
Citation: Yang, S.; Huang, J.; Li, W.;

Xiang, X. A Novel Discrete Group

Teaching Optimization Algorithm for

TSP Path Planning with Unmanned

Surface Vehicles. J. Mar. Sci. Eng.

2022, 10, 1305. https://doi.org/

10.3390/jmse10091305

Academic Editor: Mihalis Golias

Received: 11 August 2022

Accepted: 12 September 2022

Published: 15 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

A Novel Discrete Group Teaching Optimization Algorithm for
TSP Path Planning with Unmanned Surface Vehicles
Shaolong Yang † , Jin Huang †, Weichao Li and Xianbo Xiang *

School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China
* Correspondence: xbxiang@hust.edu.cn; Tel.: +86-134-7709-7918
† These authors contributed equally to this work.

Abstract: A growing number of researchers are interested in deploying unmanned surface vehicles
(USVs) in support of ocean environmental monitoring. To accomplish these missions efficiently,
multiple-waypoint path planning strategies for survey USVs are still a key challenge. The multiple-
waypoint path planning problem, mathematically equivalent to the traveling salesman problem (TSP),
is addressed in this paper using a discrete group teaching optimization algorithm (DGTOA). Generally,
the algorithm consists of three phases. In the initialization phase, the DGTOA generates the initial
sequence for students through greedy initialization. In the crossover phase, a new greedy crossover
algorithm is introduced to increase diversity. In the mutation phase, to balance the exploration
and exploitation, this paper proposes a dynamic adaptive neighborhood radius based on triangular
probability selection to apply in the shift mutation algorithm, the inversion mutation algorithm, and
the 3-opt mutation algorithm. To verify the performance of the DGTOA, fifteen benchmark cases from
TSPLIB are implemented to compare the DGTOA with the discrete tree seed algorithm, discrete Jaya
algorithm, artificial bee colony optimization, particle swarm optimization-ant colony optimization,
and discrete shuffled frog-leaping algorithm. The results demonstrate that the DGTOA is a robust
and competitive algorithm, especially for large-scale TSP problems. Meanwhile, the USV simulation
results indicate that the DGTOA performs well in terms of exploration and exploitation.

Keywords: unmanned surface vehicle; traveling salesman problem; discrete group teaching opti-
mization; dynamic adaptive neighborhood radius

1. Introduction

Unmanned surface vehicles (USVs), which have attractive operating and maintenance
costs, the capability to perform at high intensity, and good maneuverability [1], have gained
wide attention in scientific research recently. For monitoring pollutant concentrations in
lakes or oceans, USVs can be equipped with multiple monitoring sensors to effectively
collect environmental data, as well as avoid direct long-term human exposure to hazardous
environments [2,3] (as shown in Figure 1). In particular, prior environmental information
and sampling path planning are important components for the guidance systems since
they facilitate the design of an optimal path based on navigation information and mission
objectives [4]. In this context, effective path planning for USVs is crucial for saving operation
time and mission costs. Consequently, it has become a research hot spot to design a fast
convergence algorithm that facilitates optimal path planning [5].

In view of the traversing order of multiple-waypoint for the USV path planning, the
problem can be mathematically equivalent to the traveling salesman problem (TSP), which
is a famous NP-hard combinatorial optimization problem, and so far lacks a polynomial-
time algorithm to obtain an optimal solution [6]. This problem can be described as follows:
a salesman who plans to visit several cities wants to find the shortest Hamilton cycle that
permits him to visit each city only once and eventually return to his starting city [7,8]. As a

J. Mar. Sci. Eng. 2022, 10, 1305. https://doi.org/10.3390/jmse10091305 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10091305
https://doi.org/10.3390/jmse10091305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0003-2566-9803
https://orcid.org/0000-0002-6215-9864
https://doi.org/10.3390/jmse10091305
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10091305?type=check_update&version=2


J. Mar. Sci. Eng. 2022, 10, 1305 2 of 20

typical optimization problem, the TSP is widely seen in a range of practical missions, includ-
ing robot navigation, computer wiring, sensor placement, and logistics management [9].
For these reasons, many approaches have been proposed to solve the TSP in past decades,
including exact and approximate algorithms. The optimal solution to the problem can be
obtained with a rigorous math logical analysis for the exact algorithm [10,11]. However, the
expensive computational cost makes it inadequate for solving medium-scale to large-scale
NP-complete problems. Hence, many researchers turn to solving the TSP using approxima-
tion algorithms. These algorithms can be divided into two categories. For the first, local
search algorithms, such as 2-opt [12] and 3-opt [13], are used to solve the small-scale TSP.
Generally, the efficiency of these algorithms decreases as the problem dimension increases
and algorithms tend to fall into local optimal solutions. Therefore, many metaheuristic
algorithms for solving symmetric TSP have been presented in the literature over the past
decades, including: the genetic algorithm (GA) [14], simulated annealing (SA) [15], artificial
bee colony (ABC) [16], ant colony optimization (ACO) [17], Jaya algorithm (JAYA) [18], etc.

Figure 1. A USV conducting the environmental monitoring mission.

These metaheuristic algorithms solve the TSP in three main phases: initialization,
crossover, and mutation [19]. In general, these metaheuristic algorithms can obtain good
results when attempting to solve small-scale optimization problems. However, the larger
the scale of optimization problems is, the slower the convergence speed will be, and it is
also easier to fall into a local optimum [20]. Motivated by the aforementioned discussions,
a novel discrete group teaching optimization algorithm (DGTOA), inspired by the group
teaching optimization algorithm (GTOA) [21], is proposed to solve TSP. The DGTOA is
presented in three phases in this paper. Firstly, in the initialization phase, the DGTOA
generates the initial sequence for students through greedy initialization. Then, in the
crossover phase, a new greedy crossover algorithm is employed to increase diversity.
Finally, in the mutation phase, to balance the exploration and exploitation, this paper
develops a dynamic adaptive neighborhood radius based on triangular probability selection
to apply in the shift mutation algorithm, the inversion mutation algorithm, and the 3-
opt mutation algorithm. In addition, to verify the performance of the DGTOA, fifteen
benchmark problems in TSPLIB [22] are used to test the algorithm as well as compare it with
the discrete tree seed algorithm (DTSA) [6], discrete Jaya algorithm (DJAYA) [18], ABC [7],
particle swarm optimization-ant colony optimization (PSO-ACO) [23], and discrete shuffled
frog-leaping algorithm (DSFLA) [24]. From the comparison results, we can conclude that
the DGTOA has a comparative advantage. The main contributions of this algorithm to
other algorithms in the literature are as follows:



J. Mar. Sci. Eng. 2022, 10, 1305 3 of 20

• This study presents the first application of the GTOA in the permutation-coded discrete form.
• The DGTOA is a novel and effective discrete optimization algorithm for solving the

TSP, and the comparison shows that the solutions obtained by the DGTOA have
comparable performance.

• The dynamic adaptive neighborhood radius can balance the exploration and exploita-
tion for solving the TSP.

• The DGTOA has been successfully applied to USV path planning, and the simulation
results indicate that the DGTOA can provide a competitive advantage in path planning
for USVs.

The remainder of the paper is arranged as follows. A literature survey on techniques to
avoid falling into a local optimum and improve the optimization speed is given in Section 2.
In Section 3, the original GTOA, the TSP, and the dynamic adaptive neighborhood radius
model are described. After that, the DGTOA model is introduced in Section 4. Results and
discussions are provided in Section 5. Finally, Section 6 concludes the study.

