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Abstract: Underwater Vehicles have become more sophisticated, driven by the off-shore sector
and the scientific community’s rapid advancements in underwater operations. Notably, many
underwater tasks, including the assessment of subsea infrastructure, are performed with the assistance
of Autonomous Underwater Vehicles (AUVs). There have been recent breakthroughs in Artificial
Intelligence (AI) and, notably, Deep Learning (DL) models and applications, which have widespread
usage in a variety of fields, including aerial unmanned vehicles, autonomous car navigation, and
other applications. However, they are not as prevalent in underwater applications due to the difficulty
of obtaining underwater datasets for a specific application. In this sense, the current study utilises
recent advancements in the area of DL to construct a bespoke dataset generated from photographs of
items captured in a laboratory environment. Generative Adversarial Networks (GANs) were utilised
to translate the laboratory object dataset into the underwater domain by combining the collected
images with photographs containing the underwater environment. The findings demonstrated the
feasibility of creating such a dataset, since the resulting images closely resembled the real underwater
environment when compared with real-world underwater ship hull images. Therefore, the artificial
datasets of the underwater environment can overcome the difficulties arising from the limited access
to real-world underwater images and are used to enhance underwater operations through underwater
object image classification and detection.
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1. Introduction

Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs)
are used extensively by the offshore oil and gas industry and the offshore renewables sector,
as well as by the marine scientific community, to carry out tasks such as the inspection and
maintenance of underwater structures and the survey of the oceans in a manner that is
both safe and accurate. To a significant extent, missions carried out by ROVs and AUVs
depend on visual inputs to accurately portray and comprehend the surrounding subsea
world. As a consequence of this, current underwater intervention requires the use of image
classification and object detection techniques. ROVs have been developed and optimised
in terms of underwater operations and object manipulations to develop robust vehicles
that make physical intervention possible. This was a result of research needs as well as
industry requirements for more complex and demanding operations. The same industrial
and scientific needs have resulted in the optimisation of AUVs, specifically in terms of
power requirements, manoeuvrability, navigation, communication, and autonomy. This
establishes AUVs as the predominant means for underwater operations in areas that are
hazardous for humans to be in [1].

As a consequence of this, autonomous underwater intervention has to make use of the
most promising available technologies of Artificial Intelligence (AI), namely those of Deep
Learning (DL) and Computer Vision (CV).

The existing research on autonomous underwater operations takes advantage of
advancements in DL and CV and offers practical solutions to the issue of underwater image
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enhancement and restoration by increasing the resolution and contrast of underwater
images [2]. In addition, the work of [3] improves the image quality by resolving the issue
of poor lighting that occurs in an underwater setting. Although these methods provide
outcomes that are considered to be state of the art, none of the existing methods deals with
the challenge of having access to readily available underwater image datasets.

Currently, the problem of readily available datasets is well known to research areas
from Unmanned Aerial Vehicles (UAVs) applications [4] to unmanned underwater op-
erations [5], and it is the fundamental issue that needs to be addressed to improve the
performance of the different learning and detection models used by those fields. Par-
ticularly, for underwater operations, the issue arises primarily because of the high cost
and the difficulties that need to be overcome to collect such a dataset from real-world
underwater missions [5]. Because of this, the current work addresses the issues mentioned
above and creates a model that enables the generation of custom underwater images by
making use of common objects that can be found in underwater structures such as gas
pipelines, underwater cables, oil/gas wells, wind turbine piles, etc. In addition, images
with characteristics similar to those seen in the natural subsea environment were produced
using recent developments in DL models.

Related Work

Unmanned robots need to understand their complex environment to achieve complete
autonomous operational capabilities, with object detection being the fundamental low-level
task [4]. The demand for underwater vehicles to achieve autonomous capabilities is even
more demanding due to the challenging environmental conditions. Underwater Vehicles
are equipped with various sensors and instrumentation such as GPS, cameras, LiDAR
cameras, and sonars [6,7]. Cameras are essential because they allow for visual interaction
between the user/operator and the vehicle [8].

During the past few years, object detection models have become more sophisticated
and accurate than ever before, and they are able to take advantage of the modern em-
bedded systems [4]. Some landmark architectures that revolutionise modern CV applica-
tions include the R-CNN family of models [9–11], the YOLO architecture and its different
versions [12,13], and Feature Pyramid Networks (FPN) [4,14]. Ross Girshick et al. [9] intro-
duced the algorithm designed to overcome the problem of selecting large regions during
an object detection task. The model performs a selective search on the image by looking
for potential objects (region proposals). Therefore, instead of detecting and classifying a
larger region, the model divides the image into smaller regions, which ultimately increases
the total training time. The Fast R-CNN model [4,10] was introduced to solve some of
the drawbacks of the original model and create a faster model. The two models were
approached from the same point of view, with the difference that the input image was
fed to the CNN architecture to generate feature maps instead of region proposals, which
increased the model’s speed and accuracy. The Mask R-CNN model [4,11] was introduced
to solve the problem of object detection in images with complex backgrounds, and the
model was able to detect objects with high accuracy and segmentation.

