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Abstract: Suppression of radar backscattering from the sea surface has been studied in field experi-
ments with surfactant films carried out from an Oceanographic Platform on the Black Sea and from
onboard a research vessel on the Gorky Water Reservoir using an X-C-S-band two co-polarized
radar instrument. Bragg and non-polarized (non-Bragg) radar backscatter components, BC and NBC,
respectively, were retrieved when measuring the radar backscatter at vertical (VV-) and horizontal
(HH-) polarizations. New features of microwave backscattering from the sea surface have been
revealed, including a non-monotonic dependence of radar backscatter suppression (contrasts) in
slicks on azimuth angle and particularities of BC contrasts on radar wave number. Namely, it is
demonstrated that the backscatter contrasts achieve maximum values at azimuth angles in between
the upwind and crosswind radar look directions, and BC contrasts increase with radar wave number
along the wind and decrease in the crosswind directions. The suppression of BC is discussed in the
frame of Bragg’s theory of microwave scattering and of a simple model of the wind wave spectrum,
while the suppression of NBC is considered associated with the micro-breaking of wind waves. The
obtained new features of radar contrasts can be used for the identification and characterization of
marine films.

Keywords: sea surface; film slicks; microwave radar backscattering; Bragg and non-Bragg radar
return; Doppler shifts

1. Introduction

The problem of detection of marine films is very important in the context of the ocean
ecological monitoring for detection and identification of sea surface pollutions, including
wastewater and riverine discharges, biogenic pollutions, oil/oil product spills, etc. (see,
e.g., [1–6]). One of the most effective tools for such monitoring is microwave synthetic
aperture radar (SAR), which is able to acquire high-resolution images of marine slicks on
the sea surface around the clock in various weather conditions (see [7–16] and references
therein). The problem of marine film detection is still far from a solution. This is because the
mechanisms of microwave radar backscattering, as well as the mechanisms of formation
of the spectrum of short, centimeter-decimeter (cm-dm-) scale wind waves, which are
primarily responsible for microwave scattering, are not yet fully understood.

Several models of microwave scattering from the sea surface have been developed, in-
cluding a small perturbation (Bragg) scattering model, a two-scale model, a quasi-specular
or Kirchoff model, a small-slope approximation model, and some others (see, e.g., [17–23]).
One of the most common is the two-scale model, which combines the Bragg theory with
the effects of radar backscatter modulation due to long surface waves [17,18]; however,
the existing theories cannot explain some experimental results, for example, strong spikes
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in radar backscatter, the cascade backscatter modulation, the discrepancy between polar-
ization ratio values in the experiment and in the two-scale model, etc. [24–26], which are
associated, in particular, with nonlinear effects in wind waves: high wave steepness, strong
breaking (spilling or plunging) of meter-scale waves, nonlinear structures –parasitic ripples
and toe/bulge structures on the cm-dm-scale wave profile, etc. (see, [27–31], and also [32]
for more references). The hydrodynamics of nonlinear waves is still insufficiently studied,
and the same can be said about the mechanisms of microwave scattering on nonlinear wave
structures. This is one of the reasons that empirical and semi-empirical scattering models
have been actively elaborated during the last decade (see [33–40] and references therein).

Another part of the problem of microwave scattering on the sea surface is that the
spectrum of wind waves and mechanisms of its formation, including sources, sinks, and
nonlinear wave effects in the wind wave field, have been insufficiently studied, particularly
for short, cm-dm-scale waves, which are mostly responsible for microwave scattering. In
particular, if we talk about scattering on the sea surface covered with surfactant films,
then the mechanisms of wave attenuation due to films and their relation to the physical
characteristics of films remain partly unresolved, despite numerous studies in this area
(see, [41,42] for references).

To understand better the processes of formation of the spectra of wind waves, their
variability under the action of marine films and, accordingly, the manifestations of the
films in radar panoramas of the sea surface, it is very important to conduct controlled
experiments on radar probing of surface films with known characteristics. A number
of radar experiments have been carried out (see, e.g., [7,8,12,16,43–46]), although the
information about film imaging is still scarce. One of the unresolved questions is the
dependence of radar backscatter contrasts on the azimuth angle between the radar look
and wind velocity directions. In the literature, they either supposed the damping ratio was
quasi-isotropic or noticed that the available data were insufficient to draw any conclusions
about the angular dependence [6,43,44]. Radar backscatter contrasts in different radar
bands and polarizations were studied in the literature (see, [6,8,11,12,14,15]) and were
found to grow with radar wave number, although in some works (see, e.g., [7]), the contrast
maximum in C- or X-band was obtained. These inconsistencies occurred, as can be assumed
since the suppression mechanisms and their effectiveness depending on environmental
conditions were poorly understood.