2. Literature Survey

The following section will focus on the current efforts of researchers to develop
techniques to avoid falling into a local optimum and improve the optimization speed
from the initialization, crossover, and mutation phases. Aiming at solving the TSP, related
improvement techniques can be roughly introduced as follows.

The first one is improving the algorithm initialization rules to accelerate convergence.
In order to speed up convergence, W. Li et al. discussed K-means clustering as a method to
group individuals with similar positions into the same class to obtain the initial solution [25].
In another study, to ensure that the algorithm would execute within the given time, M.
Bellmore et al. developed the nearest neighbor heuristic initialization algorithm [26]. On
the basis of the nearest neighbor initialization, L. Wang et al. introduced the k-nearest
neighbors’ initialization method, where the algorithm adopted a greedy approach to select
the k-nearest neighbors [27]. A.C. Cinar et al. presented the initial solution of the tree during
the initialization phase using the nearest neighbor and a random approach for balancing
the speed and quality of its solution [6]. C. Wu et al. [28] and P. Guo et al. [29] adopted a
greedy strategy for generating initialized populations to improve the optimization speed
and avoid falling into a local optimum.

The second way to avoid getting trapped in the local optimum is to use crossover
rules to increase diversity. For example, İlhan et al. used genetic edge recombination
crossover and order crossover to avoid falling into the local optimum and improve their
performances [30]. Z.H. Ahmed presented a sequential constructive crossover operator
(SCX) to solve the TSP to avoid getting trapped in the local optimum [31]. In another study,
Hussain et al. proposed a method based on the GA to solve TSP with a modified cycle
crossover operator (CX2) [13]. In their approach, path representations have effectively
balanced optimization speed and solution quality. Y. Nagata et al. devised a robust genetic
algorithm based on the edge assembly crossover (EAX) operator [32]. To avoid being
limited in the local optimum, the algorithm used both local and global versions of EAX.

The third one is adopting a mutation strategy to balance exploration and exploitation
for solving the TSP. For instance, M. Albayrak et al. compared greedy sub-tour mutation
(GSTM) with other mutation techniques. GSTM demonstrated significant advantages
in polynomial-time [33]. To further avoid falling into a local optimum, A.C. Cinar et al.
presented the use of swap, shift, and symmetric transformation operators for the DTSA to
solve the problem of coding optimization in the path improvement phase [6]. To balance
exploration and exploitation, M. Anantathanavit et al. employed K-means to cluster the
sub-cities and merge them by the radius particle swarm optimization embedded into
adaptive mutation, which could balance between time and accuracy [34].

Besides the main strategies for improvement mentioned above, some researchers
combined a local search algorithm and a metaheuristic algorithm to avoid premature
convergence and further improve the solution quality. For example, Mahi et al. developed



J. Mar. Sci. Eng. 2022, 10, 1305 4 of 20

a hybrid algorithm that combined PSO, ACO, and 3-opt algorithms, allowing it to avoid
premature convergence and increase accuracy and robustness [23]. Moreover, a support
vector regression approach is employed by R. Gupta et al. to solve the search space problem
of the TSP [35].

Specifically, in practical ocean survey scenarios, D.V. Lyridis proposed an improved
ACO with a fuzzy logic optimization algorithm for local path planning of USVs [36]. This
algorithm offers considerable advantages in terms of optimal solution and convergence
speed. Y.C. Liu et al. proposed a novel self-organizing map (SOM) algorithm for USV
to generate sequences performing multiple tasks quickly and efficiently [37]. J.F. Xin et
al. introduced a greedy mechanism and a 2-opt operator to improve the particle swarm
algorithm for high-quality path planning of USV [4]. The improved algorithm was vali-
dated in a USV model in a realistic marine environment. J.H. Park et al. used a genetic
algorithm to improve the mission planning capability of USVs and tested it in a simulation
environment [38].

Following the literature survey, improving the algorithm initialization rules, using
crossover rules, adopting a mutation strategy, combining with a local search algorithm, or
all of these strategies in combination can be applied to the TSP to avoid falling into a local
optimum. However, direct random crossover and global mutation are challenging in terms
of convergence speed. Moreover, a higher convergence speed is required for the DGTOA
to achieve rapid and optimal path planning for USVs. Thus, in contrast to the studies
mentioned above, the DGTOA innovatively incorporates a dynamic adaptive neighborhood
radius model, which is applied to the neighborhood mutation mode. Meanwhile, a new
greedy crossover method is used to further improve TSP path exploration.

3. Background Work

In this section, we will introduce the group teaching optimization algorithm (GTOA) to
solve continuous problems [21]. Meanwhile, the traveling salesman problem will be briefly
described. In addition, a dynamic adaptive neighborhood radius model will be introduced.

3.1. Group Teaching Optimization Algorithm

The GTOA is inspired by the group teaching mechanism, which divides students into
excellent and normal groups [39]. Depending on the results of the grouping, teachers create
different teaching plans. In brief, the plans for teachers within the excellent group tend
to raise the overall average, while those for students in normal groups tend to improve
their individual knowledge, as shown in Formulas (1) and (2) for teachers of excellent and
normal groups:

Excellent Group : xt+1
teacher,i = xt

i + a× (Tt − 2× (b×Mt + (1− b)× xt
i )) (1)

Normal Group : xt+1
teacher,i = xt

i + 2× c× (Tt − xt
i ) (2)

where t is the number of iteration generations, xt+1
teacher,i is the knowledge acquired by

student i from the teacher at time t, xt
i is the level of of student i at time t, Tt is the level of

knowledge of the teacher at time t, Mt is the average student knowledge level of the group,
and a, b, and c (0 < a, b, c < 1) are random numbers.

Combining the effects of lesson plans developed by the teacher with interaction with
classmates and self-study, the knowledge learned by student i at time t can be calculated
as follows:

xt+1
student,i =

{
xt+1

teacher,i + rand× (xt+1
teacher,i − xt+1

teacher,j) + rand× (xt+1
teacher,i − xt

i ) , f (xt+1
teacher,i) < f (xt+1

teacher,i)

xt+1
teacher,i − rand× (xt+1

teacher,i − xt+1
teacher,j) + rand× (xt+1

teacher,i − xt
i ) , f (xt+1

teacher,i) ≥ f (xt+1
teacher,i)

(3)

xt+1
i =

{
xt+1

teacher,i , f (xt+1
teacher,i) < f (xt+1

student,i)

xt+1
student,i , f (xt+1

teacher,i) ≥ f (xt+1
student,i)

(4)



J. Mar. Sci. Eng. 2022, 10, 1305 5 of 20

where xt+1
student,i is the knowledge acquired by student i at time t, and xt+1

teacher,j is the knowl-
edge acquired by student j from the teacher at time t, j is not equal to i. Following the
completion of the learning process at time t, two groups are combined and regrouped by
their acquisition level until the termination condition is met, f (x) is the normal distribu-
tion [39] and xt+1

i represents the knowledge of student i at time t + 1. The process of the
GTOA can be seen from Figure 2 and the pseudo-code of the GTOA is implemented in
Algorithm 1.