All prior object detection methods focus the item inside the picture using areas. The
network does not analyse the picture in its entirety. Instead, the probability-rich regions
of the picture that contain the item are the focus. You Only Look Once, or YOLO, is
an object detection algorithm that differs significantly from the region-based techniques
described previously. In YOLO, the bounding boxes and class probabilities for these boxes
are predicted by a single neural network. YOLO performs object detection quicker than a
conventional object detection algorithms, with speeds ranging from 45 to 145 frames per
second. The drawback of the YOLO algorithm is that it struggles to detect small objects in
an image, but this changes with more recent versions.
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Finally, FPN [14] is not a standalone object detector, and can be classified as a feature
extractor that operates in conjunction with object detectors such as R-CNN and Fast R-
CNN. The feature extractor accepts a single-scale picture of any arbitrary size as input,
and generates correspondingly scaled feature maps at several layers using a fully CNN
algorithm. This process is independent of the convolutional architectures’ core components.
It is a general approach for constructing feature pyramids inside deep convolutional
networks for applications such as object identification.

When applying deep learning approaches to problems involving image classification or
object detection, one of the most frequent obstacles that arise is a lack of data. Applying data
augmentation techniques to a dataset in order to expand its size and variety is a trial-and-
error approach to the challenge of dealing with a lack of data [15]. The traditional method of
data augmentation involves the use of various libraries, such as those described in [16,17],
which provide flexibility and easy-to-use implementation for a variety of augmentations to
increase the size and the diversity of the dataset. This approach is known as the “classic”
method of data augmentation. These libraries include a variety of enhancement methods,
including cropping, blurring, colour saturation, contrast, and greyscale scaling, as well as
rotation, changing colour channels, and shifting colour channels.

When it comes to more project specific tasks, the standard data augmentation method
cannot generate images that are close to the preferred real-world data, and it requires
a significant amount of time and trial and error to produce the desired results. There-
fore, DL models such as Generative Adversarial Networks (GANs), CycleGAN, and U-
Nets are the current state-of-the-art methods used to augment datasets and increase their
size [18–20]. GAN are mainly used to produce synthetic images that follow the same prob-
ability distribution as the real images. CycleGAN is a well-known GAN architecture that
is typically used to learn image transformations across various patterns, whereas U-Net
models focus more on semantic and structural differences between actual and artificial
content. These methods is the most advanced currently available.

In addition, the difficulties presented by the underwater environment make the col-
lection of data a laborious job that requires the use of specialised persons and specific
equipment. As a consequence of this, it is difficult to build projects that need large under-
water datasets. The underwater habitat, the light conditions that are present throughout
the picture capturing process, and the task that the image was shot for all play a role in
determining the unique problems that come with taking underwater photographs [21].
When it comes to obtaining data for deep learning models, many researchers have focused
primarily on underwater image enhancement and restoration to improve the quality of
underwater images [2,22,23]. This is to improve the quality of the images obtained from
underwater environments.

The technique of enhancing underwater images has the improvement of the image’s
visual quality as its goal, and it does not often take into account the physical qualities
of light in the water, such as the attenuation coefficient or the light scattering [22]. It is
generally agreed that picture enhancement may be implemented far more quickly and is
simpler to understand than image restoration. Image restoration is a more sophisticated
process that has to take into consideration the physical behaviour of light in water. This is
because water reflects light differently than air does. Image restoration requires information
on the kind of water present, whether it is coastal or ocean water, as well as the quality
of the light propagation in the water [2,23]. These methods only produce satisfactory
outcomes in a controllable underwater environment, and it is difficult to put them into
practice in the real world due to the complexity of their implementation and the large
number of parameters that need to be taken into consideration [2].

By including an attenuation coefficient for both the blue–red and blue–green spectrum
channels, the technique that was presented by Berman and colleagues [23] was able to
consider the various light profiles produced by the various underwater settings. The
technique they developed is based on the intensity of the image’s colour channel at the
pixel level; more specifically, the attenuation coefficient incorporates the two spectrum
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characteristics. In addition to this, the topography of the location, the time of year, and
the climate were all taken into consideration. Arnold-Bos and colleagues [24] discuss the
challenges that the vision of underwater vehicles encounter while operating in underwater
conditions and suggest using deconvolution and augmentation approaches. The technique
was developed to eliminate light backscattering, the primary feature of noise, and the
attenuation inequalities that arise with contrast equalisation. A wavelet filtering approach
was then used on the residual picture noise, which may correlate with sensor noise or
floating particles. This algorithm helps enhance the edge recognition of underwater images.

To increase the amount and quality of the datasets, more novel techniques as men-
tioned above, such as data augmentation using GANs, are being employed in various
sectors. Some examples of the use of GAN models can be found in the field of neuro-
science where, for instance, there is a need to perform segmentation tasks from CT scan
images [25]. Additionally, the use of Deep Neural Networks (DNN) and U-Nets to perform
segmentation in brain cell representation from Electron Microscopy (EM) images [20,26] is
an example of the application of CycleGAN models for the purpose of data augmentation.

Because of the progress that has been made in DL and CV over the past few years
in areas such as image classification, image segmentation, and object detection [18,27,28],
there is now an opportunity to develop models that are capable of performing image
restoration and image enhancement in a manner that is more accurate and precise. These
models have the potential to outperform any of the manual approaches that were used in
the past [19]. Because of the use of Convolution Neural Networks (CNN) and GANs, it is
possible, in certain instances, to identify and detect objects with a higher level of accuracy
than is possible for humans to attain [29].

