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Abstract: Unmanned surface vehicles (USVs) have been widely applied in the fields of marine
hydrological exploration, marine resource exploration, area search, target detection, and military
operations. In order to meet the demand of a complex ocean environment, USVs are frequently
grouped together to improve the reliability of mission accomplishment. In this paper, a fixed-
time control strategy, combined with a non-singular terminal sliding mode, is proposed for the
formation control of USVs under complex external disturbances and system uncertainties. The main
contributions of this paper are: (1) the leader–follower formation control framework is divided into
a tracking control subsystem and a formation control subsystem. A new fixed-time non-singular
terminal sliding mode (FTNTSM) strategy is developed for the tracking control subsystem, which
dramatically increases the convergence rate and ensures closed-loop fixed-time stability; (2) a finite-
time uncertain observer (FUO) is designed to observe lumped uncertainty items, which greatly
increase the stability and robustness of the formation system; (3) the FUO-based fixed-time formation
control (FUOFT-FC) strategy is designed for the formation control subsystem, which ensures the
fast and stable formation of USVs. Fixed-time convergence of the formation system is established
by Lyapunov stability analysis. Rigorous simulation and comparative studies demonstrate that the
proposed method is superior to the state-of-the-art methods.

Keywords: unmanned surface vehicle; formation control; fixed-time control; non-singular terminal
sliding mode control; finite-time uncertain observer

1. Introduction

In recent years, unmanned surface vehicles (USVs) have played an increasingly im-
portant role for mankind to explore and discover the mysteries of the ocean. USVs have
been widely applied in the fields of marine hydrological exploration, marine resource
exploration, area search, target detection, and military operation [1,2]. In order to deal
with task diversification of USVs under complex and dynamic sea environments, USVs are
frequently grouped into a unified formation to improve the reliability of mission accom-
plishment, which enhances fault tolerance, robustness and adaptability [3–5]. The common
multi-agent formation control methods are leader–follower control [6], the behavior-based
method [7,8], virtual structure method [9], graph theory [10,11], and consistency-based
method [12]. The leader–follower control strategy can compensate well for the lack of
communication in multi-agent formation and it also has a simple control structure, hence it
has been widely used in formation control of USVs.

In the current USV formation control system, unmodeled dynamics and complex
external disturbances bring about huge challenges to the stability of the closed-loop system.
It is well-known that sliding mode control can overcome uncertainty in the system and
has strong robustness, which is widely used in the field of non-linear control and multi-
agent formation system [13]. Traditional sliding mode control adopts a linear sliding
mode surface and uses a Lyapunov function to prove that the system can converge to an
equilibrium point asymptotically. In [14–16], terminal sliding mode (TSM) control, which

J. Mar. Sci. Eng. 2022, 10, 1308. https://doi.org/10.3390/jmse10091308 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10091308
https://doi.org/10.3390/jmse10091308
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://doi.org/10.3390/jmse10091308
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10091308?type=check_update&version=2


J. Mar. Sci. Eng. 2022, 10, 1308 2 of 17

enables the system to converge to an equilibrium point in a finite time, is proposed to
greatly improve system stability. Unfortunately, its convergence rate is very slow and
there is a singularity problem with the designed controller. Inspired by earlier work, this
paper introduces a new non-singular terminal sliding mode (NTSM) strategy for formation
control of USVs to improve the system’s convergence rate and overcome singularity.

The marine environment is complex and unknown. Hence, in order to deal with
internal unmodeled dynamics and complex external disturbances in the formation system,
disturbance observers such as the non-linear disturbance observer, sliding mode distur-
bance observer, and dimensionality reduction observer are developed in [17–19]. In order
to have a more effective and efficient observer, the finite-time disturbance observer for the
marine unmanned system was developed in [20–27], which enhanced the identification of
control system disturbance. However, in the aforementioned methods, disturbance estima-
tion errors are either globally asymptotically stable or globally unified and finally bounded,
without realizing accurate observation of disturbances. In this context, the finite-time
uncertain observer, which can accurately and effectively identify complex disturbances in a
shorter time, is proposed.

