrane surface through the rise of coarse bubbles which mitigates
the accumulation of foulants on the membrane surface. Using lower membrane flux limits
membrane fouling since it decreases the rate of foulants reaching the membrane surface.
Implementing the mentioned strategies mitigates the need for membrane cleaning. Using
physical cleaning is more straightforward than chemical cleaning since chemical cleaning
requires chemicals and generates chemical waste. Often, physical cleaning is enough to
remove the foulants on the surface of the membrane (reversible fouling). Chemical cleaning
is seldom needed and is mainly used to unclog the pores of the membrane (irreversible
fouling) [143,144].

In the sidestream configuration, the mixed liquor from the bioreactor is circulated on
the membrane surface at high crossflow velocities and pressures, requiring high energy
demand to mitigate membrane fouling [145]. This configuration, however, experiences
more severe membrane fouling than submerged membranes due to the lack of sufficient
shear force on the membrane surface. Aeration is much more effective at producing
a high shear force on the membrane surface than circulating mixed liquors at high crossflow
velocity [144,146].

There are four main membrane configuration categories, such as plate and frame,
tubular, spiral wound, and HF. The plate and frame is one of the earliest modules pro-
duced [142] which contains two flat-sheet membranes that are stretched across a thin frame.
There is a vacuum space between the two membranes, which supplies the driving force
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for filtration. Many plates are organized in a cassette to expand the surface area. The flow
for the immersed cassette is designed to be from the outside-in (i.e., the air stimulates
liquid to be crossflow along the plates). This configuration has a limited application and is
mostly used for treating wastewater with high amounts of SS [142]. The process generates
turbulence and hampers cake formation, and, therefore, reduces membrane fouling. The
crossflow of air helps dissolve oxygen in the membrane tanks and mixes wastewater in the
reactor [147–149]. The packing density of plate and frame ranges between 148–492 m2/m3

which is lower than spiral wound and HF. This membrane has a moderate potential for
membrane fouling, and its cleaning is easier than spiral wound and HF, however, its
manufacturing cost is high.

The tubular membrane contains outer housing (i.e., shell) which is tubular. A per-
forated or porous stainless steel or fiberglass pipe is placed within the tubular shell, and
a semi-permeable membrane is inserted within the stainless steel or fiberglass pipe. The
permeate passes through the pipe into the inside of the housing and is collected by the
permeate outlet [138,142,150]. The packing density of the tubular membrane is between
20–374 m2/m3 which is the lowest compared to other configurations. This type of mem-
brane maintains a high tangential velocity in the feed and is used for feed containing
a high amount of SS [138,142]. This membrane has a low potential for membrane fouling
and its cleaning is the easiest due to the large diameter, however, its manufacturing cost is
high [138].

Spiral-wound membranes are comprised of the membrane, feed spacers, permeate
spacers, and a permeate tube. Wastewater moves tangentially across the flow channel along
the length of the spiral-wound membrane. The water will cross the membrane surface,
rejecting larger particles, through the permeate spacer, and into the permeate tube. The
permeate will exit at the other end of the spiral-wound membrane and into a separate
tank [151,152]. The packing density of the spiral wound is 492–1247 m2/m3 which is lower
than HF. This membrane has a high potential for membrane fouling, is hard to clean, and
has moderate manufacturing costs [142].

HF membranes are made up of long threads or fibers of hollow membranes. The tubes
are thin with diameters ranging from 1 mm down to capillary size. The membranes are
installed on a supporting structure that functions as a manifold for permeate transport
and a system for air distribution. Similar to the plate and frame module, HF relies on
aeration to avoid excessive cake layer formation on the membranes. This type of membrane
generally functions in an outside-in manner, where the fibers have a vacuum and the water
flows from the reactor to the inside of the hollow fibers and out of the system [138,147].
This configuration is capable of housing large membrane areas in a single module. The
packing density of HF is 492–4924 m2/m3 which is the highest and the manufacturing cost
is low [142]. Table 4 shows the comparison of different membrane configurations.

Table 4. Comparison of different membrane configurations.

Configuration Applications Advantages Disadvantages Oil Removal Efficiency (%) Reference

Plate and Frame
Membrane

Module

UF and RO,
MBR,

Food and beverage,
Oily Wastewater

Easily removing solids
from water,

easy to clean,
moderate potential

for fouling

Low packing,
high cost,

not back flushable,
the lowest membrane
area per unit volume,

low efficiency compared
to other configurations,

high-pressure drop

Hybrid MF/UF: 99.9%
UF: >95% [138,140,142,147,153,154]

Tubular
Membrane

Module

MF/UF,
wastewater with high

dissolved and
suspended solids, oil,

and grease

Less fouling compared
to plate and frame,

handling the highest
solids load,

easy to clean

Low packing density,
not back flushable,

very high cost,
very large footprint

UF: 99%
UF: 98.04% [142,147,153,155,156]



J. Mar. Sci. Eng. 2022, 10, 1313 11 of 30

Table 4. Cont.