Zhu et al. [28] proposed a CycleGAN model for image-to-image translation in order to
learn the mapping functions between two domain images X and Y, translate the domain of
the first image based on the second, G : X −→ Y, and vice versa, to translate the second
domain based on the first image, F : Y −→ X. This allowed the model to translate the
domain of interest. In addition, the authors incorporated two adversarial discriminators,
one for the first domain image and one for the second domain image. The purpose of
these discriminators was to assess whether or not the output image had been successfully
translated to the target domain. In most instances, the results were adequate, and the
translation of one image domain to another image domain delivered acceptable output.
Nevertheless, the model might become confused between the domains when there is
insufficient feature dispersion in the training set.

Currently, DL models are the standard in underwater applications, and the primary
emphasis is on picture restoration, image enhancement, and improvement of underwater
settings. Anwar et al. suggested using a CNN model that might improve the quality of
photographs taken underwater [22]. The network design is composed of convolutional
blocks that are all linked to a dense layer at the end. This provides the whole model with
modularity. The model’s output is an improved picture of the subsea scene, devoid of the
cyan and emerald tones present in the original image.

A similar technique for restoring the colours in underwater photographs was used
by Chen et al. [30], where the authors attempted to reduce the effects of the underwater
environment, increase the picture details, and fix the colours in the image. The image
incorporates several diverse components, each of which is represented by one of the model’s
three primary elements. The first part is used to estimate the ambient light of the image;
the second part is responsible for the direct transmission estimation, which is a function
of both the ambient light and the input image, and the third part is responsible for the
reconstruction of the enhanced image. Li et al. [31] presented an underwater enhancement
method based on GAN models, where they tried to solve underwater degradation effects
such as low contrast, colour casts, and haze-like effects using a fusion GAN model on
the U45 dataset. The model is utilised by combining the benefits of the inception model
architecture [27] with the deep residual learning framework [32].
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Another research study by Li et al. [33] approached underwater image enhancement
from a different perspective by constructing a large-scale real-world underwater dataset
containing 950 images under various light conditions, from natural light to artificial light.
The collected data were then tested on the custom Water-Net model to perform image
enhancement. Furthermore, Panetta et al. [34] went further in underwater object tracking
and image enhancement and introduced a benchmark underwater dataset, UOT100. The
dataset comprises 104 underwater videos, from which they generated a complete set of
74 K annotated image frames. Additionally, they introduced the CRN-UIE GAN model
to perform image enhancement. The model tries to improve underwater object detection
performance by correcting the underwater environment’s effects.

Underwater image restoration using real-world images from coral reefs (HICRD) was
proposed by Han et al. [35]. They created the custom HICRD dataset to overcome the
limitation of previous datasets to capture a more diverse underwater environment. The
dataset consists of 9676 images and is used on the Constructive UndeWater Restoration
(CWR) model for image restoration. The CWR model at its core utilises GAN models and
Representation Learning [36], essentially an unsupervised method used to perform image
restoration. The CWR model performed satisfactorily, and the end result was close to the
reference images without content or structural losses on the generated images.

In addition, during the last few years, there has been a shift from the conventional
techniques toward the substantial use of CNN and GAN models for underwater image
repair and enhancement [19,30,37,38]. Because of such networks’ characteristics, DL models
represented a significant advancement in the analysis of underwater photographs. The task
of processing and interacting with the underwater world poses a number of difficulties
for any autonomous vehicle. DL makes it possible to create more accurate data-driven
models of the environment, improving one’s capacity to analyse and comprehend that
environment. The most notable benefit of DL models is that they can be put into action
without the necessity of explicitly describing every facet of the environment and manually
coding everything that is required for the operation line by line. This is the distinct
advantage that sets them apart from other types of models. DL models can be trained and
can learn the most valuable features on their own, provided the necessary data are fed
through the network during the training process. As a result, the model would be able to
learn the necessary characteristics and parameters for every given job, notwithstanding the
complexity of the underwater scenes.

Consequently, as a result of the development of advanced deep learning algorithms,
it is now more conceivable than it has ever been to generate underwater photographs
that may be as similar as possible to the real world, despite the complexity of such an
environment. Because of this, the data collection for marine imagery, which is an essential
component of any project relating to the underwater environment, can be made more
accessible and will not require direct underwater data, at least in the initial stages of the
model development. This will result in savings of time, resources, and funding.

This paper is organised as follows. Section 2 describes the methodology used to gener-
ate the underwater photographs. Section 3 describes the results of the model development.
Section 4 presents the conclusions of the paper.

2. Methods for Data Capture and Processing

In the technique that is proposed in this paper, a dataset was compiled based on items
that have the potential to be discovered in sub-sea structures, and this was carried out
in a laboratory environment. The next step is to compile a dataset that is as accurate a
representation as possible of the real-life underwater environment. This is accomplished
by utilising common photographs captured under typical atmospheric conditions and
image-to-image translation powered by CycleGAN models. Therefore, the production of
artificial or “fake” underwater datasets will make it possible to circumvent the challenges
associated with the acquisition of real-world underwater photographs.
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A primary dataset was compiled by taking pictures of components that are typical
of underwater structures. These components include bolts, hex nuts, flanges, anodes,
and pipelines. The next step was constructing an expanded data set using traditional
Data Augmentation methods such as rotation, cropping, blurring, and changing the colour
channel. The CycleGANs model was then trained on the images that were obtained together
with additional photographs of the underwater environment using publicly available
datasets [39,40]. Both datasets, one of which was produced by using data augmentation
and the other of which was produced by using CycleGANs (a learning-based method),
were compared using the Frechet Inception Distance (FID) metric [41] in order to determine
which method is more appropriate.