Algorithm 1: Pseudo-code of GTOA
Input: the number of student population N, the maximum number of iterations

Maxiter
Output: Optimum solution

1 Generating students’ populations (SP) by random initialization
2 Select the optimum solution and set iter initial value to 1
3 while iter is smaller than Maxiter do
4 The best half individuals from the excellent group and the rest make up the

normal group
5 excellent group
6 Calculation of students’ acquiring knowledge from the teacher using

Formula (1)
7 Calculate the students’ knowledge acquired during self-study and

communication with classmates using Formulas (3) and (4)
8 normal group
9 Calculation of students’ acquiring knowledge from the teacher using

Formula (2)
10 Calculate the students’ knowledge acquired during self-study and

communication with classmates using Formulas (3) and (4)
11 Combine the excellent group and the normal group to form a new group
12 Select the optimum solution and increase the iter value by 1

13 End while
14 Output Report the optimum solution as the optimal solution by GTOA

3.2. Traveling Salesman Problem (TSP)

The TSP can be represented by the complete graph G = (V, E), where V is the set of
cities and E is the edges connecting them. In the Hamiltonian loop, once a city is taken as a
starting point, all cities are visited only once and the loop eventually returns to the starting
city. The target should be to make the Hamiltonian loop as short as possible [40].

cij =

{
1, Travelling salesman through the edge(i, j)
0, Others

(5)

min ∑
i∈V

∑
j∈V

cijdij (6)

D

∑
i=1, j∈V

cij =
D

∑
j=1, i∈V

cij = 1 (7)

∑
i∈S

∑
j∈S

cij ≤ |S| − 1 ∀S ⊂ V, |S| ≥ 2 (8)

where dij is the distance of the edge (i, j) and D indicates the total number of cities to be
visited; Formula (7) guarantees that each city is visited only once; Formula (8) guarantees
that the result is a Hamiltonian loop.



J. Mar. Sci. Eng. 2022, 10, 1305 6 of 20

Figure 2. Flowchart of group teaching optimization algorithm.

3.3. Dynamic Adaptive Neighborhood Radius

To improve accuracy and efficiency, this paper proposes a method of a dynamic adap-
tive neighborhood radius, which incorporates the exponential function into the iterative
generations and tanh functions to balance linear and nonlinear relationships. A description
of the model design can be decided through:

rz = tanh e(−
iter

Maxiter +0.1)(
rz

avg − dmin

davg − dmin
)(rz

max − rz
min) + rz

min, z = 1, 2, · · · , N (9)

where z is the current city and rz
max, rz

min, and rz
avg are the maximum, minimum, and average

distance between the unvisited city and current city, respectively. dmin and davg represent
the minimum and average distance between all cities, respectively, Maxiter is the maximum
number of iterations, and iter is the current number of iterations.

The triangular probability selection model [41] increases the probability of selecting
relatively close individuals, as well as ensures that individuals from further away have
a chance of being selected in the neighborhood. The details are as follows: firstly, the
neighboring cities are sorted by distance from the current city z in descending order, and
the probability of a city i being chosen is shown in Formula (10), where n is the number of
neighboring cities. Then a random number k is generated according to Formula (11). Finally,
a city cm is selected as the next target city of the current city z according to Formula (12):

Pi = 2(n + 1− i)/(n(n + 1)) 1 ≤ i ≤ n (10)



J. Mar. Sci. Eng. 2022, 10, 1305 7 of 20

k ∈ [0, nP1 + (n− 1)P2 + · · ·+ Pn] (11){
c1 k ≤ P1
cm (m− 1)P1 + · · ·+ Pm−1 < k ≤ mP1 + · · ·+ Pm, 1 < m ≤ n

(12)

where cm is the m-th city of the data sorted in descending order by distance from the current
city z.

4. Discrete Group Teaching Optimization Algorithm Detail Design

In this section, the discrete group teaching optimization algorithm will be introduced
to solve TSP. Meanwhile, a new greedy crossover algorithm, a middle student algorithm, a
dynamic neighborhood shift mutation algorithm, a dynamic neighborhood inversion muta-
tion algorithm, and a dynamic neighborhood 3-opt mutation algorithm will be described.
Related details will be introduced in the following subsections.

4.1. Discrete Group Teaching Optimization Algorithm

In discrete optimal problems, the DGTOA is modified in two stages. For the first stage,
the greedy principle [6] is used to generate the initial students’ sequences. For the later
stage, students are divided into two groups, with the top 50 percent of students on the
total path assigned to the excellent group and the rest to the normal group. The following
process is shown in Figure 3.

Figure 3. Flowchart of discrete group teaching optimization algorithm.



J. Mar. Sci. Eng. 2022, 10, 1305 8 of 20

In the excellent group, based on Section 3.1, the group focuses on improving the
overall performance. The related design process for the DGTOA can be described as
follows. (1) The middle student sequence is generated from the whole group of students’
sequences by the middle student algorithm. (2) Each student in the group is processed
with the middle sequence using the new greedy crossover. (3) The dynamic neighborhood
shift mutation algorithm, the dynamic neighborhood inversion mutation algorithm, and
the dynamic neighborhood 3-opt mutation algorithm are used to improve the optimization
results after greedy crossover. (4) Finally, the new sequences of the excellent group are
output, as shown in Figure 3 in blue.

The normal group is designed as follows. (1) The shortest student sequence by
selecting from all students in the normal group. (2) Using a new greedy crossover, each
student in the group is processed with the shortest path sequence. (3) The dynamic
neighborhood shift mutation algorithm, the dynamic neighborhood inversion mutation
algorithm, and the dynamic neighborhood 3-opt mutation algorithm are used to improve
the optimization results after greedy crossover. (4) Finally, the new sequences of the normal
group are output, as shown in Figure 3 in green.

Then, combine the excellent group and the normal group and determine whether the
termination condition is met. If not, the next step is to return to the excellent group and
continue the later stage; otherwise, the final result will be output from the combining group
as the global DGTOA optimum value, as shown in Figure 3 in gray. The corresponding
pseudo-code is shown in Algorithm 2.

Algorithm 2: Pseudo-code of DGTOA
Input: the number of student population (N), the maximum number of iterations

Maxiter
Output: Optimum solution

1 Generating student population (SP) by greedy initialization
2 Select the optimum solution and set iter initial value to 1
3 while iter is smaller than Maxiter do
4 The best half students from the excellent group and the rest students make up

the normal group
5 excellent group
6 Calculate the middle student sequence by Formula (16)
7 New greedy crossover for the middle student sequence and each student in

the group by Formulas (13)–(14)
8 The dynamic neighborhood shift, the dynamic neighborhood inversion, and

the dynamic neighborhood 3-opt algorithms are employed to improve the
results after crossover by Formulas (17)–(19)

9 normal group
10 Determine the best student with the shortest total path in the group
11 New greedy crossover of the best student with each student in the group by

Formulas (13)–(14)
12 The dynamic neighborhood shift, the dynamic neighborhood inversion, and

the dynamic neighborhood 3-opt algorithms are employed to improve the
results after crossover by Formulas (17)–(19)

13 Combine the excellent group and the normal group to form a new group
14 Select the optimum solution and increase the iter value by 1

15 End while
16 Output Report the optimum solution as the optimal solution by DGTOA

4.2. New Greedy Crossover Algorithm

To begin with, two positions m and n are randomly selected from the students Xi and
Xj, and the distance λmn between two positions is calculated using Formula (14). Then



J. Mar. Sci. Eng. 2022, 10, 1305 9 of 20

the sequence is selected between positions m and n from the students Xi and Xj with a
smaller length replacement to Xi between positions m and n. Additionally, the repeated
city is removed between positions m and n. Finally, the rest of the cities will be inserted
into a new sequence according to the greedy rule, as follows:

xk
i =


xk+N

i − N < k < 1
xk

i 1 ≤ k ≤ N
xk−N

i N < k ≤ 2N
(13)

λmn =


n−1
∑

k=m
d(xk

i , xk+1
i ) m < n

m−1
∑

k=n
d(xk

i , xk+1
i ) n < m

(14)

min
re−1

∑
k=1

d(xk
i , xk+1

i ) +
Nre

i −1

∑
k=re

d(xk
i , xk+1

i ) (15)

where d(xm
i , xn

i ) is the distance between cities xm
i and xn

i , the subscript denotes the student
number, ranging from 1 to M, in which M is the total number of students. The superscript
denotes the student’s corresponding sequence position number, ranging from 1 to N, in
which N is the total number of cities. In addition, re is the unvisited city position and Nre

i
is the current sequence length of student Xi. For instance, positions 3 and 5 are randomly
selected from the students Xi and Xj (as seen from Figure 4). Then the smaller distance
(positions 3->7->1) is selected and the repeated city 1 is removed. Finally, the unvisited city
6 is added to the output sequence in a greedy rule.