Configuration Applications Advantages Disadvantages Oil Removal Efficiency (%) Reference

Spiral-Wound
Membrane

Module

RO/NF/MF
UF,

whey protein
concentration,

lactose concentration,
cathodic/anodic paint

recovery,
dye desalting,

sulfate removal,
oil separation

Easy cleaning through
cleaning in place, small

footprint,
robust design,

low capital and
operating cost

Lower packing density
than HF,

high potential for
fouling, not back

flushable

UF: 90.1%
UF: 99.7% [35,142,153,157–159]

HF Membrane
Module

MF/UF and RO,
MBR,

industrial wastewater,
oily wastewater

juice processing, biotech
applications

Moderate capital cost,
very high packing

density, back flushable,
capable to generate

movement by
mechanisms such as

bubbling,
higher membrane area

per unit volume
compared to flat-sheet

membranes

Fiber breakage,
high operating cost,

high potential of fouling

UF: 99%
UF: 98.5% [142,147,153,158,160,161]

4. HF Membrane Module and Its Performance Parameters

HF membrane application has caught a great deal of attention because they are able to sep-
arate and treat a wide range of complex wastewater, such as oily wastewater [139,160,162–164].
HF membranes are desired over other membrane configurations because they are compact
modules with very high membrane surface area, high packing density, the feasibility of
backwashing, self-supporting structure, simplicity of handling, and low manufacturing
cost [23,24,142,149,165]. Three typical fiber packing configurations used for full-scale sub-
merged HF membrane modules are the curtain fiber bundle, cylindrical fiber bundle, and
cylindrical bundle with free fiber end, as shown in Figure 1. The most common module
packing configuration is the curtain-type fiber bundle. This sort of packing configura-
tion generally consists of 4 to 12 fiber sheets and permits well-defined fiber spacing and
high tank packing density [166]. The cylindrical fiber packing configuration can attain
high module packing density; however, the general tank packing density is typically less
than the curtain type modules. The cylindrical with the free fiber end configuration can
only be permeated from one end of the module, which could consequently increase the
non-uniform distribution of TMP along the fibers, specifically when small-diameter fibers
are used. Modules with the same packing configuration are compiled into a cassette to
create an engineering module unit with a common permeate collection conduit to increase
packing density, and, consequently, the productivity of a membrane tank [166].

Since membrane fouling is a major issue in membrane filtration technology, it is re-
quired to investigate the main parameters affecting fouling in HF membranes. Membrane
properties (i.e., fiber diameter, length, and tightness), hydrodynamic conditions (i.e., sur-
face shear, air flow rate), feed properties (i.e., foulant properties, concentration, viscosity),
and operating conditions (i.e., temperature, membrane flux) affect the membrane perfor-
mance [23]. Previous studies showed that low membrane fouling is a result of a low HF
packing density, through having few fibers, widening the HF module, and changing the
module configuration [167,168]. In addition, designing modules with improving lateral
flow or lateral movement of the fibers can enhance the submerged HF systems [169]. Yeo
and Fane [167] concluded that a single fiber operated better than a multi-fiber HF mod-
ule in the absence of aeration because of module blocking. However, fiber movement as
a result of aeration is another factor that affects the fouling deposition on HF membranes.
Bérubé and Lei [170] reported that a multi-fiber module outperformed a single fiber in the
presence of aeration due to inter-fiber interactions which cause mechanical erosion of the
foulant layer. Pourbozorg et al. [171] studied the effect of vibration induced by perforated
plates on the fouling reduction of submerged HF membranes. Results showed that the
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fouling rate was dependent on kinetic energy and eddy length scale; greater turbulence
kinetic energy resulted in a lower fouling rate.
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Higher fiber movement obtained by using looser fibers improves the back-transport of
the foulants from the membrane caused by physical contact among the fibers, decreasing
membrane fouling [172,173]. A study reported that tight fibers in HF led TMP to increase
40% faster compared to fibers with a 4% looseness [174].

Previous experimental studies showed that a smaller HF diameter enhanced the perfor-
mance of submerged systems as a result of higher fiber mobility under aeration [172,174,175].
In addition, long fibers (i.e., length in the range of 0.3–1 m) reduced membrane fouling
due to non-uniform deposition of particles and high movement due to aeration [176,177].
Recently, Khanafer and Assad [178] reported that the increase in fiber length from 1 to 1.5 m
led to an increase in permeate productivity by approximately 248%. They concluded that
fiber length and inner radius should be optimized to enhance productivity and filtration
uniformity in HF systems.