2.1. Formulation of the Proposed Method

When they were initially presented in the area of DL by Goodfelow et al. in 2014 [42],
the Generative Adversarial models and the adversarial loss made a significant contribution
in the area of DL. The network consists of two parts: the Generator, which produces pictures
that include characteristics of a particular domain, and the Discriminator, which attempts
to accurately categorise actual images based on the created ones. Zhu et al. [28] proposed
an enhanced adversarial loss in which the loss function employs the least-squared loss of
the original loss. This is due to the fact that it demonstrates more stable behaviour during
the training process.

Therefore, the adversarial loss can be expressed using Equations (1a) and (1b) as follows:

LGANuw→lab = EXreal
uw

[(Dlab(Glab(Xreal
uw ))− 1)2]

+EXreal
lab

[(Dlab(Xreal
lab ))2]

(1a)

LGANlab→uw = EXreal
lab

[(Duw(Guw(Xreal
lab ))− 1)2]

+EXreal
uw

[(Duw(Xreal
uw ))2]

(1b)

LGANtotal = LGANlab→uw + LGANuw→lab (1c)

where E is the expected value for the underwater domain Xuw and the lab domain Xlab.
The discriminator Duw is responsible for the mapping of the lab images with underwater
features and can be expressed as Guw : Xuw → Xlab, and discriminator Dlab is responsible
for the inverse operation Glab : Xlab → Xuw. The total adversarial loss LGANtotal is the
summation of the lab loss LGANlab→uw and the underwater loss LGANuw→lab .

2.2. Cycle Consistency Loss

The adversarial model has been trained to learn the properties of both the Xuw and
Xlab domains in the cycleGAN models that were presented by Zhu et al. [28]. This indicates
that a lab picture may be converted to another image that has characteristics from the area
of interest, such as an image of an underwater environment. Because of this, the model has
to be able to meet the cycle consistency between the two domains, which can be seen in
Equations (2a) and (2b), respectively.

Xreal
uw → Glab(Xreal

uw )→ Guw(Glab(Xreal
uw )) = Xrebuild

uw (2a)

Xreal
lab → Guw(Xreal

lab )→ Glab(Guw(Xreal
lab )) = Xrebuild

lab (2b)

Then, the total cycle consistency loss Ltotal
cycle is Lcycleuw + Lcyclelab where:

Lcycleuw = EXreal
uw

[‖Guw(Glab(Xreal
uw ))− Xreal

uw ‖1] (3a)

Lcyclelab = EXreal
lab

[‖Glab(Guw(Xreal
lab ))− Xreal

lab ‖1] (3b)
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Combining the adversarial and the cycle consistency loss, the total loss of the model
will be

Ltotal = LGAN + λLcycle (4)

where λ is the regularisation hyperparameter factor. The value of λ is utilised to regulate
and optimise the performance of the network loss [42].

The architecture of the UnderWaterCycleGAN (UWCycleGAN) model is shown in
Figure 1. In this model, the image characteristics of the underwater domain Xuw are
transferred to the required lab image domain Xlab using the generator Guw. Then, the
generator Glab applies the newly acquired features to the original lab pictures Xreal

lab , which

ultimately leads to the production of the artificial images X f ake
lab . The discriminator Dlab is

responsible for monitoring and comparing the false pictures with the genuine ones at the
very last phase of the network to guarantee that the results are satisfactory. In addition,
throughout each step of the process, the model will reconstruct the pictures by making use
of the cycle consistency losses. In particular, during the initial step of the process, the model
recreates the photographs the underwater environment. Xrebuild

uw is calculated using the
cycle loss Lcycleuw. The adversarial loss LGAN is used to optimise the final image output of

the discriminator Dlab. This is carried out for the fake image X f ake
lab , first by using the LGAN

loss to optimise the output of Glab, and then using it to optimise the output of Dlab.

Figure 1. Cyclegan Model for Underwater Data Augmentation.

2.3. Dataset

Newcastle University’s towing tank was used for the data collection needed for the
image classification and object identification tasks. In particular, a dataset consisting of
five different classes of objects was compiled, including bolts, hex nuts, flanges, pipes, and
lead blocks (representing anodes). These objects were chosen because they are common
in underwater structures and were readily available during the image data acquisition
step. The above objects were initially placed inside the towing tank. Then, videos were
captured using an underwater camera. During the acquisition process, different lighting
conditions were used to record the underwater objects, including high and low illumination
levels (which simulated the underwater environment as much as possible). In addition, to
broaden the variety of the dataset, the above objects were used outside the towing tank for
image collection. Subsequently, images were extracted from the video files, which resulted
in the creation of around 2670 photographs in total.
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In addition to the original laboratory dataset, a supplementary 300-image dataset was
prepared to serve as the foundation for image classification algorithms. The items in these
300 photographs were manually labelled, and these labelled objects were subsequently
removed to generate a dataset including images of five-class object classes. The image
classification challenge required only particular items and not the complete scene to be
present in the photographs. In order to achieve this, a script was created to crop the
photographs in the dataset. As inputs, the custom software received the image to be
cropped and the file containing the data of the item labels, and it cropped the objects on
the provided image. Finally, the script was applied on the prior dataset, resulting in the
generation of 2372 object pictures.