Figure 4. New greedy crossover algorithm.

4.3. Middle Student Algorithm

The sequence of the middle student is obtained based on the form of most of the
common cities, for N cities, M students can be established as in Formula 16.

Center(X1, X2, · · · , XM) = Mosti=1,2,··· ,M(x1
i , x2

i , · · · , xN
i ) (16)

where xN
i denotes the city corresponding to position N from the i-th student sequence. The

sequence of a middle student is processed in position order. First, delete cities that have
been visited, and then, based on the occurrence frequency of the remaining cities, select the
city with the highest frequency to fill the corresponding position. If more than one city with
the highest frequency is presented, randomly select one to fill this position. Additionally, if
all the cities in this position are deleted, select cities at random from the rest of the sequence
until the whole sequence is done.

As shown in Figure 5, for instance, in the first case, the cities with the highest frequency
in positions 2, 3, 4, 5, and 7 are selected based on the statistics of the remaining cities’
frequencies. In the second case, more than one city is presented with the highest frequency



J. Mar. Sci. Eng. 2022, 10, 1305 10 of 20

in position 1, and thus city 2 is randomly chosen. In the third case, all cities in position 6
are deleted, a city 6 is randomly selected from the rest cities to fill the sequence.

Figure 5. Middle student algorithm.

4.4. Dynamic Neighborhood Shift Mutation Algorithm

A position n is randomly selected from a sequence of student Xi. A city is selected
from the dynamic adaptive neighborhood radius rz of the city corresponding to position
m in the sequence by the triangular probability selection model, where xn is the position
n corresponding to the city. After that, the sequence’s city corresponding to position m is
shifted to position n. Finally, the value of the left and right change to the path distance ∆λ1
and ∆λ2 are calculated, respectively.{

∆λ1 = (d(xm−1
i , xn

i ) + d(xm
i , xn

i ) + d(xn−1
i , xn+1

i ))− (d(xn−1
i , xn

i ) + d(xn
i , xn+1

i ) + d(xm−1
i , xm

i ))

∆λ2 = (d(xm
i , xn

i ) + d(xm+1
i , xn

i ) + d(xn−1
i , xn+1

i ))− (d(xn−1
i , xn

i ) + d(xn
i , xn+1

i ) + d(xm
i , xm+1

i ))
(17)

where xm
i and xn

i are the cities corresponding to positions m and n in the i-th student
sequence, respectively. Accordingly, if ∆λ1 ≤ ∆λ2, move xn

i between xm−1
i and xm

i . If not,
move xn

i between xm
i and xm+1

i , as shown in Figure 6.

Figure 6. Dynamic neighborhood shift mutation.

4.5. Dynamic Neighborhood Inversion Mutation Algorithm

In the sequence of student i, a position n is randomly selected. From the dynamic
adaptive neighborhood radius of the city corresponding to position n, one city is selected
and its position m is recorded. In addition, the positions m and n in the sequence are
compared, and the smaller value is assigned to min, while the larger value is assigned
to max, as determined by Formula (18), and the change in distance before and after the
inversion mutation is calculated as ∆λ3, ∆λ4, ∆λ5, and ∆λ6:{

xmin
i = xm

i , xmax
i = xn

i m < n
xmin

i = xn
i , xmax

i = xm
i n < m

(18)


∆λ3 = (d(xmax−1

i , xmin−1
i ) + d(xmax

i , xmin
i ))− (d(xmax−1

i , xmax
i ) + d(xmin−1

i , xmin
i ))

∆λ4 = (d(xmax−1
i , xmin

i ) + d(xmax
i , xmin+1

i ))− (d(xmax−1
i , xmax

i ) + d(xmin
i , xmin+1

i ))

∆λ5 = (d(xmax
i , xmin−1

i ) + d(xmax+1
i , xmin

i ))− (d(xmax
i , xmax+1

i ) + d(xmin−1
i , xmin

i ))

∆λ6 = (d(xmax
i , xmin

i ) + d(xmax+1
i , xmin+1

i ))− (d(xmax
i , xmax+1

i ) + d(xmin
i , xmin+1

i ))

(19)

For instance, if ∆λ3 < 0, reverse the order of xmin
i ∼ xmax−1

i ; if ∆λ4 < 0, reverse the
order of xmin+1

i ∼ xmax−1
i ; if ∆λ5 < 0, reverse the order of xmin

i ∼ xmax
i ; if ∆λ6 < 0, reverse

the order of xmin+1
i ∼ xmax

i . As depicted in Figure 7a–d.



J. Mar. Sci. Eng. 2022, 10, 1305 11 of 20

(a)

(b)

(c)

(d)

Figure 7. Dynamic neighborhood inversion mutation. (a) Reverse the order xmin
i ∼ xmax−1

i . (b) Re-
verse the order xmin+1

i ∼ xmax−1
i . (c) Reverse the order xmin

i ∼ xmax
i . (d) Reverse the order

xmin+1
i ∼ xmax

i .

4.6. Dynamic Neighborhood 3-opt Mutation Algorithm

The 3-opt algorithm has a strong local search capability. However, directly processing
all cities would take a long computational time, and the amount of time would increase
as the number of cities increased. Therefore, we present a method of combining dynamic
neighborhood radius with 3-opt to maximize its ability to find local optimal solutions: by
selecting a position n randomly in the sequence of students i and then applying the 3-opt
algorithm to determine the next city within the dynamic adaptive neighborhood radius of
the cities.

5. Results and Discussions

The DGTOA with dynamic adaptive neighborhood optimization is tested using
15 benchmark TSP cases taken from TSPLIB [22]. Most of the instances in TSPLIB have
been solved, and the optimum values are displayed. The numbers in the problem names
indicate the city numbers (e.g., the eil51 benchmark problem means that the problem has
51 cities). Testing is performed using fifteen benchmark problems, which are divided into
three categories: small-scale, medium-scale, and large-scale based on city numbers, respec-
tively. For example, the case with less than 100 cities is considered a small-scale benchmark
problem; the case with more than 100 but less than 200 cities is a medium-scale benchmark
problem, and the case with more than 200 but less than 300 cities is a large-scale benchmark
problem. Each of the experiments in this section is carried out 25 times independently, with
the best results, mean results, and standard deviation (Std Dev) values produced by the
algorithm having been recorded, and the best optimum results are written in bold font in
the result tables. The relative error (RE) is calculated as follows:

RE =
R−O

O
× 100% (20)

where R is the obtained length (mean of 25 repeats) by the DGTOA, and O is the optimum
value of the problem. The optimum problems and their values are given in Table 1 [18,42].
All experiments are carried out using a Windows 11 Professional Insider Preview laptop



J. Mar. Sci. Eng. 2022, 10, 1305 12 of 20

with an Intel (R) Core (TM) i7-7700HQ 2.8 GHz processor and 16 GB of RAM, with the
scripts being written in MATLAB 2021a. The following is a series of experiments in which
the maximum number of iterations is 1000 and the number of students is 100.