In the leader–follower USVs formation control system, in order to ensure better
response of the system, the convergence rate is the most critical control index. Recently,
more and more finite-time control strategies have been developed to solve the convergence
problem of single-agent and multi-agent systems in [28–30]. The tracking accuracy and
convergence rate have been greatly improved. As an extension of the finite-time algorithm
of [31], the main advantage of the fixed-time control algorithm is that the initial value
of the agent state need not be known a priori when calculating the upper bound of the
convergence time, and a better convergence rate and convergence accuracy have been
achieved. In [32–34], the fixed-time algorithms in first-order, second-order, and high-
order multi-agent systems are developed, and better accuracy and convergence have
been achieved.

Inspired by earlier work, we combine fixed-time control and non-singular terminal
sliding mode control (FTNTSM) to design a fast and accurate USV formation control
strategy. To be specific, a new formation control strategy based on fixed-time non-singular
terminal sliding mode, which is used to deal with formation control of USVs under complex
external disturbances and system uncertainties, is proposed. The main contributions of the
paper are:

(1) In order to simplify the leader–follower formation control framework, the entire
system is divided into two subsystems, namely the tracking control subsystem and forma-
tion control subsystem. In the tracking control subsystem, a tracking control strategy based
on the fixed-time non-singular terminal sliding mode (FTNTSM-TC) is designed, which
enables the leader to quickly and precisely track the desired trajectory.

(2) Unmodeled dynamics and external disturbances in the system are considered
lumped uncertainty items. Next, a finite-time uncertain observer (FUO) is designed to
deal with internal and external disturbances, which can accurately and effectively identify
lumped uncertainty items.

(3) In the formation control subsystem, the fixed-time formation control strategy based
on FUO (FUOFT-FC) is designed to improve the stability and reliability of the entire USV
system. The system stability of the proposed formation control strategy is established by
rigorous Lyapunov stability theory. Simulation and comparative studies demonstrate that
the proposed strategy is superior to the TSM strategy in [16].

The organization of the paper is as follows: Section 2 introduces the same lemmas and
mathematical formulation of the USVs formation system. Section 3 introduces the design
process of the tracking control subsystem and the formation control subsystem in detail
and establishes the stability of the entire closed-loop system. Section 4 presents simulation
results that demonstrate the effectiveness and efficiency of the proposed control strategy.
Conclusions are drawn in Section 5.
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2. Preliminaries and Problem Formulation

In order to provide rigorous theoretical support for the subsequent design of the
formation controller and proof of system stability, we introduce three fixed-time control
lemmas and a finite-time control lemma in the first part. As shown in the sequel, these
lemmas are needed for the proof of the stability of the designed fixed-time non-singular
terminal sliding mode (FTNTSM) strategy and finite-time uncertain observer (FUO), as
well as to enhance the reliability of the proposed algorithms. In the second part of this
section, we formulate the research problem and introduce mathematical models for the
formation control of USV in detail. In the sequel, these mathematical models are rigorously
used in the design of the formation controller and proof of stability.

2.1. Preliminaries

Lemma 1. Consider the following non-linear system [35]:

ẋ(t) = f (x(t)), x(0) = x0, f (0) = 0, x ∈ Rn (1)

where x = [x1, x2, . . . , xn]T is the system state vector and f (·) is a non-linear function defined in
the neighborhood of the origin.

If system (1) is asymptotically stable and has a negative homogeneity degree, system (1) is
finite-time stable. If the settling time function T(ε) is bounded by a positive constant Tmax > 0, i.e.,
T(ε) ≤ Tmax for all ε ∈ Rn, system (1) is fixed-time stable.

Lemma 2. Consider the following scalar system [36]:

ẏ = −γ1y2−p/q − γ2yp/q, y(0) = y0 (2)

where γ1, γ2 > 0, p, q are both positive odd integers satisfying p < q. System (2) is fixed-time
stable and the upper bound of the convergence time satisfies

Tmax(y0) =
qπ

2
√

γ1γ2(q− p)
(3)

Lemma 3. Consider the following system [37]:

ẏ = −αyA − βyB, y(0) = y0 (4)

where A = a1/a2, B = b1/b2, a1, a2, b1, b2 are positive odd integers satisfying a1 > a2,
b1 < b2 <2b1 and α > 0, β > 0. The equilibrium point of the system is fixed-time stable and
the upper bound of the convergence time can be calculated independently of the initial state by:

Tmax =
a2

α(a1 − a2)
+

b2

β(b2 − b1)
(5)

Lemma 4. Consider the following smooth non-linear system [38]:

σ̇0 = −λ0L1/(n+1)|σ0|n/(n+1)sgn(σ0) + σ1
σ̇1 = −λ1L1/(n+1)|σ1 − σ̇0|(n−1)/nsgn(σ1 − σ̇0) + σ2

...
σ̇n−1 = −λn−1L1/2|σn−1 − σ̇n−2|1/2sgn(σn−1 − σ̇n−2)
+σn
σ̇n ∈ −λnLsgn(σ− σ̇n−1) + [−L, L]

(6)

where L > 0 is the known Lipshitz constant, λ i > 0, (i = 0, 1, 2, . . . , n) are appropriate constants,
sgn(·) is the signum function, and the σi(i = 0, 1, 2, . . . , n) are sliding variable without noise.
We call the system finite-time stable if it is asymptotically stable with a finite settling time for the
initial conditions.
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2.2. Problem Formulation

Although the six-degrees-of-freedom model can comprehensively reflect the kinematic
characteristics of the USV, the actual actuator cannot fully control the six degrees of freedom
under normal circumstances. Therefore, in this paper, we only consider the three-degrees-
of-freedom USV model consisting of the surge speed u, the sway speed v, and the yaw
angular speed r.

As shown in Figure 1, the USV model with disturbances and position dynamics is
governed by:

Y0

X0

y

X

G

Y

r
u

V

O

x

y

v

Figure 1. Earth-fixed OXo Yo and body-fixed AXY coordinate frames of a USV.{
η̇i = R(ψi)νi
Miν̇i + g(η) = B(ηi, νi) + τi + δi

(7)

where
B(ηi, νi) = −C(νi)νi − D(νi)νi (8)

i = 0 represents the kinematics and dynamics of the leader USV; i = 1, 2, . . . ,n represent
the kinematics and dynamics of a follower USV; ηi=[xi,yi,ψi]

T denotes the USV’s posi-
tion and heading angle vector in the earth-fixed coordinate; νi = [ui, vi, ri]

T denotes the
surging speed u, the swaying speed v, and the yawing angular speed r vectors in the body-
fixed coordinate; τi=[τi1, τi2, τi3]

T denotes control input vector of the leader or follower;
δi=MiRT(ψi)di(t), di(t) denotes external disturbances; B(·) represents the hydrodynamic
characteristics of the position of a USV under unknown sea condition; g(η) represents the
force and moment of buoyancy and gravity of the USVs (ideal state g(η)=0); R(ψi) is a
rotation matrix; Mi = Mi

T > 0 is an inertia matrix; C(νi) = −C(νi)
T is a skew-symmetric

matrix; D(νi) is a damping matrix.

R(ψ) =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (9)

M =

 m11 0 0
0 m22 m23
0 m32 m33

 (10)

C(ν) =

 0 0 c13(ν)
0 0 c23(ν)

−c13(ν) −c23(ν) 0

 (11)

D(ν) =

 d11(ν) 0 0
0 d22(ν) d23(ν)
0 −d32(ν) d33(ν)

 (12)



J. Mar. Sci. Eng. 2022, 10, 1308 5 of 17

The rotation matrix R(ψ) satisfies the following properties:

Ṙ(ψ) = R(ψ)S(r)
RT(ψ)S(r)R(ψ) = R(ψ)S(r)RT(ψ) = S(r)
‖R(ψ)‖ = 1, RT(ψ)R(ψ) = I, ∀ψ ∈ [0, 2π]

(13)

where

S(r) =

 0 −r 0
r 0 0
0 0 0

 (14)

Definitions of matrix parameters are shown in Table 1. The term m is the mass of the
USV, B is the width of the USV, Iz is the moment of inertia, and xg is the coordinate value of
the center of USV ’s gravity on the body-fitted coordinate systems, Nv̇ = Yṙ and X∗, Y∗, Z∗
denote the hydrodynamic derivatives.

Table 1. Definitions of parameters in M, C, and D.