In order to avoid overfitting and to develop a more robust and accurate image clas-
sification model, the original dataset of 300 photographs was increased to 550 images.
The same procedure for labelling and extracting the objects from photographs was used,
and in the end, the total object dataset had 4700 pictures. The images and objects that
were extracted to construct the first and second datasets are shown in Table 1, and as
was indicated previously, the combination of the two datasets includes 550 individual
photographs and 4700 unique class objects. The distribution of the five objects that were
used to build the object dataset for the image classification task can be seen in Figure 2.
The steps followed from collecting the video data in the towing tank to the generation of
the object images dataset are presented in Figure 3. The custom laboratory datasets are
available on the (figshare repository https://doi.org/10.6084/m9.figshare.20944354.v1,
accessed on 15 August 2022).

Table 1. Towing Tank Image Datasets.

Number of Images Number of Objects

First set 300 2372

Second set 250 2328

Total set 550 4700

Figure 2. Object Class Distribution.

Last but not least, open source underwater datasets were used to create the dataset
that contains the underwater environment. To be more specific, 1500 photos were utilised
from the UFO-120 dataset [40], while 1170 images were collected from films of the Deep
Sea Debris Dataset [39] from the Japan Agency for Marine-Earth Science and Technology.

https://doi.org/10.6084/m9.figshare.20944354.v1
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Lab Video data

Extracted Frames 
(2670 images)

Source data

Initial Dataset  
(300 & 550 images)

Image Labelling
Object Images 

(2372 & 4700 images)

Figure 3. Data Processing Cycle.

2.4. Data Augmentation

Traditional data augmentation refers to the process of improving visual data using
various machine learning frameworks and libraries. In deep learning, and notably in
computer vision applications, data augmentation is utilised extensively to enhance the
number of datasets as well as the diversity of pictures. For the purpose of this research,
the Albumentations [16] library was used to add additional features to the photographs
included in the dataset. Albumentations is a well-established library that enables a range
of image transformations and augmentation methods. It is specially tailored to work with
any of the current Machine Learning frameworks. Therefore, it can be used with almost
any of these frameworks.

As a result, the goal was to apply data augmentation in the original dataset, which
consisted of 550 images featuring underwater items, to expand the dataset’s variety and
richness. The enhancement consisted of methods such as rotating and flipping the picture
horizontally, increasing the image’s saturation, increasing the exposure, and adding noise,
as well as transforming it to greyscale. A total of 1980 pictures were produced as a
consequence of applying the enhancement techniques to the dataset in a random fashion.

2.5. Deep Learning Augmentation

The second approach of data augmentation makes use of DL models, especially the use
of GAN models. GAN models are essentially two neural networks competing to make more
accurate predictions by generating their own training data and automatically detecting and
learning patterns to create new samples that plausibly may have been selected from the
original dataset. This makes them perfect for data augmentation. A CycleGAN model can
take the images that were collected from the towing tank as its first input and an image
of an underwater environment as its second input in order to generate outputs that will
contain the images that were collected from the towing tank, but with characteristics that
are unique to the underwater environment.
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The fact that this technique is an unsupervised learning process [21] means that it may
utilise the original dataset without the need to perform any augmentation; nonetheless,
it will need photographs that depict the underwater environment in order to function
properly. The specifics of the CycleGAN implementation that were utilised to produce the
augmented pictures are shown in Figure 1.

Figure 4 illustrates some of the image results that were achieved by employing DL
data augmentation. It is evident that these images are far more accurate representations of
the subsea environment than the initial data augmentation described in the results section
when performing model evaluation with the FID technique. The model requires more
optimisation, since in some of the photographs, it might be challenging to identify the
individual objects that are there.

Figure 4. CycleGAN model images output.

2.6. Image Classification

The primary aim of the DL data augmentation process is to produce pictures of the
type X f ake

lab that incorporate features from the domain Xreal
uw . The last phase involves training

an object identification model to determine how well it can identify the items of interest
in the data. Before applying the object detection model to the simulated underwater
photographs, an image classification model was developed to determine whether or not
the five-class objects had been correctly categorised.

The most essential parameters in the CNN model are listed in Table 2. The first
step is to crop the input image dimensions to 150 pixels on the horizontal (width, w)
and vertical (height, h) planes, and it contains three colour channels (RGB colour depth).
The next step is feature extraction, which happens as the image is processed through the
convolutional layers (Conv layer). After the first Conv layer, the channels are increased to
16. After the second Conv layer, they are increased to 32, and after the third Conv layer,
they are increased to 64. Additionally, the Max Pooling technique [43] is used after each
convolution. This leads to a decrease in the size of the original input, which decreases from
w× h = 150× 50 pixels to w× h = 18× 18 pixels. Next, the output of the Max Pooling
layer has to be flattened so that it can appropriately link to the Dense layers, and then
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lastly, to the classification layer, where the prediction will be made. The details of the image
classification CNN model are shown in Figure 5.

Figure 5. Image Classification model.

Table 2. CNN model implementation.