Table 1. Number of cities and optimum tour lengths of the problems.

Problem Number of Cities Optimum Tour Length

eil51 51 428.87
berlin52 52 7544.37

st70 70 677.11
pr76 76 108,159.44
eil76 76 545.38

kroa100 100 21,285.44
krob100 100 22,141
kroc100 100 20,749
krod100 100 21,294
kroe100 100 22,068
eil101 101 642.31
ch150 150 6532.1
pr152 152 73,683.6

kroa200 200 29,460
tsp225 225 3859

5.1. Experiment 1: Comparisons with Random Initialization, Neighborhood Initialization, and
Greedy Initialization

The experiment uses fifteen benchmark problems to evaluate the efficacy of random
initialization, neighborhood initialization, and greedy initialization to solve TSP. The ob-
tained results are shown in Table 2.

Table 2. Comparisons with random initialization, neighborhood initialization, and greedy initializa-
tion on fifteen benchmark problems.

Problems
Random Initialization Neighborhood Initialization Greedy Initialization

Mean Std Dev RE (%) Mean Std Dev RE (%) Mean Std Dev RE (%)

eil51 430.35 1.29 0.34 429.92 0.92 0.24 429.78 0.99 0.21
berlin52 7544.37 0 0 7544.37 0 0 7544.37 0 0

st70 681.3 3.38 0.62 677.11 0.02 0 677.11 0.02 0
pr76 110,499 1214.54 2.16 108,344 331.36 0.17 108,298.6 287.72 0.13
eil76 554.09 2.61 1.6 549.84 1.81 0.82 549.44 1.81 0.74

kroa100 21,466.9 97.44 0.85 21,285.8 1.75 0 21,286.16 2.43 0
krob100 22,410 130.91 1.22 22,235.4 32.65 0.43 22,216.7 48.05 0.34
kroc100 20,974.1 155.93 1.08 20,809 44.61 0.29 20,778.18 37.53 0.14
krod100 21,621.9 143.5 1.54 21,485.2 64.79 0.9 21,456.83 55.58 0.76
kroe100 22,330.1 97.78 1.19 22,169.9 48.77 0.46 22,152.85 33.32 0.38
eil101 651.89 2.88 1.49 647.08 2.92 0.74 646.75 2.62 0.69
ch150 6763.4 60.96 3.54 6554.55 5.28 0.34 6554.4 3.93 0.34
pr152 74,968.6 386.56 1.74 74,356.1 175.35 0.91 74,408.66 225.48 0.98

kroa200 30,995 213.99 5.21 29,631.1 54.81 0.58 29,606.35 70.2 0.5
tsp225 4018.67 25.94 4.14 3940.41 19.73 2.11 3938.95 16.76 2.07

According to the bold part in Table 2, in terms of mean and RE, the optimization
solutions produced by neighborhood initialization and greedy initialization have con-
siderable advantages over random initialization. On the other hand, by analyzing the
neighborhood initialization as well as greedy initialization, it is evident from Table 2 that
the greedy initialization has a slight advantage in 11 instances. However, the neighborhood
initialization has a slight performance on eil101 and pr152. For further analysis of the three
initialization methods iterative process, the convergence RE plots of the middle-scale eil101
and large-scale tsp225 benchmark problems are given in Figures 8 and 9, which are used to



J. Mar. Sci. Eng. 2022, 10, 1305 13 of 20

compare the convergence processes of random initialization, neighborhood initialization,
and greedy initialization.

According to Figure 8, the neighborhood initialization and greedy initialization show
a considerable advantage in the initial solution over random initialization. For random
initialization, it takes 500 generations to reach an RE of less than 3%, but for neighborhood
initialization and greedy initialization, they take only 100 generations to satisfy convergence.
Compared to neighborhood initialization, greedy initialization can achieve an RE of less
than 1% within 200 generations, whereas neighborhood initialization takes 600 generations
to achieve an RE of less than 1%.

As seen in Figure 9, compared to neighborhood initialization and greedy initialization,
the random initialization method has a certain gap in the initial results as well as the
final optimization results, and the convergence to an RE of less than 5% has a larger gap.
Moreover, the RE of greedy initialization declines less than 3% faster than neighborhood
initialization. Hence the DGTOA uses a greedy rule in the initialization phase.

Figure 8. RE curves with random initialization, neighborhood initialization, and greedy initialization
for different iteration periods based on eil101.

Figure 9. RE curves with random initialization, neighborhood initialization, and greedy initialization
for different iteration periods based on tsp225.



J. Mar. Sci. Eng. 2022, 10, 1305 14 of 20

5.2. Experiment 2: Comparisons with Adaptive Neighborhood Mutation and Dynamic Adaptive
Neighborhood Mutation

To compare the adaptive neighborhood radius and the dynamic adaptive neighbor-
hood radius during the mutation phase. The adaptive neighborhood radius is assigned
iter as a value of 500 and fixed (Formula (9)). Fifteen benchmark problems are used to
evaluate the effectiveness of the two neighborhood radius methods to solve the TSP, with
all parameters except iter set the same each time. The results are shown in Table 3.

As seen from Table 3, the dynamic adaptive neighborhood mutation has a promising
advantage over the adaptive neighborhood mutation in terms of mean and RE values, with
an advantage in twelve of the fifteen benchmark problems and only a slight disadvantage
in eil76 and ch150. Moreover, a box plot of the eil76 and ch150 benchmark problems with
the dynamic adaptive neighborhood mutation and the adaptive neighborhood mutation
for 25 tests is shown so that the results can be fully analyzed.

Table 3. Comparisons with adaptive neighborhood mutation and dynamic adaptive neighborhood
mutation.

Problems
Adaptive Neighborhood Mutation Dynamic Adaptive Neighborhood Mutation

Mean Std Dev RE (%) Best Mean Std Dev RE (%) Best

eil51 429.49 0.75 0.15 428.98 429.78 0.99 0.21 428.87
berlin52 7544.37 0 0 7544.37 7544.37 0 0 7544.37

st70 677.12 0.02 0 677.11 677.11 0.02 0 677.11
pr76 108,542 447.33 0.35 108,159 108,298.6 287.72 0.13 108,159.4
eil76 549.33 2.01 0.72 545.39 549.44 1.81 0.74 545.97

kroa100 21,286.9 7.12 0.01 21,285.4 21,286.16 2.43 0 21,285.4
krob100 22,251.9 37.42 0.5 22,178.6 22,216.7 48.05 0.34 22,139.07
kroc100 20,824.7 55.15 0.36 20,750.8 20,778.18 37.53 0.14 20,750.76
krod100 21,463 52.66 0.79 21,345.5 21,456.83 55.58 0.76 21,323.48
kroe100 22,157.1 34.25 0.4 22,119.9 22,152.85 33.32 0.38 22,115.61
eil101 647.4 3.11 0.79 641.88 646.75 2.62 0.69 641.23
ch150 6552.5 8.15 0.31 6530.9 6554.4 3.93 0.34 6545.16
pr152 74,432.9 250.23 1.02 74,128.6 74,408.66 225.48 0.98 73,936.17

kroa200 29,667.3 61.81 0.7 29,560 29,606.35 70.2 0.5 29,405.72
tsp225 3950.47 18.52 2.37 3911.3 3938.95 16.76 2.07 3912.3

From Figure 10, the results from the dynamic adaptive neighborhood mutation are
more concentrated. In contrast, the adaptive neighborhood mutation is less stable and thus
presents a smaller final average result than the dynamic adaptive neighborhood mutation.
For instance, the average optimal value in ch150 in Figure 10 is much smaller than the
dynamic adaptive neighborhood mutation. However, the middle, upper quartile, and
upper edge are larger than the dynamic adaptive neighborhood mutation. Therefore, the
dynamic adaptive neighborhood mutation is optimal for the mutation phase due to its
stability and efficiency.