Parameter Value Parameter Value

m11 m− Xu̇ c23(ν) m11u
m22 m−Yv̇ d11(ν) −Xu − X|u|u|u| − Xuuuu2

m23 mxg −Yṙ d22(ν) −Yv −Y|v|v|v|
m32 mxg − Nv̇ d23(ν) −Yr −Y|v|r|v| −Y|r|r|r|
m33 Iz − Nṙ d32(ν) −Nv − N|v|v|v| − N|r|v|r|

c13(ν) m11 −m23r d33(ν) −Nr − N|v|r|v| − N|r|r|r|

Consider the following desired trajectory:

η̇d = R(ψd)νd

Mν̇d = E(ηd, νd) + τd
(15)

where
E(ηd, νd) = −C(νd)νd − D(νd)νd (16)

and ηd=[xd,yd,ψd]
T, νd=[ud,vd,rd]

T denote the desired position vector and velocity vector
respectively and τd=[τd1, τd2, τd3]

T.
In Section 2, we have introduced the lemmas needed for stability proof and basic

mathematical models for formation control of USVs. As foreshadowed, these results lay the
foundation for subsequent design and analysis. Next, we design the formation controller
and disturbance observer as well as state two main results pertaining to tracking the
performance of the designed formation controller in finite time.

3. Design of Formation Control Strategy

In this paper, the formation system is divided into a tracking control subsystem and a
formation control subsystem, and control strategies are designed separately to ensure the
efficiency and effectiveness of the formation system.

It is assumed that complex external disturbances of the formation control subsystem
have an upper bound i.e., ‖ḋi‖ ≤ Zi; (Zi < ∞).

To facilitate the following analysis, we introduce auxiliary variables χi, χd as follows:

χi = Riνi

χd = Rdνd
(17)

where χi = [χi,1, χi,2, χi,3]
T, χd = [χd,1, χd,2, χd,3]

T, Ri = R(ψi) and Rd = R(ψd). Then, the
following coordinate transformation can be obtained:
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η̇i=χi

χ̇i=Ri M−1
i τi + F(ηi,χi) + di(t)

(18)

and
F(ηi, χi) = S(χi3)χi + Ri M−1

i B(ηi, Ri
Tχi). (19)

η̇d=χd

χ̇d=Rd Md
−1τd + H(ηd, χd)

(20)

and
H(ηd, χd) = S(χd3)χd + Rd Md

−1Z(ηd, Rd
Tχd). (21)

3.1. Design of Tracking Control Subsystem and Stability Analysis

Figure 2 is a block diagram of the USV formation control system. Combining (18)
and (20), the tracking error dynamics between the leader and the desired trajectory are
governed by:

η̇0,d=χ0,d

χ̇0,d=Ie + R0M−1
0 τ0

(22)

where
Ie = F(η0, χ0)− H(ηd, χd)− Rd M−1

d τd (23)

and η0,d = η0 − ηd, χ0,d = χ0 − χd, respectively, represent the position error vector and
velocity error vector after coordinate transformation.

Error 

Dynamics

Tracking

controller

Leader

 USV

Error 

Dynamics

Formation

controller

Follower

USVs

lumped 

uncertain items

FTNTSM

FUO

FTNTSM

Tracking control subsystem

FTNTSM-TC

(ηd,νd )

(η0.d,ν0.d )

τ0

(η0,ν0 )

(ηi.0,νi.0 )

τi

(ηi,νi )

Formation control subsystem
(FUOFT-FC)

Figure 2. Block diagram of the USV formation control system.

Given η0,d, χ0,d, design the FTNTSM as follows:

ζ(t) = η0,d + [(αη0,d
A−B + β)−1χ0,d]

1
B (24)

where A = a1
a2

, B = b1
b2

; α, β > 0; a1, a2, b1, b2 are positive odd integers and satisfy
a1 > a2, b1 < b2 < 2b1, A− B > 1.
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The time derivative of the sliding surface is given by

ζ̇(t) = χ0,d +
1
B [(αη0,d

A−B + β)−1χ0,d]
1
B−1[−

(αη0,d
A−B + β)−2α(A− B)η0,d

A−B−1χ0,d
2

+(αη0,d
A−B + β)−1χ̇0,d]