Recently, a new approach was developed in which the radar backscatter was divided
into two components—Bragg (BC) and non-polarized ones (see, [34–36]). This approach
was expected to provide a better understanding of the nature of radar backscatter and
of the different origins of microwave scatterers. It was hypothesized that short, cm- to
mm-scale wind waves provide Bragg scattering component for S-to-Ka-bands, while non-
polarized scattering is determined by nonlinear structures (spilling/plunging breakers,
toe/bulges, parasitic ripples) on the profile of longer, dm-m-scale steep waves. In our last
studies [16,46,47], this approach was applied to study the action of films on Bragg and
non-polarized backscatter.

The objective of this study is to investigate the damping effect of films on microwave
radar backscatter, in particular, to understand better the dependences of radar suppression
in film slicks on radar wave number and on azimuth angle. The approach, as mentioned
above, is based on the use of a co-polarized X-/C-/S-band microwave radar, which allowed
us to retrieve Bragg and non-Bragg scattering components and analyze their variations in
slicks. The paper extends the results of our previous experiments by providing new data
and demonstrates new peculiarities of the suppression of BC and NBC in the presence of
surface films. Particular attention is paid to studying the microwave backscattering in the
crosswind radar look direction in order, firstly, to verify and expand the preliminary results
of [16,44,45] and, secondly, to better compare the new results with theory and analyze
how the model can be further developed. An important new aspect of the presented
experiments is the angular dependence of Bragg and non-Bragg backscatter, which has not
been practically studied before. The paper is organized as follows. Section 2 presents some



J. Mar. Sci. Eng. 2022, 10, 1262 3 of 16

theoretical background on the separation of Bragg and non-polarized components in total
radar backscatter. The experiments and experimental procedure are described in Section 3.
Experimental results are described in Section 4. Analysis of the result and discussion are
presented in Section 5. Concluding remarks are given in Section 6.

2. Theoretical Background

We suppose that microwave scattering is composed of resonance (Bragg) and non-
Bragg components. The first component is determined by surface waves, the lengths of
which satisfy the resonance with the lengths of electromagnetic waves. The second, non-
Bragg (or non-polarized) component is associated with scattering from small quasi-specular
facets on the profile of surface waves longer than Bragg ones; the structures appear due to
wave nonlinearity, in particular, wave breaking.

The total radar backscatter σ0
pp (or the normalized radar cross section, NRCS) can be

written as follows (see, e.g., [34,36])

σ0
pp = σ0

B_pp + σ0
NBC (1)

where σ0
pp is the total NRCS, p denotes vertical (V) or horizontal (H) transmit/receive

polarizations, σ0
B_pp is the Bragg (polarized) component of radar backscatter described by

the two-scale Bragg model, σ0
NBC is the non-polarized (non-Bragg) component. The Bragg

component, according to the two-scale radar model, can be written as (see, e.g., [17])

σ0
BC_pp = 16πk4

emRpp(θ)F(
→
kB) (2)

where F(
→
kB) is the spectrum of wind waves at the Bragg wave vector

→
k B = 2kem

→
n s, kem

is the wave number of an incident electromagnetic wave,
→
n s is a projection of the unit

wave vector of an incident electromagnetic wave on the sea surface,
∣∣∣→n s

∣∣∣ = sin θ, θ is the
incidence angle, Rpp(θ) is the reflection coefficient which depends on polarizations of the
incident/reflected electromagnetic waves.