5.3. Experiment 3: Comparisons with the DJAYA, DTSA, ABC, PSO-ACO, and DSFLA

The DJAYA [18], DTSA [6], ABC [7], PSO-ACO [23], and DSFLA [24] are used to
compare with the DGTOA, and the comparison results regarding RE values are shown in
Table 4. The results are taken directly from the related papers for the DJAYA, DTSA, ABC,
PSO-ACO, and DSFLA.

As shown in Table 4, the DGTOA has competitive performance, obtaining optimal
solutions for 10 of the 15 benchmark problems, representing 66.77% of all test cases. In
terms of the quality of the solutions, DGTOA is obviously superior to the DJAYA, DTSA,
and ABC, as well as 6 of 8 (75%) and 7 of 10 (70%) better than PSO-ACO and the DSFLA,
respectively (i.e., the DSFLA has the same RE value on the Berlin52 and St70 benchmark



J. Mar. Sci. Eng. 2022, 10, 1305 15 of 20

problems). The test results show that the ABC, PSO-ACO, DSFLA, and DGTOA perform
well at a small scale, but as the scale increases, the performance of the ABC algorithm
decreases significantly. Meanwhile, for the tsp225 benchmark problem, the algorithm test
result RE value is higher than 5% at a large scale. In addition, PSO-ACO, the DSFLA, and
the DGTOA perform similarly on small and medium scales. In contrast, for large-scale
kroa200, the DGTOA has a significant advantage over PSO-ACO and the DSFLA. Therefore,
the DGTOA has a considered performance in fifteen benchmark problems.

Figure 10. Box plot for the eil76 and ch150 benchmark problems with dynamic adaptive neighborhood
mutation and adaptive neighborhood mutation.

Table 4. Comparisons with the DJAYA, DTSA, ABC, PSO-ACO, and DSFLA.

SL Problem
RE (%)

DJAYA DTSA ABC PSO-ACO DSFLA DGTOA

1 eil51 2.64 3.51 0.28 0.11 0.1 0.21
2 berlin52 0.48 0.02 0 0.02 0 0
3 st70 3.72 4.66 0.66 0.47 0 0
4 pr76 4.71 6.26 0.43 - - 0.13
5 eil76 5.1 6.09 - 0.06 0.2 0.74
6 kroa100 1.99 1.06 0.98 0.77 0.14 0
7 krob100 3.76 4.51 - - - 0.34
8 kroc100 4.59 5.15 - - 0.11 0.14
9 krod100 6.28 7.88 - - - 0.76

10 kroe100 2.33 1.83 - - - 0.38
11 eil101 5.46 7.41 2.9 0.59 0.62 0.69
12 ch150 1.63 3.32 - 0.55 0.53 0.34
13 pr152 - - - - 0.39 0.98
14 kroa200 - - - 0.95 1.03 0.5
15 tsp225 6.12 9.93 6.83 - - 2.07
Optimal number/ratio (%) 0/0 0/0 1/14.29 2/25 5/66.67 10/66.67

5.4. Experiment 4: Case Study with USV Path Planning

To evaluate the effectiveness of the designed DGTOA in the context of USV path
planning, the USV model published in [43] is used to verify the algorithm’s performance in
MATLAB. The control algorithm is derived from the line-of-sight guidance laws described



J. Mar. Sci. Eng. 2022, 10, 1305 16 of 20

in [44,45]. For planning the path, 25 and 50 target waypoints are randomly generated, and
then the relevant waypoints are entered into DGTOA. Finally, the optimized paths are
provided to the simulated USV for tracking control experiments. The results are shown in
Figure 11a,b, where the blue stars represent the waypoints and the solid red line indicates
the USV tracking trajectory with the speed of 1 m/s. The generated paths are of satisfactory
lengths, and no paths cross, significantly reducing the time and energy required for USV.
Furthermore, the convergence RE plots of the 25 and 50 target waypoints are shown in
Figure 12. When 25 target waypoints are considered, the DGTOA converges to the optimum
after only three iterations. Meanwhile, for 50 target waypoints, the DGTOA converges
to the optimum in only eight generations. From the two waypoint cases, the DGTOA
converges to the optimal solution in 0.47 s and 0.58 s, respectively. In general, the DGTOA
has good performance in terms of optimal solution and convergence speed.

(a)

(b)

Figure 11. Simulated USV path tracking results at 25 and 50 waypoints. (a) Simulated USV path
tracking results at 25 waypoints. (b) Simulated USV path tracking results at 50 waypoints.



J. Mar. Sci. Eng. 2022, 10, 1305 17 of 20

Figure 12. RE curves using the DGTOA for 25 and 50 waypoints.

6. Conclusions

To efficiently solve large-scale waypoint route planning issues, a novel DGTOA
method is proposed for USVs. The DGTOA proposes a dynamic adaptive neighborhood
radius strategy to balance exploration and exploitation. In the initialization phase, the
DGTOA generates initial student sequences using greedy initialization to accelerate the
convergence. During the crossover phase, when the new greedy crossover method is used,
every student in the group is processed with the shortest sequence and the middle student
sequence corresponding to the normal group and the excellent group, respectively. In
the mutation phase, the dynamic neighborhood shift mutation algorithm, the dynamic
neighborhood inversion mutation algorithm, and the dynamic neighborhood 3-opt mu-
tation algorithm all use the dynamic adaptive neighborhood radius based on triangular
probability selection to increase diversity.

In order to verify the effectiveness of the DGTOA, fifteen benchmark problems from
TSPLIB are used as benchmarks for testing. In the study, the effects of random initialization,
neighborhood initialization, and greedy initialization on the DGTOA are also discussed.
In terms of quality and convergence speed, greedy initialization for the DGTOA has an
advantage over random initialization and neighborhood initialization. What is more,
the dynamic adaptive neighborhood mutation has promising performance relative to the
adaptive neighborhood mutation in terms of mean and RE values. In comparison with
the DJAYA, DTSA, ABC, PSO-ACO, and DSFLA on 15 benchmark problems from TSPLIB,
the DGTOA shows obvious superiority over the DJAYA, DTSA, ABC, and is 75% and
70% better than PSO-ACO and the DSFLA, respectively. Furthermore, the DGTOA has
been successfully applied to the path planning for a USV and the results indicate that the
DGTOA performs well in terms of optimal solution and convergence speed. Therefore, the
proposed DGTOA can provide a competitive advantage in path planning for USVs.

Nevertheless, this study also has some limitations. Firstly, the computation time and
results of the algorithm are not optimal, especially as the problem scale increases. Secondly,
the DGTOA will be modified to plan routes for multiple unmanned surface vehicles.