(25)

Let Φ = (αη0,d
A−B + β)−1, we have:

ζ̇(t) = χ0,d +
1
B [Φχ0,d]

1
B−1[−α(A− B)

η0,d
A−B−1Φ2χ0,d

2 + Φχ̇0,d]
(26)

According to Lemma 2, combining (22) and (24), we have

ζ̇(t) = χ0,d +
1
B [Φχ0,d]

1
B−1[−α(A− B)

η0,d
A−B−1Φ2χ0,d

2 + Φ(Ie + R0M−1
0 τ0)]

= −λ0ζ − λ1ζ2−m/n − λ2ζm/n
(27)

where λ0, λ1, λ2 > 0.
Let κ = −λ0ζ − λ1ζ2−m/n − λ2ζm/n. Then, the tracking control strategy based on

fixed-time fast terminal sliding mode (FTNTSM-TC) is designed as follows:

τ0 = M0R−1
0 [

(κ−χ0,d)Bχ0,d

(Φχ0,d)
1
B

+

α(A− B)η0,d
A−B−1Φχ0,d

2 − Ie]
(28)

Now, we state the main result of this work.

Theorem 1. Consider the USV tracking control system governed by (22) under the assumption
that there are no lumped disturbances, the tracking control strategy (28) is able to ensure that the
leader tracks the desired trajectory precisely. Moreover, the convergence time is independent of the
initial state of the leader, and the upper bound of the convergence time is given by

Ts = T0,max + T1,max (29)

Proof of Theorem 1. Reaching phase: Select the following Lyapunov function:

V1 =
1
2

ζTζ (30)

Combining (27) and (28), the derivative of (30) can be obtained as follows:

V̇1 = ζTζ̇

= ζT[χ0,d +
1
B [Φχ0,d]

1
B−1[−α(A− B)

η0,d
A−B−1Φ2χ0,d

2 + Φ ˙χ0,d]]

= ζT[χ0,d +
1
B [Φχ0,d]

1
B−1[−α(A− B)

η0,d
A−B−1Φ2χ0,d

2 + Φ(Ie + R0M−1
0 τ0)]]

= −ζT[λ0ζ + λ1ζ2−m/n + λ2ζm/n]

= −λ0ζ2 − λ12
3n−m

2n ( 1
2 ζ2)

3n−m
2n − λ22

n+m
2n ( 1

2 ζ2)
n+m

2n

≤ −λ12
3n−m

2n V
2−m+n

2n
1 − λ22

n+m
2n V

m+n
2n

1
≤ −µ1V2−v1/θ1

1 − µ2Vv1/θ1
1

(31)

where µ1 = λ12
3n−m

2n , µ2 = λ22
n+m

2n , v1 = m + n, θ1 = 2n, and v1 < θ1.
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Using Lemma 2, the upper bound of the convergence time can be calculated as follows:

T1,max =
v1π

2
√

µ1µ2(v1 − θ1)
(32)

Hence, the designed fixed-time non-singular terminal sliding surface can be reached
within a fixed time. Then, the error vectors η0,d, χ0,d converge to the sliding surface, we can
obtain ζ(t) = 0, ζ̇(t) = 0.

ζ(t) = η0,d + [(αη0,d
A−B + β)−1χ0,d]

1
B = 0 (33)

After simplification, we have

χ0,d = η̇0,d = −αη0,d
A − βη0,d

B (34)

According to Lemma 3, after reaching the sliding stage, the upper bound of the
convergence time satisfies the following inequality:

T0,max =
1
α

a2

a1 − a2
+

1
β

b2

b2 − b1
(35)

According to (29), the upper bound of the convergence time does not depend on the
initial state of the leader and is given by Ts = T0,max + T1,max.

Theorem 1 is proven complete.

3.2. Design of Formation Control Subsystem and Stability Analysis

The unmodeled dynamics and external disturbances in each follower of the formation
control subsystem will be regarded as lumped uncertain items fiu( · ).