In terms of hydrodynamic conditions, crossflow velocity, aeration, and vibration in
submerged HF systems impact surface and unsteady-state shear which affect membrane
fouling and performance [179–182] Previous studies concluded that aeration intensity en-
hances the hydrodynamics of the membrane filtration system; air bubbles change the struc-
ture of the fouling layer, and decrease specific resistance [181,183]. Selecting an optimum
airflow rate was crucial for treatment efficiency; a higher aeration flow rate than the critical
value has shown to have no effect on system performance [184,185]. The position of aerators
in the HF membrane filtration system was also studied and results showed that the injection
of air at the bottom of the membrane fiber enhanced the overall system performance [186].

In MBR technology, parameters such as food-microorganism (F/M) ratio, SRT, HRT,
and aeration flow rate have a significant impact on HF membrane performance. The
operational parameters have a substantial effect on microbial extracellular polymeric
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substance (EPS) and soluble microbial products (SMP) production. EPS is defined as
an extracellular polymeric substance of biological origin that participates in the formation
of microbial aggregates [187]. SMP is a soluble microbial product that is comprised of
hydrolysis products of EPS and decay products of active cells [188].

For microbes to effectively biodegrade hydrocarbons a balance between food entering
the bioreactor and the microbes in the bioreactor is necessary. With a high F/M ratio, the
bacteria are scattered within the bioreactor and reproduce quickly as a result of having more
food than microorganisms in the enclosed environment. Due to the dispersion of bacteria,
large flocs are unable to form, leading to poor settling [189]. Additionally, at high F/M
ratios, an increase in membrane fouling occurs due to high food utilization by biomass re-
sulting in increased EPS and SMP production [190–192]. As an example, Dvořák et al. [193]
investigated the impact of the F/M ratio on membrane fouling and EPS production. Results
showed that a high F/M ratio led to a high concentration of EPS. The high F/M ratio
disturbs the balance between the food supply and the mass of microorganisms in the
system, leading to higher metabolic activity and microbial growth [191,192].

At low F/M ratios, the food supply is restricted, resulting in the bacteria producing
a thicker slime layer, losing their motility, clustering together, and forming large flocs that
settle easily. At high sludge age and mixed liquor suspended solid (MLSS) concentration,
the system demands fewer nutrients, owing to the decrease in excess sludge production.
The MBR system reaches an equilibrium where the nutrient provided matches the microbial
maintenance demand [189,194]. Therefore, it is favorable to use a low F/M ratio to mitigate
membrane fouling.

SRT is the amount of time that the sludge is retained in the membrane bioreactor [139].
The key to effective wastewater treatment is to maintain a high MLSS concentration
as a result of high sludge age. A high sludge age can be attained through long SRT, which
allows the retention of particulate, colloidal, and higher-weight organics, giving the mi-
crobes maximum chance to degrade organic compounds, and allows for the acclimation of
microbes to the biodegradable compounds [189]. However, extremely high SRTs are not
desirable as they increase membrane fouling due to the accumulation of biomass (high
MLSS) and increasing sludge viscosity [190], therefore, it is important to periodically dis-
charge some of the activated sludge to maintain desired conditions within the membrane
bioreactor [195]. Low sludge age and high SRT exert high stress on the bacterial community,
resulting in high EPS and SMP production [180].

HRT is the amount of time that the wastewater remains in the bioreactor for biolog-
ical degradation [57]. Long HRTs allow for a longer contact time of the microbes with
the organic compounds in the wastewater; thus, increasing the removal efficiency of the
contaminant and COD in the wastewater. However, long HRT is only effective provided
that the MBR system is conducted under steady-state conditions (i.e., the microbial com-
munity is acclimated to the wastewater and high sludge age is achieved) [189]. Short HRT
increases the organic loading rate, which puts a stain on the bacteria. The bacteria then
produce excess EPS and SMP which contribute to membrane fouling and membrane flux
decline [189,190]. The optimal HRT is dependent on the types of bacteria in the activated
sludge and wastewater characteristics [190]. For example, Yang et al. [169] tested HRTs of 1,
2, 4, and 8 h to treat real domestic wastewater in a membrane filtration system. The HRT of
8 h had the best COD removal efficiency and had the lowest rate of TMP increase resulting
in the lowest COD removal efficiency as well as the highest rate of TMP increase. Razavi
and Miri [139] studied the treatment of HF-MBR to treat real petroleum refinery wastewater
and tested HRTs of 25, 30, and 36 h. They concluded that the lowest removal efficiency
and highest membrane fouling were obtained at HRT of 25 h and the best membrane
performance occurred at HRT of 36 h.