Assuming that the non-Bragg component is non-polarized, i.e., does not depend on
polarization, one can remove NBC from the total radar backscatter (1) when subtracting
σ0

HH from σ0
VV . Thus obtained polarization difference (PD) can be described by the two-scale

scattering theory as follows

PD = σ0
B_VV − σ0

B_HH = 16πk4
em(RVV − RHH)F(

→
k B) (3)

The non-Bragg component can be found from ((1)–(3)) as

σ0
NBC =

1
2
[σ0

VV + σ0
HH −

RVV + RHH
RVV − RHH

PD] (4)

The polarization ratio (PR) is introduced as

PR = σ0
VV/σ0

HH (5)

PR characterizes the contribution of non-polarized scattering to the total radar return.
This contribution can be estimated by comparing the experimental PR-values with those
predicted by the two-scale Bragg theory.

The suppression degree (contrast) of radar backscatter and of Bragg and non-Bragg
components can be defined as

Kpp =
σ0

pp_nonslick

σ0
pp_slick

, KBC =
PDnonslick

PDslick
, KNBC =

σ0
NBC_nonslick

σ0
NBC_slick

(6)
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It follows from (2) and (6) that the BC contrast is equal to the ratio of the wind wave
spectrum at a corresponding Bragg wave number, i.e.,

KBC =
F0(kB)

Fslick(kB)
(7)

Radar Doppler shifts FD are defined as the centroids of the radar backscatter Doppler
spectrum Sj( f ), namely

FDj =

∫
f Sj( f )d f∫
Sj( f )d f

=

∫
f Sj( f )d f

σ0
j

(8)

where j denotes VV-polarized or HH-polarized backscattering, or BC/NBC backscatter
components. Since the frequencies can be either above or below the frequency of the
incident microwaves depending on whether the scattering elements on the sea surface
move toward or away from the radar, the Doppler shifts should be found by integrating
separately over positive and negative frequencies.

The velocity projection
→
Vs,j

→
n s of microwave scatterers on the wave vector

→
k B =

2kem
→
n s can be found from radar Doppler shifts as

→
Vs,j

→
n s = 2πFDj/kB (9)

It can be obtained easily from (1)–(5) and (8), (9), that the scatterer’s velocities for BC
and NBC are related to the velocities of VV- and HH-polarized scatterers as

V s, BC =
VVVσVV −VHHσHH(

σVV − σHH
) (10)

and
V s, NBR =

VVVσVV −VHHσHH · R(
σVV − σHH · R

) (11)

respectively, where
R = RVV/RHH (12)

3. Experiment

The experiments were carried out in 2021 on the Black Sea from an Oceanographic
Platform of the Marine Hydrophysical Institute (MHI) and on the Gorky Water Reservoir
(GWR) from onboard a research vessel (RV). Dual co-polarized (VV/HH polarizations)
X-/C-/S-band Doppler radar was mounted at heights of about 14 m on the Platform and
7 m on the RV (see Figure 1). In the platform experiments, the incidence angles were
50◦ and 60◦, while on the research vessel, it was 60◦. The radar antenna beam widths are
slightly different in different bands, and corresponding footprints on the water surface were
less than 2 m. The X-/C-/S-band radar is a pulse system that simultaneously records the
intensity of radar return, radar Doppler spectrum, and speeds of radar scatterers in these
three bands and at two co-polarizations (VV and HH). A pulse regime of radar operation
allows us to strobe the backscattered signal by distance within a pulse, i.e., to choose a part
of the irradiated area on the surface.
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Figure 1. X-/C-/S-band radar mounted onboard the research vessel and the platform.

Scatterer’s velocities can be retrieved from the Doppler spectrum as the spectrum
centroid. The radar emits and receives pulses in S-, C-, and X-bands, and after receiving a
certain number of pulses, it processes the data for some time. The typical pulse frequency
was chosen at about 500 Hz and the number of analyzed pulses was about 256, thus
providing sufficient frequency resolution in the Doppler spectrum in all the bands. In this
regime, the time interval for analyzing the Doppler spectrum was about 0.5 s, and the total
time for obtaining the intensities and velocities in three bands and at 2 polarizations was
about 4 s.

One should remind that at high enough wind speeds, long waves are present on the
sea surface, modulating the short-wave part of the wave spectrum and, correspondingly,
the radar backscatter. As a result, the estimated Doppler shifts depend on the Doppler
spectrum averaging time and on the modulation intensity of the reflected radar signal. The
Doppler shifts of the average spectrum obtained in this way are generally larger than the
average instantaneous shifts. For the selected mode of operation of the radar, this led to
some, but rather small, increase in Doppler shifts (see also [47]).