J. Mar. Sci. Eng. 2022, 10, 1305 18 of 20

Author Contributions: Conceptualization, S.Y. and X.X.; methodology, S.Y.; software, J.H.; formal
analysis, S.Y. and J.H.; resources, S.Y.; writing—original draft preparation, J.H. and W.L.; writing—
review and editing, S.Y., J.H. and X.X.; supervision, S.Y. and X.X. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported by the Science and Technology on Ship Integrated Power
System Technology Laboratory (Grant 614221720200203); National Natural Science Foundation of
China (Grant 52071153); Fundamental Research Funds for the Central Universities, China (Grant
2018KFYYXJJ015).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

USV Unmanned surface vehicle
DGTOA Discrete group teaching optimization algorithm
GTOA Group teaching optimization algorithm
DTSA Discrete tree seed algorithm
TSA Tree seed algorithm
DJAYA Discrete Jaya algorithm
JAYA Jaya algorithm
ABC Artificial bee colony
PSO-ACO Particle swarm optimization-ant colony optimization
DSFLA Discrete shuffled frog-leaping algorithm
GA Genetic algorithm
SA Simulated annealing
SCX Sequential constructive crossover operator
CX2 Cycle crossover operator
EAX Edge assembly crossover
GSTM Greedy sub-tour mutation

References
1. Nantogma, S.; Pan, K; Song, W.; Luo, W.; Xu, Y. Towards Realizing Intelligent Coordinated Controllers for Multi-USV Systems

Using Abstract Training Environments. J. Mar. Sci. Eng. 2021, 9, 560. [CrossRef]
2. Xin, J.F.; Zhong, J.B.; Li, S.X.; Sheng, J.L.; Cui, Y. Greedy mechanism based particle swarm optimization for path planning problem

of an unmanned surface vehicle. Sensors 2019, 19, 4620. [CrossRef]
3. Wang, Z.;Yang, S.Y.; Xiang, X.B.; Antonio V.; Nikola M.; Ðula N. Cloud-based mission control of USV fleet: Architecture,

implementation and experiments. Control. Eng. Pract. 2021, 106, 104657. [CrossRef]
4. Fan, J.; Li, Y.; Liao Y, Jiang, w.; Wang, L.F.; Jia, Q.; Wu H.W. Second path planning for unmanned surface vehicle considering the

constraint of motion performance. J. Mar. Sci. Eng. 2019, 7, 104. [CrossRef]
5. Ege, E.; Ankarali, M.M. Feedback Motion Planning of Unmanned Surface Vehicles via Random Sequential Composition. Trans.

Inst. Meas. Control. 2019, 41, 3321–3330. [CrossRef]
6. Cinar, A.C.; Korkmaz, S.; Kiran, M.S. A discrete tree-seed algorithm for solving symmetric traveling salesman problem. Eng. Sci.

Technol. Int. 2020, 23, 879–890. [CrossRef]
7. Kıran, M.S.; İşcan, H.; Gündüz, M. The analysis of discrete artificial bee colony algorithm with neighborhood operator on

traveling salesman problem. Neural Comput. 2013, 23, 9–21. [CrossRef]
8. Ma, J.; Yang, T.; Hou, Z.-G.; Tan, M.; Liu, D. Neurodynamic programming: A case study of the traveling salesman problem.

Neural Comput. 2008, 17, 347–355. [CrossRef]
9. Matai, S.R.; Mittal, M.L.Traveling Salesman Problem: An Overview of Applications, Formulations, and Solution Approaches,

Traveling Salesman Problem, Theory and Applications. Eng. Sci. Technol. Int. 2011, 23, 879–890.
10. Pasandideh, S.H.R.; Niaki, S.T.A.; Gharaei, A. Optimization of a multiproduct economic production quantity problem with

stochastic constraints using sequential quadratic programming. Knowl.-Based Syst. 2015, 84, 98–107. [CrossRef]
11. Klerk, E.D.; Dobre, C. A comparison of lower bounds for the symmetric circulant traveling salesman problem. Discrete Appl.

Math. 2011, 159, 1815–1826. [CrossRef]

http://doi.org/10.3390/jmse9060560
http://dx.doi.org/10.3390/s19214620
http://dx.doi.org/10.1016/j.conengprac.2020.104657
http://dx.doi.org/10.3390/jmse7040104
http://dx.doi.org/10.1177/0142331218822698
http://dx.doi.org/10.1016/j.jestch.2019.11.005
http://dx.doi.org/10.1007/s00521-011-0794-0
http://dx.doi.org/10.1007/s00521-007-0127-5
http://dx.doi.org/10.1016/j.knosys.2015.04.001
http://dx.doi.org/10.1016/j.dam.2011.01.026


J. Mar. Sci. Eng. 2022, 10, 1305 19 of 20

12. Chiang, C.-W.; Lee, W.-P.; Heh, J.-S. A 2-Opt based differential evolution for global optimization. Appl. Soft Comput. 2010, 10,
1200–1207. [CrossRef]

13. Gulcu, S.; Mahi, M.; Baykan, O.; Kodaz, H. A parallel cooperative hybrid method based on ant colony optimization and 3-Opt
algorithm for solving traveling salesman problem. Soft Comput. Fusion Found. Methodol. Appl. 2018, 22, 1669–1685.

14. Yang, Z.; Li, J.; Li, L. Time-Dependent Theme Park Routing Problem by Partheno-Genetic Algorithm. Mathematics 2020, 8, 2193.
[CrossRef]

15. Chao, Z.X. Simulated annealing algorithm with adaptive neighborhood. Appl. Soft Comput. 2011, 11, 1827–1836.
16. Khan, I.; Maiti, M.K. A swap sequence based Artificial Bee Colony algorithm for Traveling Salesman Problem. Swarm Evol.

Comput. 2019, 44, 428–438. [CrossRef]
17. Li, S.; Wei, Y.; Liu, X.; Zhu, H.; Yu, Z. A New Fast Ant Colony Optimization Algorithm: The Saltatory Evolution Ant Colony

Optimization Algorithm. Mathematics 2022, 10, 925. [CrossRef]
18. Gunduz, M.; Aslan, M. DJAYA: A discrete Jaya algorithm for solving traveling salesman problem. Appl. Soft Comput. 2021, 105,

107275. [CrossRef]
19. Thanh, P.D.; Binh, H.T.T.; Trung,T.B. An efficient strategy for using multifactorial optimization to solve the clustered shortest path

tree problem. Appl. Intell. 2020, 50, 1233–1258. [CrossRef]
20. Zhang, H.; Cai, Z.; Ye, X.; Wang, M.; Kuang, F.; Chen, H.; Li, C.; Li, Y. A multi-strategy enhanced salp swarm algorithm for global

optimization. Eng. Comput. 2022, 38, 1177–1203. [CrossRef]
21. Zhang, Y.; Jin, Z. Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems.

Expert Syst. Appl. 2020, 148, 113246. [CrossRef]
22. Reinelt, G. TSPLIB—A Traveling Salesman Problem Library. Inf. J. Comput. 1991, 3, 376–384. [CrossRef]
23. Mahi, M.; Baykan, Ö.K.; Kodaz, H. A new hybrid method based on Particle Swarm Optimization, Ant Colony Optimization and

3-Opt algorithms for Traveling Salesman Problem. Appl. Soft Comput. 2015, 30, 484–490. [CrossRef]
24. Huang, Y.; Shen, X.-N.; You, X. A discrete shuffled frog-leaping algorithm based on heuristic information for traveling salesman

problem. Appl. Soft Comput. 2021, 102, 107085. [CrossRef]
25. Li, W.; Wang, G.-G. Improved elephant herding optimization using opposition-based learning and K-means clustering to solve

numerical optimization problems. J. Ambient Intell. Humaniz. Comput. 2021, 1–32. [CrossRef]
26. Bellmore, M.; Nemhauser, G.L. The Traveling Salesman Problem: A Survey. Oper. Res. 1968, 16, 538–558. [CrossRef]
27. Wang, L.; Lu, J. A memetic algorithm with competition for the capacitated green vehicle routing problem. IEEECAA J. Autom. Sin.