Aeration provides oxygen to microorganisms, offers a homogenous distribution of
activated sludge and fluid, and decreases fouling on the surface of the membrane [196].
Deng et al. [197] showed that increasing aeration changed the total quantity and composi-
tion of SMP [198]. Meng et al. [199] investigated the impact of different aeration flow rates
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such as 150, 400, and 800 L/h on membrane fouling in three MBR systems. The results
showed that at a high aeration flow rate (800 L/h) colloids and solutes were the dominant
foulants because of the breakup of sludge flocs. Using a moderate aeration flow rate was
suggested to keep the sludge flocs intact so as not to disturb the sludge filterability, thus,
resulting in a decrease in membrane fouling and an enhancement of membrane flux [200].

5. The Application of HF Membrane in Oily Wastewater Treatment

HF membrane has been used in two ways including physical separation and the
integration of physical separation and biological method (MBR). The first section focuses
on research works that solely use HF membrane filtration, and the second section reviews
MBR for the treatment of oily wastewater. The selected studies will help us to understand
the strengths and weaknesses of HF membrane technology, and the knowledge gaps in this
field. The chosen studies were among the most highly-cited published HF research works,
focusing on oily wastewater treatment.

5.1. Physical Separation Studies

Membrane surface modification is an effective method for improving membrane per-
formance. Membranes are modified to be more hydrophilic; a higher affinity of water to
hydrophilic membrane surface can lead to the development of a hydration layer on the
membrane surface, which decreases membrane fouling by preventing hydrophobic compo-
nents, such as oil, from attaching to membrane surface [163]. For example, Zhu et al. [163]
constructed a new HF membrane using dry-wet spin phase inversion and modified it
with hydrophilic and oleophobic surface features through blending a polymer, P(VDF-
co-CTFE)-g-PMAA-g-fPEG, with a PVDF membrane to treat oily wastewater containing
hexadecane, crude oil, and palm oil. The oil contact angle of the unmodified membrane was
approximately 15◦ or lower which showed the high oleophilicity of the membrane while
modified membranes had an oil contact angle of about 75◦ indicating a higher oleophobicity.
Therefore, an unmodified membrane adsorbed a higher concentration of oil compared
to a modified membrane due to its hydrophobicity. Results showed that the flux decline
of unmodified membranes reached about 88% but modified membranes were at around
17%. The modified HF membrane had a greater water flux (i.e., 72 L/m2·h) during oily
wastewater treatment. The flux recovery rate of the unmodified membrane after cleaning
with deionized water was 40%, while the flux recovery rate of modified membranes was
more than 89%, which was attributed to the oleophobic property. In addition, more than
98%, 98%, and 70% oil removal efficiencies for oily wastewater containing hexadecane,
crude oil, and palm oil were achieved, respectively.

Luo et al. [201] used a novel sulfonated polyphenylenesulfone (PPSU) polymer with
a super-hydrophilic feature to fabricate triangle-shaped tri-bore HF-UF membranes us-
ing a dry-jet wet-spinning process. Three membranes, polyphenylenesulfone, sulfonated
polyphenylenesulfone with sulfonation degree of 1.5 mol%, and sulfonated polyphenyle-
nesulfone with sulfonation degree of 2.5 mol% were compared. The oil contact angle for
the unmodified membrane was 89.6◦ while for modified membranes with a sulfonation
degree of 1.5 mol% and 2.5 mol% were 111.9◦ and 115.69◦, respectively. This indicates
that the modified membranes were more hydrophilic than the unmodified ones. Results
showed that the unmodified membrane had a permeate flux decline of 82.1% and the
total resistance increased by 5.7 times, while in modified membranes, the permeate flux
decline was less than 55% and the total resistance increased only by 1.7–2.2 folds. The
membrane with 1.5 mol % showed the highest flux and all membranes had 95.4% of TOC
removal efficiency.

Otitoju et al. [202] compared three different membranes under the same operating con-
ditions. The three membranes were PES, PES/SiO2, and tetraethyloxysilane PES/(TEOS).
All the membranes were prepared using dry-wet spinning. The oil contact angle of the
PES/TEOS membrane was 125.47◦ which was the highest compared to PES and PES/SiO2.
PES/TEOS showed the best hydrophilicity compared to the other two membranes due to
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the formation of a large-scale network of Si-OH or hydroxyl groups originating from TEOS
on the membrane surface. The PES/TEOS membrane had a 99.98% oil removal efficiency
and a permeate flux of 90.937 L/m2·h, while PES/SiO2 had an oil removal efficiency of
97.48% and permeate flux of 74.856 L/m2·h, and PES had an oil removal efficiency of 95.77%
and permeate flux of 60.112 L/m2·h. Therefore, the unmodified membrane (PES) had the
lowest oil removal efficiency and permeate flux compared to the modified membranes. This
study also found that the modified PES/TEOS membrane showed exceptional antifouling
properties and the oil deposition on it was easily washed through physical cleaning.