Layer Filters Output

Input image 3 150 × 150
Convolutional 16 150 × 150
Max Pooling 16 75 × 75

Convolutional 32 75 × 75
Max Pooling 32 37 × 37

Convolutional 64 37 × 37
Max Pooling 64 18 × 18

Flatten 20,736 18 × 18
Dense 128 18 × 18
Dense 5 18 × 18

Softmax Prediction

It is vital to change the original basic CNN model in a manner that will not be prone
to overfitting to increase the model’s overall accuracy and decrease the amount of loss that
occurs during training and validation. This objective may be accomplished by performing
several fundamental picture modifications to random images included within the dataset.
These transformations include image rotation, image flip, and zoom. After the final Conv
layer, an additional layer called a dropout layer is also added. This layer will retain just a
subset of the filters or “neurons” and remove the others from the network. The Dropout
parameter is now set to 0.2 in this arrangement, which indicates that twenty per cent of the
filters will not be used.

Two different models were used during the preliminary training. The first model
implemented a basic CNN architecture, consisting of three convolutional layers, and it was
used to classify images. The first model was then used in the development of the second
model, with the exception of the application of certain fundamental transformations prior
to the input to the network and the employment of the dropout layer after the convolution
block (Convolutional-Max Pooling). In addition, the dataset used for the CNN model was
segmented into training and validation sets, each of which included eighty and twenty
percent of the total 4700 object picture dataset, respectively. After this, each model was
trained and validated using these two sets.

The results of running the first CNN model on the initial object dataset consisting
of 4700 pictures are shown in Figure 6. The model structure may be seen in Table 2.
The model’s accuracy improves at a comparable pace over the whole training period of
100 epochs in both the training and validation sets; however, the validation accuracy is
somewhat lower than the training accuracy. Training loss and validation loss follow
the same diminishing trend, with the validation loss starting a little higher than the
training loss.
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Figure 6. CNN model results trained on 4700 images.

2.7. Object Detection

Object detection models were used in the last phase to identify the five different class
items. Initially, the YOLO v1 algorithm [12] was selected, but this was later upgraded to
the YOLO v4 algorithm [44]. Based on the original paper [12], an implementation of the
YOLO v1 model was selected primarily due to its speed during the training of the model,
the simplicity of the model architecture, which involved a single forward CNN architecture,
and lastly, its efficiency, because it involves fewer detection bounding boxes while training
in comparison to other more demanding models such as R-CNN models [9]. The YOLO v4
model was then used to produce more accurate detection results on the dataset at shorter
training times and with greater hardware utilisation. The utilised code is publicly accessible
from the authors [13].

The training and assessment of all models were carried out on a double NVIDIA
Tesla V100 GPU using the Rocket High-Performance Computing (HPC) Service offered by
Newcastle University.

3. Results

The approach used in this study to construct a bespoke dataset comprised of lab
photographs and including underwater features has been outlined in Section 2. Essentially,
the method takes an input picture called Xreal

uw and then passes this image on to the generator
Guw in order to extract the features, and finally rebuilds the image called Xrebuild

uw . The
extracted features, together with the input image Xreal

lab are then used in the generator Glab

to generate X f ake
uw , which is then assessed by the discriminator Dlab. Lastly, the extracted

features are evaluated by the discriminator Dlab. In addition, the outputs of the models are
applied to the image classification model, as discussed.

The UWCycleGAN model was trained on both the full-scale and object image datasets.
The training of the model was performed on the Rocket HPC. Some key experimental details
include the size of each dataset, the image size, the training time required to complete the
task, the batch size, and the learning rate of the model. Table 3 gives a summary of those
experimental details. For the full-scale image dataset, the dimensions of the input images
were 256× 256 pixels with batch size 4 images per batch and the learning rate was 2× 10−4.
The model training was performed on an NVIDIA Tesla V100 GPU, consuming 14.2 GB
of RAM for 18 h. Similarly, the object image dataset was trained on the same hardware,
but the input image was set to 128× 128 pixels with a batch size of 8 images per batch
and a learning rate of 2× 10−4, consuming 15 GB RAM for 22 h of training. Additionally,
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different image transformations were used in the model during the preprocessing phase to
allow the model to generalise better in an unseen dataset. Such transformations include
Gaussian Blur, Horizontal Flip, and Random Rotation.

Table 3. UWCycleGAN model experimental details.

CycleGAN Dataset Size Image Size Hardware RAM Usage Training Time Batch Size Learning Rate

Full Image 2670 256 × 256 Tesla V100 14.2 GB 18 h 4 2× 10−4

Object Image 4700 128 × 128 Tesla V100 15.0 GB 22 h 8 2× 10−4

3.1. Model Evaluation

The end output of an adversarial model is an image and, more specifically for the
purpose of this study, the result of the UWCycleGAN model is the false image X f ake

lab .

Because of this, the generated output image X f ake
lab needs to be compared to the real input

image Xreal in order to determine whether the artificial image is an accurate representation
of the underwater domain. The FID technique, which is the metric that produces the
distance between two feature vectors of the X f ake

lab and Xreal , is the most effective approach
to achieve such an analysis [45].

The FID metric is described by the following equations:

δ2(µ1,2, C1,2) = M1,2 + τr(C1,2) (5)

M1,2 = ‖µ1 − µ2‖2
2 (6)

C1,2 = (C1 + C2 − 2
√
(C1 ∗ C2)) (7)

where δ is the Frechet distance, which is also known as the Wasserstein-2 distance [41]; µ1
and µ2 are the feature-wise mean of the real and the fake output images. C1 and C2 are the
covariance matrices of the real and generated images, and τr is the trace linear operation
of the square matrices. The FID criterion should be as low as practicable and, therefore,
should be zero in the case of identical photos. In addition, the assessment of the Frechet
distance is predicated on the first implementation in [41], which was carried out using the
PyTorch ML framework [46].