Wind speed at the height of 15 m and marine currents were measured from the
platform with an ultrasonic anemometer and a Doppler acoustic current meter, respectively.

The experiments were carried out with artificial surfactant films with pre-measured
characteristics. Here we report only on measurements using oleic acid (OLE). Film slicks
during our experiments were created with solutions of OLE in pure ethanol poured onto
the water surface. Usually, about 1 L of 50% OLE solutions were used, and typical slick
dimensions were about 100 m by 300 m. Oleic acid at corresponding surface concentrations
forms monomolecular (over)saturated films (the concentration of a saturated monomolecu-
lar OLE film is about 1–2 mg/sq.m [48]), which characteristics—the elasticity and surface
tension coefficient are nearly constant and, as was obtained in our laboratory studies [48],
are about 20–30 mN/m and 30 mN/m, respectively.

The radar Doppler shifts, and the scatterer’s velocities were calculated using instanta-
neous radar spectrum corresponding to a certain distance from the footprint center on sea
surface according to the formulas presented in Section 2. Then the Doppler shifts/velocities
were averaged over time. One should note that some instantaneous values σVV − σHH
were close to 0 or even negative, although mean values of σVV are larger than σHH . This
can result in unrealistically high scatterer’s velocities and these cases were filtered out from
corresponding time series.
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4. Results
4.1. Polarization Ratio

An example of time series of VV/HH-polarized radar backscatter is presented in
Figure 2. A slick is clearly manifested as strong suppression of the radar backscatter in
different radar bands both for VV and HH-polarizations.
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Figure 2. An example of radar backscatter time series in different radar bands and at VV and
HH-polarizations and corresponding polarization ratio. Upwind observation.

It is seen that the PR values in slicks can increase somewhat, but not always, indicating
that the HH-polarized radar backscatter can be suppressed more than VV-polarized one.
In any case, the effect of PR changing in slicks is not sufficiently pronounced. This is
illustrated in Figure 3, where PR values in X-, C-, and S-bands as functions of azimuth
angle are depicted.

Figure 3. PR for nonslicks and for slicks at an incidence angle of 60◦. Open symbols—nonslicks, solid
symbols—slicks. GWR, 2021, wind velocity of 5–6 m/s.
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Experimental PR-values vary with incidence angle, as shown in Figure 4. The PR-
values are shown as functions of Bragg wave number at two incidence angles of 50◦ and 60◦.
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Figure 4. PR for crosswind observations at incidence angles of 50◦ (blue symbols) and 60◦ (black
symbols). Open and solid diamonds—slick and non-slick areas, respectively. Colored lines are Bragg
PR-values at corresponding incidence angles.

It is seen that the PR-values are about or greater than 1, but significantly less than
that predicted by Bragg’s theory. Namely, according to Bragg’s theory, the PR-values for
the conditions of our experiments are about 25 and 10 at incidence angles of 60◦ and 50◦,
respectively, so that non-polarized scattering contributes noticeably to the total backscatter.
As mentioned above, there is a small difference between PR values for non-slicks and
slicks. Some small increase in PR in slicks, e.g., in the X-band, can be explained by the fact
that VV-polarized scattering is determined mainly by cm-scale GCW, while HH-polarized
scattering is mostly due to sharp wave crests or other nonlinear features of longer, dm-scale
GCW, resulting is quasi specular reflections (see, [16,26,47]). The nonlinear structures can
be more sensitive to suppression (even if the latter is small) of dm-scale GCW than cm-scale
waves, so the HH-polarized NRCS is suppressed stronger than VV-polarized, and PR in
slicks can slightly increase.

4.2. Contrasts

Next, we present BC and NBC contrasts in slicks in order to understand better the
nature of different scatterers, which, as mentioned above, are cm-scale Bragg waves for BC
and presumably nonlinear features on the dm-scale GCW for NBC. Typical BC and NBC
contrast obtained in the experiments on GWR for the case of radar probing in upwind,
crosswind, and 45◦ directions relative to wind velocity are shown in Figure 5.

It is seen that for upwind observations, NBC contrasts are slightly stronger than those
of BC, and both BC and NBC contrasts tend to increase with wave number.

BC and NBC contrasts in the upwind direction are consistent, in general, with those
in our previous studies growing with wave number (see, e.g., [16]). A similar behavior
is observed for 45◦ contrasts, although they are noticeably larger than for the upwind
direction.