For the formation control subsystem, the formation control error is rewritten as follows:

η̇i,0=χi,0

χ̇i,0=Ri M−1
i τi + Siχi − S0χ0 + fiu(·)

(36)

where
fiu(·) = Ri M−1

i Bi − R0M−1
0 B0+di(t) (37)

and fiu(·) denotes lumped uncertainty items, and Bi= B(ηi,νi), B0(·) = B(η0,ν0).
Let ωi,1 be the observed value of disturbance fiu. We design a finite-time uncertain

observer (FUO) as follows:

ẇi,0 = Siχi − S0χ0 + Ri M−1
i τi + ξ i,0

ξ i,0 = −λi,3Z1/3
i sig2/3(wi,0 − χi,0) + wi,1

ẇi,1 = ξ i,1
ξ i,1 = −λi,4Z1/2

i sig1/2(wi,1 − ξ i,0) + wi,2
ẇi,2 = −λi,5Zisgn(wi,2 − ξ i,1)

(38)

where wi,j: = [wi,j,1,wi,j,2,wi,j, 3]T , j = 0, 1, 2, ξ i,k : = [ξi,k,1,ξi,k,2,ξi,k,3]
T(k = 0, 1) is the distur-

bance observer state, λi,j > 0, j = 3, 4, 5, and Zi = diag(zi1,zi2,zi3) is the designed parameter
of the observer.

The observation errors of the disturbance observer are defined as follows:

ei,1 = wi,0 − χi,0
ei,2 = wi,1 − di
ei,3 = wi,2 − ḋi

(39)
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The time derivatives of system (39) are obtained as follows:

ėi,1 = −λi,3Z1/3
i sig2/3(ei,1)+ei,2

ėi,2 = −λi,4Z1/2
i sig1/2(ei,2 − ėi,1)+ei,3

ėi,3 = −λi,5Zisgn(ei,3 − ėi,2)− d̈i

(40)

According to Lemma 4, the observation error system (40) is stable for a finite time.
When the disturbance is effectively observed, we have:

wi,0(t) ≡ χi,0(t), wi,1(t) ≡ di(t), wi,2(t) ≡ ḋi(t) (41)

Given ηi,0, χi,0, design the FTNTSM as follows:

ε(t) = ηi,0 + [(αηi,0
A−B + β)−1χi,0]

1
B (42)

where A = a1
a2

, B = b1
b2

; α, β > 0; a1, a2, b1, b2 are positive odd integers and satisfy
a1 > a2, b1 < b2 < 2b1, A− B > 1.

The time derivative of the sliding surface is governed by:

ε̇(t) = χi,0 +
1
B [(αηi,0

A−B + β)−1χi,0]
1
B−1[−

(αηi,0
A−B + β)−2α(A− B)ηi,0

A−B−1χi,0
2

+(αηi,0
A−B + β)−1χ̇i,0]

(43)

Let Φi = (αηi,0
A−B + β)−1, we have

ε̇(t) = χi,0 +
1
B [Φiχi,0]

1
B−1[−α(A− B)

ηi,0
A−B−1Φ2

i χi,0
2 + Φiχ̇i,0]

(44)

According to Lemma (2), combining (36) and (42), we have

ε̇(t) = χi,0 +
1
B [Φiχi,0]

1
B−1[−α(A− B)ηi,0

A−B−1

Φ2
i χi,0

2 + Φi(Siχi − S0χ0 + ωi,1 + Ri M−1
i τi)]

= −λi,0ε− λi,1ε2−p/q − λi,2εp/q
(45)

where λi,0, λi,1, λi,2 > 0 and p, q are positive odd numbers satisfying p < q.
Let κi = −λi,0ε− λi,1ε2−p/q − λi,2εp/q. Furthermore, the FUO-based fixed-time for-

mation control (FUOFT-FC) strategy is designed as follows:

τi = MiR−1
i [

(κ−χi,0)Bχi,0

(Φiχi,0)
1
B

+ α(A− B)

ηi,0
A−B−1Φiχi,0

2 − (Siχi − S0χ0 + ωi,1)]
(46)

Concerning the identification and control of complex unknown disturbances and
system uncertainties, we have the following main result.

Theorem 2. Consider the USV formation control system with a lumped uncertainty term fiu
governed by (37), the designed FUO can effectively identify fiu in a finite time. The designed
FUOFT-FC strategy can rapidly and steadily maintain the desired formation in a fixed time.