The blending of the main polymer with a hydrophilic polymer in the casting solution is
a significant alternative, decreasing the fabrication cost compared to the other surface mod-
ification methods. In this line, Johari et al. [164] treated oily wastewater using fabricated
HF membranes (i.e., a combination of hydrophilic polyamide imide (PAI) with three ratios
of sulfonated poly (ether ether keton) (SPEEK)) through a phase inversion process. The oil
contact angles in the unmodified membrane and modified membranes such as PAI/SPEEK
95/5 and PAI/SPEEK 85/15 were 105.7◦, 111.7◦, and 121.82◦, respectively. This showed
that the modified membranes were more hydrophilic than the unmodified ones. Results
showed that oil removal efficiency was over 95% and the modified membrane showed a per-
meate flux of 39.6 L/m2·h which was 2.5 times the original membrane flux. Shen et al. [203]
prepared a hydrophilic HF membrane with an antifouling feature by grafting sulfobetaine
methacrylate (SBMA) onto polysulfone (PSU). The tests were conducted for six different
types of oils, soybean oil, olive oil, lard oil, gasoline, diesel oil, and crude oil. The oil
contact angle of the modified membrane was more than that of the PSU membrane which
showed a better antifouling feature of the modified membrane. The modified membrane
had a higher flux for oil/water emulsion of two vegetable oils (130–220 L/m2·h) than the
original membrane. When oil concentration was at 1000 mg/L, the oil removal efficiency
was over 91.1%. The flux was completely recovered after cleaning the membrane. This new
method of membrane fabrication can operate efficiently to remove different oil compounds
in wastewater.

El-badawy et al. [204] treated oily wastewater containing crude oil using PVDF-
PET braid-reinforced HF membranes created with very thin and uniformly coated hy-
drophilic/oleophobic material through a dry-jet wet spinning process. Results showed that
the flux reached 620 L/m2·h and oil removal efficiency was 88% due to high porosity and
underwater oleophobicity. The modified membrane showed excellent antifouling features
against wastewater containing crude oil with a high flux recovery of more than 95% for
three filtration cycles.

Since producing a hydrophilic membrane is costly, membranes that are fabricated from
low-cost and green materials and have promising results in terms of oil/water separation
are desired. Baggio et al. [205] developed amphiphilic membranes from polyethylene
terephthalate (r-PET) and chitosan. This is a hydrophilic and biodegradable polymer
manufactured by deacetylation of chitin. The membrane was fabricated through an elec-
trospinning method using environmentally-friendly materials. The flux ranged between
512–991 L/m2·h. Results showed that the membrane removed over 95% of heavy and
light crude oils from wastewater. In this study, the use of biodegradable polymers such as
chitosan is beneficial due to their non-toxic feature, availability, and inexpensiveness.

Previous HF physical separation studies demonstrated that the modification of mem-
branes using appropriate materials has a drastic effect on oily wastewater treatment,
significantly improving permeate flux, oil rejection, and facilitating membrane cleaning.
The summary of HF physical separation studies for the treatment of oily wastewater is
shown in Table 5.
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Table 5. Summary of physical separation studies using modified HF membranes for oily wastewater
treatment.

Membrane Material Additive Polymer Membrane Pore
Size (µm)

Membrane Surface
Area (m2)

Flux
(L/m2·h)

Removal
Efficiency (%) Wastewater Type Reference

PVDF PET 0.075–0.401 - 620 above 99.5%. Crude Oil [204]

PET Chitosan - - 512–991 >95

Kerosene, hexane,
carbon

tetrachloride
(CTC), and

tetrachlo
roethylene (TCE)

[205]

Polysulfone (PSU)
Sulfobetaine
methacrylate

(SBMA)
- - 267 >98.5

Soybean oil, olive
oil, lard oil,

gasoline, diesel
oil, and crude oil

[203]

Polyethylene
terephthalate (rPET)

Polydimethylsiloxane
(PDMS) - - 20,000 >98% Oil [206]

Polyamide imide
(PAI)

Sulfonated poly
(ether ether keton)

(SPEEK)
0.012, 0.03, 0.081 - 32 >95 Petroleum

Refinery [164]

PES

Tetraethyloxysilane
(TEOS),

polyethylene glycol,
silicon sol, and

1-methyl-2-
pyrrolidone

(NMP)

0.102 0.008 90.937 99.98 Crude Oil [202]

Polyphenylenesulfone

Sulfonated
polyphenylenesul-

fone
(SPPSU)

0.0109–0.0186 - - TOC: > 95.4 Oil-in-water
Emulsion [201]

PVDF P(VDF-co-CTFE)-g-
PMAA-g-fPEG 0.097–0.141 0.0085 10–72 98, 99, 70

Hexadecane,
Crude Oil, Palm

Oil
[163]

5.2. Integration of Physical Separation and Biological Method

In MBRs, the bioreactor acts as a biological treatment processor and the membrane
is used as a filter in the filtration process [26]. MBR studies for the treatment of oily
wastewater are summarized in Table 6.