The contrasts in the crosswind direction demonstrate a completely different behavior,
namely: BC contrasts decrease or almost do not change with wave number, while the NBC
contrasts increase as in the case of observations along the wind.

More data on the crosswind slick contrasts were obtained in experiments in 2021 from
the Oceanographic Platform on the Black Sea. The results are shown in Figure 6.
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Figure 5. BC and NBC contrasts at different azimuth angles as functions of radar Bragg wavenumber.
GWR, wind velocity of 5–6 m/s.
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Figure 6. BC and NBC cross wind contrasts vs. Bragg wave number. The Black Sea, wind velocity of
3–4 m/s, incidence angles of 50◦ and 60◦.
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As we mentioned above, the contrasts in the direction of 45◦ are several times greater
than the upwind and crosswind contrasts, both for BC and NBC. This feature of the angular
dependence of radar contrasts is best illustrated in Figure 7, where more data are used. One
should remind that the azimuth angle between wind velocity and radar look directions, in
our notations, is zero for the upwind direction, and 180◦ for downwind observations, i.e.,
when the radar look and the wind velocity directions coinside. Figure 7 clearly shows that
both BC and NBC contrasts at azimuth angles of about 45◦ and 135◦ degrees are greater
than the contrasts for up-/crosswind directions. As far as we know, this feature has not
been reported in the literature.
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Figure 7. BC (left panel) and NBC (right panel) contrasts vs. azimuth angle (0◦—upwind, 90◦—
crosswind). GWR 19.08.2021. Black symbols—S-band, red—C-band, and blue—X-band. Wind
velocity 5–6 m/s.

4.3. Radar Doppler Shifts

Here we present the results of studying the radar Doppler spectra and radar Doppler
shifts measured from an Oceanographic Platform in 2021 and of data processing of similar
previous experiments. Radar Doppler spectra obtained in our boat experiments on GWR
are more difficult to process and interpret due to the boat movement, since the latter was
often quite variable.

Some examples of the radar Doppler spectra at different azimuth angles are shown
in Figure 8. The spectra contain two parts: one corresponds to waves traveling along the
wind (negative frequencies in our notations) and the other to waves propagating in the
direction opposite to the wind (positive frequencies).
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Figure 8. Some examples of the Doppler spectra of radar backscatter at different azimuth angles.
Oceanographic Platform, the Black Sea.

At small azimuth angles, the waves moving against the wind are obviously weak
and the Doppler spectrum centroid (the Doppler shift) for these waves is difficult to find
accurately enough. The negative Doppler shifts in Figure 9 at azimuth angles less than 90◦

correspond to waves propagating downwind and towards radar, while the positive shifts
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correspond to waves traveling against the wind. The Doppler peak for the last waves is
much smaller than for the waves along the wind, thus indicating that the waves moving
against the wind are small compared to downwind waves. When the radar look-direction
is larger than 90◦, then the situation is reversed, and positive Doppler shifts correspond to
waves traveling from the radar roughly along the wind. BC and NBC Doppler shifts are
shown in Figure 9. The Doppler shifts are not symmetric relative to zero; this may be due to
the wind drift velocity. After subtracting the Doppler shift caused by the wind, assuming
the wind drift as 3% of the wind speed, the Doppler shifts become symmetrical (see below).
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Figure 9. Radar Doppler shifts for BC and NBC as functions of azimuth angle. Red symbols—
scatterers moving downwind, blue symbols—against the wind, stars, and circles correspond to wind
velocities of 6–7 m/s, and 10–11 m/s, respectively.

5. Discussion

Let us consider first the radar Doppler shifts for both BC and NBC components which
may help in the understanding of the nature of BC and NBC scatterers. After subtracting
from the BC and NBC Doppler shifts, the component associated with the wind drift velocity,
estimated as 3% of wind speed, and recalculating the Doppler shift into scatterers velocities
Vs as