The outcomes of the UWCycleGAN model are shown in Table 4. The UWCycleGAN
model was tested with two distinct varieties of images: the first test was performed on the
dataset consisting of the original 2670 images that were gathered in the laboratory, and the
second test was carried out on the dataset consisting of the 4700 objects that were extracted
from those original images. Finally, the FID evaluation was carried out on the images
produced by the classical data augmentation. Given that the augmentation is carried out
directly on the dataset, the only metrics that can be compared are those that compare
Xreal

uw vs. X f ake
uw and Xreal

lab vs. X f ake
lab , respectively.

Table 4. FID scores.

FID Score Xreal
uw vs. Xreal

lab Xreal
uw vs. X f ake

uw Xreal
lab vs. X f ake

lab Xreal
uw vs. Xrebuild

uw Xreal
lab vs. Xrebuild

lab Xreal vs. X f ake
lab

UWCycleGAN Full Image 301.05 21.92 20.31 11.93 7.38 42.12
Object Image 326.10 29.19 36.79 20.58 15.90 -

Classical Augnentation - - 174.26 212.91 - - -

As stated previously, a lower value of the FID metric implies that the images are more
comparable to one another. The FID value is high for images that are entirely distinct from
one another, denoted by the notation Xreal

uw and Xreal
lab , respectively, as shown in Table 3, but

it is much lower for images that are comparable to one another. The score may drop as low
as 7.38 when comparing Xreal

lab vs. Xrebuild
lab and Xreal

uw vs. Xrebuild
uw , respectively. Each picture

that was processed using the cycleGAN model has a counterpart that was stored in the
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object dataset. However, the score for each comparison is higher because the object dataset
contains images that include only the area of interest (pipes, flanges, etc.). This makes it
significantly more difficult for the model to perform as satisfactorily as it did in the first
scenario, which used the entire image.

The most important comparison is Xreal
lab and X f ake

lab , where the FID score is 20.31. This
is because the goal is to make images that include underwater features. Given this score, it
can be deduced that the fake lab underwater picture is quite similar to the real underwater
image. Equivalent results were obtained with the object dataset; however, with the classical
data augmentation, the values are significantly different due to the absence of underwater
features in the images, which instead make use of various transformations such as hue
transformation, image blur, noise, and saturation.

Additionally, to test the artificial underwater pictures that the UWCycleGAN model
produced, actual underwater photographs were employed. These pictures were taken
from reports of ship hull cleaning processes that were found on MAST Maritime Services’
website [47]. The photos utilised for the FID assessment are shown in Figure 7. The
photographs of the ship’s hull before the cleaning procedure are shown in the top row,
while those produced by the UWCycleGAN model are displayed in the bottom row. The
analysis of these pictures can be seen in Table 3, which presents a side-by-side comparison
of the underwater picture taken in the actual world and the one created in a lab. The FID
score of 20.31 for Xreal

lab vs. X f ake
lab is lower than the score of 42.12 when comparing X f ake

lab and
Xreal . This discrepancy is to be expected given that the underwater photographs were taken
in the actual subsea environment and only show the unclean portion of the ship hull, which
does not include any items such as those found in the laboratory data. As a result, these
pictures do not have the same level of detail as the lab items, resulting in lower ratings.

Figure 7. Real and artificial underwater images.

3.2. Object Detection

After the image classification model had produced the anticipated results, it was
necessary to continue to the next step, which was the training of the object detection model.
As discussed in Section 2, YOLO v1 and YOLO v4 were the models that were selected.

3.2.1. YOLO v1

In order for the YOLO v1 algorithm to function appropriately on the towing tank
dataset, the first version of the method had to be updated. It was necessary to change
the parameters for the input classes because the initial model was trained on the Pascal
VOC dataset, which contains 20 classes [12], but the towing tank dataset only has five,
and the dataset that was used for the object detection model was the initial towing tank
dataset, which contains 550 images. The object identification process requires a significant
amount of computing resources due to the fact that the algorithm must pinpoint several
items inside a picture. Hence, the Rocket HPC was used for this phase of the project. The
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YOLO v1 was trained on a single NVIDIA Tesla V100 GPU, and it took approximately
four hours to complete the task.

3.2.2. YOLO v4

The aim is to develop computer vision models that apply to as many real-world
scenarios as possible, and this can be achieved by vigorously training the model and
allowing it to generalise, which will allow it to use unseen data. Building deep learning
models that predict an environment that may not have prior knowledge, particularly the
underwater environment, is quite challenging. Training a DL model with a limited dataset
may lead to overfitting, and hence poor results compared to a larger image dataset. Given
the uneven or sparse sampling of points in the high-dimensional input data space, small
datasets may also provide a more difficult mapping challenge for neural networks to learn.
Adding noise to inputs during training is one way to make the input space smoother and
easier [48,49]. Figure 8 shows the effects of the salt-and-pepper noise on the training dataset.
During the training of the YOLO v4 object detection model, the following augmentation
techniques were applied:

• 50% probability of horizontal flip.
• Random Gaussian blur between 0 and 1.25 pixels.
• Salt-and-pepper noise was applied to 8 per cent of pixels.