In the oil and gas industry, Razavi and Miri [139] used a bench-scale HF-MBR to treat
real petroleum refinery wastewater under various HRT, flux, temperature, and different
operational conditions. This system was operated at a COD concentration of 580 mg/L and
TSS of 110 mg/L. MLSS ranged from 3 to 6.6 g/L with the addition of hydrocarbon in the
wastewater and had HRTs ranging between 25–36 h. In the middle of the process, COD
and BOD5 removal increased significantly due to good biomass growth conditions in the
system. Reducing HRT during this experiment led to decreasing BOD5 and COD removals
and excess biomass production that led to high membrane fouling and decreased flux. At
high HRT, 36 h, the results indicated that the removal efficiency of COD and BOD5 were
82% and 89%, respectively.

Capodici et al. [207] developed a bench-scale HF-MBR unit to treat synthetic wastewa-
ter containing diesel fuel. The membrane flux was maintained at almost 15 L/m2·h and
HRT was equal to 27 h. A reduction in suspended biomass occurred until day 54 due to
exerting stress on the biomass by hydrocarbons and reducing metabolic activity that was
not completely acclimated to the substrate. This hindered the production of EPS in the
system. Sodium acetate was added to the feed solution which increased the suspended
biomass up to 7 g TSS/L and provided an appropriate acclimation level and increased EPS
leading to an increase in membrane fouling. However, during the last period, membrane
fouling decreased due to unstable oil layer formation on the surface of the membrane which
was significantly removed by high crossflow fluid. Removal efficiencies of TPH and total
COD were achieved by over 85%.

To evaluate the performance of HF-MBR in saline conditions, Di Bella et al. [208]
used a bench-scale HF-MBR system to treat shipboard slops and investigated the effect of
salinity and organic loading rates on the system performance in two phases (i.e., phase 1:
the acclimation of biomass to salinity was studied, phase 2: the acclimation of biomass
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to real slops was investigated). Results showed a good biomass acclimation to a gradual
salinity (increased up to 15 g NaCl/L) offered the potential development of halotolerant
bacteria. The oil removal efficiency was about 50%. In this study, in the first phase,
microorganisms were exposed to salinity, and this increased SMP production due to the
release of organic cellular constituents through secretion and cell autolysis which led to
an increase in membrane fouling. In the second phase, the EPS concentrations decreased
slightly, and, therefore, membrane fouling did not increase due to an inhibitory impact
caused by the hydrocarbons on the suspended biomass activity. This study showed that a
gradual increase of salinity and hydrocarbon is necessary to improve biomass acclimation
if bacteria are not halophilic.

In another study, Cosenza et al. [209] reported the treatment of synthetic shipboard
slops with two separate bench-scale MBR setups, one with and one without a saline en-
vironment. TPH and COD concentrations of the oily wastewater were 20 and 500 mg/L,
respectively, at the beginning of the study. In the MBR experiment with a saline environ-
ment, the heterotrophic biomass was negatively influenced due to salt shock. During the
operation, after day 27, membrane fouling increased which was a result of the stress exerted
by the salinity on the biomass that was not acclimated to a substrate which resulted in the
release of high SMP concentration. In the MBR experiment without a saline environment,
biomass had higher performance efficiency. The ammonium removal efficiency was 70% for
both systems, and COD removal efficiencies for MBR experiments with salinity and without
salinity were 81% and 87%, respectively. This study shows the importance of acclimating
the biomass to high salinity, otherwise, it hinders their ability to degrade contaminants in
the wastewater. Another option would be to use halophilic/halotolerant bacteria to obtain
high biodegradation performance.
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Table 6. Summary of HF-MBR studies for the treatment of oily wastewater.

Scale Membrane
Material

MLSS
(g/L) Pre-Treatment

Membrane
Pore Size

(µm)

Membrane
Surface

Area (m2)

Flow Rate
(L/h)

Flux
(L/m2·h)

Air Flow
Rate

(L/min)

HRT
(h)

SRT
(d)

Operation
Time

Salinity
(g/L)

Removal
Efficiency

(%)

Wastewater
Type Reference

Bench

PVDF,
manufactured

by Zenon
Environmental

Systems Inc.