Vs = 2πFD(BC/NBC)/kB −Vdri f t cos ϕ (13)

where ϕ denotes the azimuth angle; we arrive at the scatterer’s velocities, as shown in
Figure 10. Theoretical lines are also shown in Figure 10, denoting the velocities of linear
cm-scale gravity-capillary waves (GCW) corresponding to Bragg waves for X-, C-, and
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S-bands. We can conclude that the scatterer’s velocities for upwind radar probing are
somewhat larger, particularly for NBC scatterers, than the velocities described by the
dispersion relation of gravity-capillary waves. This can occur because of the contribution
of the scatterers associated with nonlinear longer and faster moving decimeter-meter-scale
waves. At azimuth angles close to 90 degrees, the estimated BC scatterer’s velocities are
closer, although still a little larger, to the velocities of linear GCW (see Figure 11).
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Figure 10. Velocities of BC (left) and NBC (right) scatterers (red crosses 3 GHz, blue—6 GHz, green
−10 GHz at wind velocities about 6 m/s, colored squares—for wind velocities 10–11 m/s).
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Figure 11. BC and NBC scatterer velocities (black and red symbols, respectively) for a crosswind
direction. Solid line is the phase velocity of linear gravity-capillary waves. Dashed lines denote the
best fit of experimental data.

When considering the obtained radar Doppler shifts, it can be concluded that the
BC scatterers can be approximately described as weakly nonlinear GCW whose phase
velocities are close to the linear dispersion relation. Since GCW can hardly be generated by
the wind perpendicular to wind direction, we can assume that these wave components are
generated due to weak wave–wave interactions, the result of which is a small difference in
wave velocities from their linear values (see, e.g., [38,49]).

Under this assumption, we can describe BC scatterers in the frame of a kinetic equation

for the spectrum F(
→
k ,
→
x , t) of gravity-capillary waves (see, e.g., [50,51])

dF(
→
k , x, t)
dt

= Q[F,
→
k , u∗, γ(k, E, σ, . . . )] (14)

with the r.h.s. describing wind wave energy sources, sinks, and nonlinear wave effects. In
particular, Q should contain nonlinear terms describing weakly nonlinear wave–wave inter-
actions, as well as strongly nonlinear processes such as wave breaking, responsible, among
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others, for the wind wave spectrum limitation. Wave–wave interactions are described
by a collision integral which is extremely difficult to analyze. Wave breaking processes
are also studied insufficiently, and no analytical approach to their description; therefore,
these complicated nonlinear processes are described by some empirical, usually algebraic

expressions. The equilibrium spectrum of wind waves F(
→
k ) can be found when equating

the r.h.s. of (14) to 0.
The most common expression for Q used in the literature can be written as (cf., [34])

Q(F, u∗, γ(k, E, σ, ν . . .), ϕ, . . .) = βe f f N(k) + Pa(k, Vwind)− F(k)
(

F(k)
α(k)

)n
+ I[F(kl)] (15)

where βe f f = β(
→
k , u∗)− 2 · γ(k, E, σ, ν, . . .), β(

→
k , u∗,ϕ) is the wind growth rate due to the

Miles excitation mechanism (see an expression for β(k, u∗, ϕ) = β(k, u∗) cos2 ϕ in [52]),
ϕ is an angle between the wind velocity and the wave vector, Pa is the source of wind
waves due to atmospheric pressure pulsations—the Phillips mechanism, [50]), both the
wave generation mechanisms depend on ϕ and are inefficient for crosswind propagating
waves, u∗ is the wind friction velocity, γ(k, E, σ, ν, . . .) the wave damping coefficient, which
depends on the film elasticity E, surface tension σ, water viscosity ν, and some other
surfactant film characteristics, e.g., film viscosity, thickness, etc. (see [41,42] and cited
literature). The third term is introduced to describe in a simple way the processes of
nonlinear spectrum limitation due to, in particular, wave breaking; here α(k) and n are
some empirical values. In order to describe the wind wave excitation in the cross wind
direction when the Miles and Phillips mechanisms are not acting, we also introduced an
additional phenomenological term I[F(kl)] describing the wave excitation due to wind
waves with wave numbers other than k, (kl < k). Following [34,35], one can suppose that
kl can be associated with dm-m-scale wind waves.

Then when assuming that nonlinear interactions are weakly modified by film, the BC
contrast can be written in the simplest form as

KBC(φ = 90◦) =
F0(kB)

Fsl(kB)
=

I[k, F(kl)]nonslick
I[k, F(kl)]slick

γslick
γnonslick

≈ γslick
γnonslick

(16)

The last equality in (16) can be written to neglect the influence of films on the wave
source I[F(kl)].