Figure 8. YOLO v4 Dataset preprocessing.

The amount of data input into an object detection model is significant, and this results
in the need for computing capacity, such as graphics processing units (GPUs), to reduce
the training time. Even if YOLO v1 achieved good results and can detect the objects it was
trained on, it still needs to be utilised for the object detection task to be as efficient and
effective as possible and reduce the training time as much as possible. To achieve better
model performance, the algorithm needs to function properly on the available hardware.
The most reliable option to solve this problem is to use an already optimised detection
algorithm such as the YOLO v4 model. This model delivers more accurate results for the
object identification tasks, and shorter training periods. In comparison with the initial
YOLO v1 training time, the YOLO v4 was able to achieve the same results in one hour.
The YOLO v4 model that was used for the training was based on the official model [44].
Experimental training details of YOLO v1 and YOLO v4 are shown in Table 5.

Table 5. YOLO object detection model experimental details.

Object Detection Dataset Size Image Size Hardware RAM Usage Training Time Batch Size Learning Rate

YOLO v1 1128 416 × 416 Tesla V100 4.2 GB 3.8 h 16 0.01
YOLO v4 1128 416 × 416 Tesla V100 2.1 GB 1 h 16 0.01
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The model was altered to function based on the five classes; also, parameters such as
the batch number for the GPU that was utilised and the picture input size were updated to
conform to the model’s needs. Figure 9 shows the model’s outcomes in terms of training
and validation Loss. As can be seen from the plot, both losses follow the same decreasing
trend, and the model converges with just a minor difference between them. In a perfect
world, the training Loss and validation Loss should be equal; if they are not, this is an
indicator of some overfitting. The gap between them remains the same after approximately
epoch 50, and there is no indication that the validation loss will deviate further compared
to the training Loss. Nevertheless, it is impossible to achieve ideal results, and some
overfitting is always acceptable.

Finally, the inference YOLO v4 model, which was trained on the laboratory dataset,
was used to validate the UWCycleGAN model’s artificial images. Figure 10 presents the
results of the detection model. The model is able to identify the various objects in the
majority of the photographs; nevertheless, there are some instances in which it misclassifies
the objects in the image; for example, in the first image, the model identifies the pipe
as a lead block. The model needs to be trained in a larger and more diverse dataset to
achieve better results and increased accuracy. The model’s performance shows that it is
able to detect the objects in the images, and it can be used to identify the objects in the
artificial images generated by the UWCycleGAN model. However, future work focused on
collecting relevant real-world underwater data to use for the training of the object detection
model should be conducted.

0 10 20 30 40 50 60 70 80 90 100
0

100

200
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ss

Train Loss
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Figure 9. YOLO V4 loss.

Figure 10. YOLO object detection.
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4. Conclusions

Inspection and maintenance of underwater structures are among the numerous
underwater-related applications that encounter difficulties due to a lack of data. Researchers
are tackling the issue using new technologies made available by the rapid developments in
the field of artificial intelligence in recent years. However, they have primarily focused on
aspects of image enhancement or restoration. This is because of the difficulties that have
arisen as a result of the lack of publicly available datasets from underwater environments.
This paper attempts to solve the problem of easily accessible underwater datasets in light
of the growing complexity of the underwater world and the absence of a tool to produce
artificial underwater photos.

The main contribution of the present work is the development of a DL model used to
generate images with underwater features. The model uses images of objects that can be
found in underwater structures, such as pipes, anodes, flanges, bolts and nuts, taken under
lab conditions, and images containing underwater scenes taken from public datasets.

As the research has demonstrated, it is clear that the UWCycleGAN model can be
used to generate images with underwater features. Furthermore, the underwater domain
of the artificially generated images was validated against real-world underwater images of
the underwater ship hull section. The results between the generated and real-world images
shown that the model can generate realistic underwater features. Finally, to investigate
if the artificial underwater images can be used for object detection, they were tested
on the initial YOLO v4 object detection model and the results show that the model can
generalise satisfactorily and detect the objects. Since object detection is crucial for modern
underwater operations such as underwater structural inspection and maintenance, the
proposed method can be used to create rapidly datasets containing the desired objects
and features to test the initial performance of such applications. Although it is possible
to produce synthetic images of the underwater environment only using custom images
and perform object detection with good results, to complete validation of the method
proposed in this paper, new real-world underwater images from offshore structures need
to be collected. The two real-world and artificial datasets will be compared for similarities
using the FID metric introduced in Section 3.1, and then the YOLO v4 model will be trained
on the artificial dataset and tested on the real-world dataset.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence.
AUVs Autonomous Underwater Vehicles.
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CNN Convolutional Neural Network.
CV Computer Vision.
DL Deep Learning.
DNN Deep Neural Networks.
EM Electron Microscopy.
GANs Generative Adversarial Networks.
HPC High Performance Computing.
ROVs Remote Operated Vehicles.
UWCycleGAN UnderWaterCycleGAN.
Xreal

uw Real-world underwater environment image.
Xrebuild

uw Reconstructed real world underwater environment image.
Xreal

lab Laboratory image.
X f ake

lab
Artificial underwater image.

Duw Underwater environment generator.
Dlab Laboratory environment generator.
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