7.6 Electrocoagulation 0.035 0.047 - 12 30 - - 12 d - Oil: 95

Hypersaline
oilfield

produced
water

[210]

Bench
UF,

manufactured
by ZeeWeed

4
De-oiling,

coagulation,
flocculation

0.04 0.09 0.8 15 - 27 - 215 d Conductivity:
1.6 mS/cm Oil: 85

Synthetic
oily

wastewater
(shipboard

slop)

[207]

Bench
UF,

manufactured
by ZeeWeed

4 Chemical-physical
pre-treatment 0.04 0.093 - 15 - 27 - 90 d 0 Oil: 95

Synthetic
shipboard

slops
[209]

Bench

16 wt% new
polyvinylchlo-
ride (PVC) and

84 wt%
Dimethylac-

etamide
(DMAC)
solvent

1 Gravity separation
and DAF 0.12 0.00113 - - - - - 5 d - Oil: 100 Oil refinery

wastewater [211]

Bench
Self-made
membrane,

polypropylene
3–6.6 - 0.15 0.39 0.47 1.205 70 36 - - - COD: 82

Real
petroleum

refinery
[139]

Bench Polyetherimide,
MF - Coalescer bed 0.4 0.5 - - - - - 8 h - Oil: 93–100

Oil
produced

water
[212]

Bench
PVDF, UF,

manufactured
by ZeeWeed

- - 0.04 - 0.5 - - - - 210 d - COD: 91.8 Oil refinery
wastewater [213]

Bench

MF,
manufactured

by Zena
Membranes

3.8 - 0.1 0.18 - 10 7 - Infinite 121 d 8.7 ± 1.7 Oil: 85 Produced
water [160]

Pilot
Coated with

LiCl and TiO2,
PVDF, UF

4.5 - 0.034 0.0184 - 82.95 0.0022 4.61 - - - COD: 90.8 Refinery
wastewater [214]

Bench

Polysulfone,
manufactured
by Polymem-

Polymer

9 PAC addition 0.2 0.1 - 2 - 24 20 - 0.09 COD: 96
Effluent

from the oil
industry

[215]
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Table 6. Cont.

Scale Membrane
Material

MLSS
(g/L) Pre-Treatment

Membrane
Pore Size

(µm)

Membrane
Surface

Area (m2)

Flow Rate
(L/h)

Flux
(L/m2·h)

Air Flow
Rate

(L/min)

HRT
(h)

SRT
(d)

Operation
Time

Salinity
(g/L)

Removal
Efficiency

(%)

Wastewater
Type Reference

Bench

Polyetherimide,
manufactured

by PEI,
Ultem 1000, GE

- Sand filter 0.15 ± 0.09 2.78 × 10−2 2.5 15.82 - 10 - 33 d - COD: 67 Oil refinery
wastewater [216]

Bench PVDF 14–28 - 0.06 0.020 - 6 0.1 10 Infinite 71 d - Oil: 98

Industrial
oil contami-

nated
wastewater

[217]

Pilot
PVDF, MF,

manufactured
by Zenon

-

Oil/water
separator,

floatation system,
sand filter

0.04 70 - - - - - 6 months 0.56 COD: 84 Refinery
wastewater [218]

Pilot
PVC/Alloy

manufactured
by Litree Co.

-
Aeration tank, air

flotation, sand
filter

0.006 40 - - - - - - - Oil: 99 Oilfield
wastewater [219]

Bench

Self-made
membrane,

polypropylene,
sealing

procedure with
a proper resin,
symmetric MF

8.2 - 0.4 0.2 - 0.42 - 31.8 - 11.25 d -

COD and
hydrocar-

bon:
>90

Industrial
wastewater
containing
hydrocar-

bons

[220]

Pilot Unmodified - Gravity oil
separation - - 20.82 15 - - 11 - -

Ballast
water

COD: 38,
Bilgewater
COD: 56

Oily
wastewater
including

ballast and
bilge water

[221]

Bench

MF,
manufactured
by Mitsubishi

Rayon Co., Ltd.

9.84 PAC Addition 0.1 0.42 - 3.57 - 4 50 58 d - Oil: 99.9

Oily
wastewater

from gas
station

[222]
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6. Discussion and Recommendations

The development of HF membrane technology is promising for oily wastewater treat-
ment. Previous studies have indicated that the key challenge in achieving an outstanding
membrane performance to treat oily wastewater is to tackle membrane flux reduction and
permeability as a result of fouling. Although a lot of studies have been focused on this
subject, there may be opportunities for further improvement such as identifying optimal
operating parameters to achieve sustainable flux in membrane filtration systems when
treating oily wastewater.

Previous research papers discussed the effect of changing HF packing density, fiber
length, fiber looseness, and fiber diameter on HF membrane performance. Low HF packing
density, long and loose fibers, and small HF diameter allow lateral movement of fibers,
which enhances the HF membrane filtration performance.