Proof of Theorem 2. Select the following Lyapunov function:

V2 = 1
2 εTε (47)

The time derivative of system (47) is given by
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V̇2 = εTε̇

= εT[χi,0 +
1
B [Φiχi,0]

1
B−1[−α(A− B)

ηi,0
A−B−1Φ2

i χi,0
2 + Φiχ̇i,0]]

= εT[χi,0 +
1
B [Φiχi,0]

1
B−1[−α(A− B)ηi,0

A−B−1

Φ2
i χi,0

2 + Φi(Ri M−1
i τi + Siχi − S0χ0 + fiu(·))]]

= −εT[λi,0ε + λi,1ε2−p/q + λi,2εp/q + fiu( · )−ωi,1]

= −λi,0ε2 − λi,12
3q−p

2q ( 1
2 ε2)

3q−p
2q − λi,22

q+p
2q ( 1

2 ε2)
q+p
2q

≤ −λi,12
3q−p

2q V
2− q+p

2q
3 − λi,22

q+p
2q V

q+p
2q

3

≤ −µi,1V2−vi,1/θi,1
1 − µi,2Vvi,1/θi,1

1

(48)

where i = 1, 2 mean followers. µi1 = λi,12
3q−p

2q , µi,2 = λi,22
q+p
2q , vi,1 = q + p, θi,1 = 2q,

and vi,1 < θi,1.
Using Lemma 2, the upper bound of the convergence time can be calculated, and the

designed FTNTSM strategy can be reached within a fixed time :

Ti1,max =
vi,1π

2√µi,1µi,2(vi,1 − θi,1)
(49)

Hence, the designed fixed-time non-singular terminal sliding mode can be reached
within a fixed time. Then, we can obtain ε(t) = 0, ε̇(t) = 0, and

ε(t) = ηi,0 + [(αηi,0
A−B + β)−1χi,0]

1
B = 0 (50)

which can be simplified as follows:

χi,0 = η̇i,0 = −αηi,0
A − βηi,0

B (51)

According to Lemma 3, after reaching the sliding stage, the upper bound of the
convergence time satisfies the following inequality:

Ti0,max =
1
α

a2

a1 − a2
+

1
β

b2

b2 − b1
(52)

Theorem 2 is proven complete.

4. Simulation and Discussion

In order to verify the efficiency and effectiveness of the proposed control strategy, the
classic Cybership II USV model is used for simulation studies [39]. The parameters of the
Cybership II USV model are shown in Table 2. The parameters of the sliding mode control
surface, disturbance observer, and formation controller are shown in Table 3. The initial
values of the desired trajectory, the leader USV, and follower USVs are shown in Table 4.

Table 2. Main parameters of the CyberShip II model.

Parameters Values Parameters Values Parameters Values

m 23.8000 Yv −0.8612 Xµ̇ −2.0
Iz 1.7600 Y|v|v −36.2823 Yv̇ −10.0
xg 0.460 Yr 0.1079 Yṙ 0.0
Xµ −0.7225 Nv 0.1052 Nv̇ 0.0

X|µ|µ −1.3274 N|v|v 5.0437 Nṙ −1.0
Xµµµ −5.8664
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Table 3. Parameter values.

Parameters Values Parameters Values

m, p 7 n, q 9
λ2, λi,2 3 a1 9
λ1, λi,1 2 a2 5
λ0, λi,0 0.03 b1 5

α 3 b2 7
β 3 Zi diag(27, 27, 27)

Table 4. Position and velocity values.

Parameters Values Parameters Values

ηd(0) [−4,− 2, ß/4]T νd(0) [1/2, 0, 0]T

η0(0) [−2,−3, 0]T ν0(0) [0, 0, 0]T

η1(0) [0,−3, 0]T ν1(0) [0, 0, 0]T

η1(0) [−6,1, 0]T ν2(0) [0, 2, 0]T

The disturbance vector is governed by:

d1 =

 cos(0.2πt) + 0.1 sin(πt)
cos(πt) + sin(2t)

cos(πt) + sin(0.1t)

 (53)

d2 =

 cos(0.2πt) + 0.1 sin(πt)
cos(πt) + sin(2t)

cos(πt) + sin(0.1t)

 (54)

Simulation results are shown in Figures 3–13. Figure 3 shows the comparison results
of the proposed FTNTSM-TC strategy and TSM-TC strategy. The results show that the
convergence rate and stability of the proposed FTNTSM-TC strategy are better than that
of the TSM-TC strategy. Figures 4 and 5 show position tracking and velocity tracking of
FTNTSM-TC and TSM-TC, which further demonstrate the effectiveness and efficiency of
the proposed FTNTSM-TC strategy.