Formula (16) can be considered as a particular case of a local balance model previously
used to describe contrasts in slicks for arbitrary, but not crosswind, look directions. The BC
contrast can be expressed as follows (see, [43,44])

KBC =

[
[β(u∗, k, ϕ)− 2γ(k, E, σ)]nonclick
[β(u∗sl , k, ϕ)− 2γ(k, E, σ)]slick

]n

n = 1, if βe f f > 0; n = −1, if βe f f < 0 (17)

Let us now compare the BC contrasts in the crosswind direction with the simple model
above. We can supplement the data for 2021 with those obtained in our earlier observations,
as shown in Figure 12. The figure summarizes the crosswind BC contrasts at wind velocities
in the range from approximately 3 m/s to 6 m/s. No significant dependence on wind speed
is observed within the studied wind velocity range. The OLE film elasticity, according
to [48], is within the range shown in Figure 12. One can conclude from Figure 12 that the
simple model (16) agrees with the experiment, at least within the limits of experimental
accuracy.
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Figure 12. Comparison between experimental BC contrasts for crosswind observations in experiments
of 2021 and 2019 (see, [45]) and theory (16) at film elasticity of 20 mN/m, 25 mN/m, and 30 mN/m
(blue, violet, and red curves, respectively).

It is seen from Figure 12 that theoretical contrast values in the studied wave number
range weakly depend on film elasticity, and therefore, it is difficult to estimate this pa-
rameter accurately from the measured contrasts; however, we believe that the crosswind
contrast as functions of wave number can be used, at least, for film identification.

Finally, we can compare the angular dependence of BC contrasts (see, Figure 7) with
the local balance model. The contrasts calculated according to (17) for the conditions of
our experiments are shown in Figure 13, along with the obtained experimental BC contrast
values. Although the wave number range of the model is rather limited, as is seen in
Figure 13, nevertheless, the model correctly predicts the tendency of the contrast to increase
at azimuth angles between 0◦ and 90◦.
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Figure 13. Comparison between experimental BC contrasts (symbols) and a local balance model
(curves). Black symbols/curve—S-band, red—C-band, and blue—X-band.

6. Conclusions

Experiments on radar probing of the water surface covered with surfactant films of
oleic acid were carried out from an Oceanographic Platform on the Black Sea and from
onboard a research vessel on the Gorky Water Reservoir. A three-band dual co-polarized
radar of the Institute of Applied Physics operating simultaneously in X-, C-, and S-bands
and at VV-and HH-polarizations was used in the experiments. Suppression of radar return
in film slicks (contrast), as well as radar Doppler shifts for VV/HH-polarized backscatter
and Bragg/non-Bragg (non-polarized) backscatter components, were studied at wind
speeds ranging from about 3 to 6 m/s and at incidence angles of microwaves 50◦ and 60◦.
New features of microwave backscattering from the sea surface have been revealed. First, a
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nonmonotonic dependence of radar backscatter contrasts in slicks on azimuth angle has
been revealed. Namely, BC and NBC contrasts achieve maximum values for the radar look
directions between the upwind and crosswind directions. Second, BC contrasts demonstrate
significantly different dependencies on radar wave numbers, increasing for upwind and
decreasing for crosswind directions; NBC contrast grows with wave number for all radar
look directions. Finally, the radar Doppler shifts and corresponding scatterer’s velocities for
upwind and downwind observation directions are found to be somewhat larger than the
velocities of linear gravity-capillary waves with Bragg wavelengths corresponding to X-C-
and S-bands. For the crosswind direction, scatterers’ velocities are closer to the Bragg wave
velocities, although remaining 15–20% larger than the latter. Nevertheless, we hypothesized
that the crosswind BC scatterers could be considered as quasilinear gravity-capillary waves.
The spectrum of these waves was described when introducing a phenomenological wave
energy source which is balanced by viscous wave damping due to film. The crosswind
BC contrast can be found as the ratio of the spectrum of wind waves in nonslicks and
slicks, when neglecting the influence of film on the wave source. It turned out under this
assumption that the theory agrees well with the experiment, at least under the studied
environmental and experimental conditions.

The new features of microwave backscattering revealed in our experiments can be
potentially used to develop new methods for film identification.
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