Inducing shear stress, unsteady-state condition on the membrane surface, and HF
fiber oscillation through aeration mitigates membrane fouling and improves the membrane
performance. Although aeration is a proven technique for reducing membrane fouling,
there is a need for more research on ideal aeration conditions such as optimal bubble
diameter, to improve membrane performance, and aeration frequency to reduce the energy
demand of the system [13,23]. Bubble diameter affects shear stress on the membrane
surface, and, so, finding the optimal bubble diameter will help maintain effective foulant
removal and the homogeneity of the mixed liquor, which benefits the biodegradation
process in MBR. Until now, there have not been any conclusive studies on the best bubble
diameter to improve membrane system performance, therefore, further research on this
topic can greatly improve the efficacy of membrane technology.

Previous HF physical separation studies focused on membrane modification to im-
prove membrane performance. Most polymers which have been used in HF membrane
production are hydrophobic, and, consequently, they repel water, promoting the pas-
sage of oil through the membrane. Oleophilic features allow for membrane pore block-
age, the accumulation of an oily cake layer on the membrane surface, and, consequently,
a reduction of membrane permeation performance, and decreasing membrane lifespan.
Surface modification has proven to be exceptionally effective at preventing oil droplets
from breaching the pores of the membrane and maintaining a high flux of water [116,124].
It was observed that membranes modified either by coating or surface grafting had better
oil removal efficiencies than membranes that were not modified [3,116]. However, these
studies are restricted to bench-scale laboratory experiments, and the challenge remains in
preparing modified membranes for commercial use [13,223]. Developing more effective
methods to implement membrane surface medication on a large scale would broaden the
application of HF membrane technology, particularly in oily wastewater treatment. For
example, the expansion of HF membrane application to onsite oil spill treatment or its
use as a stand-alone system to treat complicated industrial emulsified oily wastewater.
Additionally, recent studies have indicated the potential of using green technology in con-
structing highly efficient HF membranes [205,206]. During membrane surface modification,
sustainable and cost-effective methods through environmentally-friendly materials should
be considered [224].

In MBR applications, membrane fouling is still a major challenge similar to physical
separation studies which impedes the achievement of excellent membrane performance for
the treatment of oily wastewater [225,226]. Factors that affect membrane fouling are oper-
ating parameters such as HRT, SRT, and aeration that impact sludge characteristics [116].
A low F/M ratio is required for microbial maintenance, high F/M ratio causes the disper-
sion of bacteria and results in more EPS and SMP production leading to membrane fouling.
Long SRT with high sludge age leads to a better performance of the MBR unit as it allows
for biomass acclimation to the wastewater [146]. Longer HRTs improve effluent quality as
it gives time for the biomass to degrade unwanted compounds in the water. Aeration flow
rate is a vital parameter to monitor the treatment of wastewater since it provides dissolved
oxygen to bacteria so that they may perform biodegradation [181]. Low aeration leads to
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anaerobic conditions in the bioreactor, resulting in the death of aerobic bacteria. A high
aeration flow rate contributes to low sludge filterability by breaking floc formations. Both
conditions will result in high EPS and SMP in the system which contributes to the clogging
or blocking of the membrane.

High salt concentration and the existence of hydrocarbons in feed water cause envi-
ronmental stress on the bacteria which can lead to inhibitory or toxic effects if they are not
acclimated to this environment [227,228]. The environmental stress causes the bacteria to go
through plasmolysis and/or loss of cell activity, or to produce excess SMP and EPS which
lead to membrane fouling, by blocking membrane pores [228,229]. Acclimation of bacteria
to the harsh environment will reduce EPS and SMP formation, consequently lowering
the blockage of the membrane [208]. Additionally, selecting a suitable type of bacteria
would improve biodegradation efficiency in the MBR system when treating oily wastewater.
Halotolerant microorganisms isolated from saline environments such as saltwater, sea mud,
and a saline lake inoculated in MBR systems would eliminate the need for long acclimation
periods to saline conditions in the bioreactor.

7. Conclusions

The discharge of oily wastewater leads to serious environmental problems if released
without sufficient treatment due to the recalcitrant nature, toxicity, and carcinogenicity of
the hydrocarbon compounds. The generation of the high volume of oily wastewater is
an alarming threat to the ecosystem, and, therefore, numerous oily wastewater treatment
approaches have been studied to achieve an eco-friendly method that will enhance treat-
ment efficiency. In this regard, a comprehensive review has been conducted to provide
a perspective regarding the practical aspects of HF membrane technology for oily wastewa-
ter treatment. Reviewing HF membrane filtration studies for the treatment of oily wastewa-
ter demonstrated that optimizing operational parameters and membrane modifications can
significantly improve HF membrane performance in terms of maintaining membrane flux
and reducing fouling. High SRT with high sludge age is desirable for oily wastewater treat-
ment since it allows for biomass acclimation. Moderate aeration is also required for ideal
membrane performance. Modified HF membranes with good hydration capability facilitate
the passage of water and lead to high permeability, resulting in reduced membrane fouling.
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