2019, 6, 516–526. [CrossRef]
28. Wu, C.; Fu, X. An agglomerative greedy brain storm optimization algorithm for solving the tsp. IEEE Access. 2020, 8, 201606–

201621. [CrossRef]
29. Guo, P.; Hou, M.; Ye, L. MEATSP: A membrane evolutionary algorithm for solving TSP. IEEE Access. 2020, 8, 199081–199096.

[CrossRef]
30. İlhan, İ.; Gökmen, G. A list-based simulated annealing algorithm with crossover operator for the traveling salesman problem.

Neural Comput. Appl. 2022, 34, 7627–7652. [CrossRef]
31. Ahmed, Z. Genetic Algorithm for the Traveling Salesman Problem using Sequential Constructive Crossover Operator. Int. J. Biom.

Bioinform. 2010, 3, 96.
32. Nagata, Y.; Kobayashi, S. A Powerful Genetic Algorithm Using Edge Assembly Crossover for the Traveling Salesman Problem.

Inf. J. Comput. 2013, 25 ,346-363. [CrossRef]
33. Albayrak, M.; Allahverdi, N. Development a new mutation operator to solve the Traveling Salesman Problem by aid of Genetic

Algorithms. Expert Syst. Appl. 2011, 38, 1313–1320. [CrossRef]
34. Anantathanavit, M.; Munlin, M. Using K-means Radius Particle Swarm Optimization for the Travelling Salesman Problem. IETE

Tech. Rev. 2016, 33, 172–180. [CrossRef]
35. Gupta, R.; Nanda, S.J. Solving time varying many-objective TSP with dynamic θ-NSGA-III algorithm. Appl. Soft Comput. 2022,

118, 108493. [CrossRef]
36. Lyridis, D.V. An improved ant colony optimization algorithm for unmanned surface vehicle local path planning with multi-

modality constraints. Ocean Eng. 2021, 241, 109890. [CrossRef]
37. Liu, Y.C.; Bucknall, R. Efficient multi-task allocation and path planning for unmanned surface vehicle in support of ocean

operations. Neurocomputing 2018, 275, 1550–1566. [CrossRef]
38. Park, J.; Kim, S.; Noh, G.; Kim, H.; Lee, D.; Lee, I. Mission planning and performance verification of an unmanned surface vehicle

using a genetic algorithm. Int. J. Nav. Archit. Ocean Eng. 2021, 13, 575–584. [CrossRef]
39. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: An optimization method for continuous non-linear

large scale problems. Inf. Sci. 2012, 1, 1–15. [CrossRef]
40. Rokbani, N.; Kumar, R.; Abraham, A.; Alimi, A.M.; Long, H.V.; Priyadarshini, I.; Son, L.H. Bi-heuristic ant colony optimization-

based approaches for traveling salesman problem. Soft Comput. 2021, 25, 3775–3794. [CrossRef]
41. Khanouche, M.E.; Mouloudj, S.; Hammoum, M. Two-steps qos-aware services composition algorithm for internet of things.

In Proceedings of the 3rd International Conference on Future Networks and Distributed Systems, Paris, France, 1–2 July 2019;
pp. 1–6.

http://dx.doi.org/10.1016/j.asoc.2010.05.012
http://dx.doi.org/10.3390/math8122193
http://dx.doi.org/10.1016/j.swevo.2018.05.006
http://dx.doi.org/10.3390/math10060925
http://dx.doi.org/10.1016/j.asoc.2021.107275
http://dx.doi.org/10.1007/s10489-019-01599-x
http://dx.doi.org/10.1007/s00366-020-01099-4
http://dx.doi.org/10.1016/j.eswa.2020.113246
http://dx.doi.org/10.1287/ijoc.3.4.376
http://dx.doi.org/10.1016/j.asoc.2015.01.068
http://dx.doi.org/10.1016/j.asoc.2021.107085
http://dx.doi.org/10.1007/s12652-021-03391-7
http://dx.doi.org/10.1287/opre.16.3.538
http://dx.doi.org/10.1109/JAS.2019.1911405
http://dx.doi.org/10.1109/ACCESS.2020.3035899
http://dx.doi.org/10.1109/ACCESS.2020.3035058
http://dx.doi.org/10.1007/s00521-021-06883-x
http://dx.doi.org/10.1287/ijoc.1120.0506
http://dx.doi.org/10.1016/j.eswa.2010.07.006
http://dx.doi.org/10.1080/02564602.2015.1057770
http://dx.doi.org/10.1016/j.asoc.2022.108493
http://dx.doi.org/10.1016/j.oceaneng.2021.109890
http://dx.doi.org/10.1016/j.neucom.2017.09.088
http://dx.doi.org/10.1016/j.ijnaoe.2021.07.002
http://dx.doi.org/10.1016/j.ins.2011.08.006
http://dx.doi.org/10.1007/s00500-020-05406-5


J. Mar. Sci. Eng. 2022, 10, 1305 20 of 20

42. Du, P.; Liu, N.; Zhang, H.; Lu, J. An Improved Ant Colony Optimization Based on an Adaptive Heuristic Factor for the Traveling
Salesman Problem. J. Adv. Transp. 2021, 2021, 6642009. [CrossRef]

43. Do, K.D.; Pan, J. Robust path-following of underactuated ships: Theory and experiments on a model ship. Ocean Eng. 2006, 33,
1354–1372. [CrossRef]

44. Yu, C.Y.; Xiang, X.B.; Philip, A.W.; Zhang, Q. Guidance-error-based Robust Fuzzy Adaptive Control for Bottom Following of a
Flight-style AUV with Saturated Actuator Dynamics. IEEE Trans. Cybern. 2020, 50, 1887–1899. [CrossRef] [PubMed]

45. Yu, C.Y.; Liu, C.H.; Lian, L.; Xiang, X.B.; Zeng, Z. ELOS-based path following control for underactuated surface vehicles with
actuator dynamics. Ocean Eng. 2019, 187, 106139. [CrossRef]

http://dx.doi.org/10.1155/2021/6642009
http://dx.doi.org/10.1016/j.oceaneng.2005.07.011
http://dx.doi.org/10.1109/TCYB.2018.2890582
http://www.ncbi.nlm.nih.gov/pubmed/30668513
http://dx.doi.org/10.1016/j.oceaneng.2019.106139

	Introduction
	Literature Survey
	Background Work
	Group Teaching Optimization Algorithm
	Traveling Salesman Problem (TSP)
	Dynamic Adaptive Neighborhood Radius

	Discrete Group Teaching Optimization Algorithm Detail Design
	Discrete Group Teaching Optimization Algorithm
	New Greedy Crossover Algorithm
	Middle Student Algorithm
	Dynamic Neighborhood Shift Mutation Algorithm
	Dynamic Neighborhood Inversion Mutation Algorithm
	Dynamic Neighborhood 3-opt Mutation Algorithm

	Results and Discussions
	Experiment 1: Comparisons with Random Initialization, Neighborhood Initialization, and Greedy Initialization
	Experiment 2: Comparisons with Adaptive Neighborhood Mutation and Dynamic Adaptive Neighborhood Mutation
	Experiment 3: Comparisons with the DJAYA, DTSA, ABC, PSO-ACO, and DSFLA
	Experiment 4: Case Study with USV Path Planning

	Conclusions
	References