Figures 6 and 7 show that when the desired trajectory is a straight line, the designed
tracking control strategy enables the leader to accurately track the desired trajectory and
the designed formation control strategy can also enable followers to accurately track the
leader and maintain a straight-line navigation formation. When the desired trajectory is
a curve, the USVs can also move smoothly and maintain a stable curvature navigation
formation, which verifies the closed-loop stability and effectiveness of the proposed FUOFT-
FC strategy. Figures 8 and 9 show the position tracking and velocity tracking of the USV
formation control subsystem using the proposed strategies. The results demonstrate that
the FTNTSM-TC and FUOFT-FC strategies can quickly and effectively perform tracking
control and maintain stable formation in five seconds, and greatly improve the convergence
rate of the system.

Figure 10 shows a smooth input tracking curve without internal and external dis-
turbances, which further demonstrates the effectiveness and efficiency of the proposed
FUOFT-FC strategy. Figure 11 shows the time evolution of the lumped uncertainty and
observation disturbances by the finite-time uncertain observer. Simulation results show
that the lumped uncertainty items of the system can be quickly and accurately observed,
thereby demonstrating the superiority of the proposed strategy. Figure 12 shows the time
evolution of the control input after the lumped uncertainty items are processed by the pro-
posed FUO, which shows that the designed FUO can accurately identify the disturbances.
Figure 13 shows the norm of the tracking errors and their derivatives. It is clear that the
lumped uncertainty items can be handled efficiently by the proposed FUO.
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Figure 3. Tracking control of TSM-TC and FTNTSM-TC.

Figure 4. Position tracking of TSM-TC and FTNTSM-TC.
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Figure 5. Velocity tracking of TSM-TC and FTNTSM-TC.
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Figure 6. The beeline path of USV formation.

Figure 7. The curved path of USV formation.

Figure 8. Position tracking using fixed-time control.
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Figure 9. Velocity tracking using fixed-time control.
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Figure 10. Input tracking.

Figure 11. Observation results of FUO.
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Figure 12. Control inputs of followers.
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Figure 13. Norm of tracking errors and their derivatives.

Through the above design and analysis, it can be seen that the USV formation controller
designed based on the fixed-time non-singular terminal sliding mode (FTNTSM) strategy
has excellent control performance and can accurately control multiple USVs to maintain
the desired formation and stable operation. At the same time, the finite-time uncertainty
observer (FUO) designed in this paper has excellent anti-disturbance capabilities and is able
to effectively eliminate influences of internal and external disturbances on the stability of
the system. Simulation results demonstrate that excellent performances have been achieved.
The design of the formation controller based on fixed-time control theory and sliding mode
control theory provides an interesting and important research direction in the community
of marine science and engineering.

5. Conclusions

In this paper, the FTNTSM-TC strategy and the FUOFT-FC strategy are proposed for
the leader–follower USV formation system which contains complex unknown and distur-
bances uncertainties. We divide the entire formation control system into the tracking control
subsystem and the formation control subsystem. In the tracking control subsystem, an
FTNTSM-TC strategy is designed to make the leader track the desired trajectory accurately.
In the formation control subsystem, the lumped uncertainly items can be accurately identi-
fied by the proposed FUO, and a FUOFT-FC strategy is designed to make the followers
maintain a good relative position with the leader accurately and keep stable formation. The
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stability of the closed-loop formation control system is established by Lyapunov stability
analysis. Simulation results show that the proposed control strategy can accurately track
the desired trajectory and can quickly form and maintain the desired formation system. The
fixed-time non-singular terminal sliding mode control strategy and finite-time uncertain
disturbance observer designed in this paper have given a new perspective of USV formation
control and the results are superior to the current USV formation control strategies.
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