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Abstract: In this paper, under parametric uncertainties and complex disturbances, a leader–follower
formation control strategy based on accurate disturbance observer (ADO) and a novel fixed-time fast
terminal sliding mode (FTFTSM) control for unmanned surface vehicles (USVs) is proposed. The
main contributions of this paper are: (1) A novel fixed-time fast terminal sliding mode tracking control
(FTFTSM-TC) strategy is designed for the tracking control subsystem, which greatly improves the
convergence rate of the leader USV in trajectory tracking. (2) An ADO is designed to observe lumped
disturbances with the smallest approximation error. The ADO greatly reduces the interference of
disturbances and improves the performance of the formation system. (3) An ADO-based fixed-time
formation control (ADO-FTFC) strategy is developed for the formation control subsystem to maintain
the desired formation. Stability of the formation control system is established by the Lyapunov theory.
Simulation results show that the proposed control strategy is superior for the USVs formation control.

Keywords: unmanned surface vehicles; leader–follower formation; fixed-time theory; sliding mode
control; accurate disturbance observer

1. Introduction

Recently, USVs have been extensively deployed in both civilian and military sectors
due to their effectiveness and efficiency [1,2]. USVs have the ability of performing tasks
around the clock, especially in harsh marine environments replacing humans in performing
dangerous, time-consuming and laborious tasks. In the recent years, intelligent control
of USVs has become a hot topic. Maritime authorities have vigorously promoted the
development of USVs, and fruitful research results in the development of a single USV
have been reported [3]. However, a single USV cannot meet the demand of complex tasks
and changing landscape in real-world marine environments. Therefore, USV formation
control has become a hot issue in the field of cooperative control. The USV formation
control method designed in this paper can achieve the precise formation control effect and
has far-reaching practical significance, for example, USV formation cruises in the military
field and personnel search and rescue in the civil field.

As an integral part of cooperative control, the formation control of USVs can not
only significantly reduce manpower costs but also enhance the fault tolerance of task
completion in unknown marine environments, including disturbances of wind, waves and
currents. There are many typical formation control methods, such as the virtual structure
method [4], behavior-based control [5], the leader–follower formation control method [6],
graph theory [7] and the artificial potential field method [8]. Among these methods, the
control rule of the leader–follower formation control strategy is the simplest. Moreover, it
translates the USV formation control problem into a USV trajectory tracking problem. As
such, we only need to know the leader’s motion parameters and the follower’s tracking
strategy to achieve formation control. Inspired by [4], the leader–follower control method
is used to simplify the design process of USV formation control strategies in this work.
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In USV formation control, the convergence rate is a key parameter used to evaluate the
performance of the formation control system. Typical control methods used in formation
system are sliding mode control, parameter adaptation, neural networks, fuzzy logic, and
backstepping. Compared with other methods, backstepping has a good control effect for
systems with uncertain parameters. However, the ability to resist external disturbance
is weak. The sliding mode control is the simplest and most effective, and it has strong
robustness for external disturbances and unmodeled dynamics [9]. Therefore, this forma-
tion control strategy has been widely used for USVs. Common sliding mode technologies
mainly include the integral sliding mode (ISM) [10], the traditional asymptotic convergent
sliding mode [11], the nonsingular terminal sliding mode [12] and the terminal sliding
mode (TSM) [13]. In [14,15], a non-singular integral sliding mode tracking control strategy
combine with adaptive control is proposed for nonlinear systems with disturbances, which
can ensure the convergence in finite time, and the effectiveness of the proposed algorithm is
verified by experiments. In [16], a non-singular terminal sliding mode tracking control strat-
egy combined with adaptive control is proposed for perturbed nonlinear systems, which
has a good control effect. In [17], a composite nonlinear feedback controller is designed for
robust tracking, which keep precise tracking control with output saturation. The advantage
of the integral sliding mode is the existence of singularity, while the disadvantage of the
terminal sliding mode is slow convergence rate and depends on the initial system state.
At the same time, the methods described above can only guarantee the convergence of
the system in a finite time, and the maximum convergence time of the system has a great
impact on the initial state of the system and cannot guarantee a fast and stable convergence
rate. In order to alleviate the disadvantages of existing works and improve the convergence
rate and stability of the formation system, a fixed-time fast terminal sliding mode (FTFTSM)
is developed.

In order to ensure fast response of the formation system, the idea of finite-time control
is adopted for trajectory tracking and cluster control of USVs [18–20]. However, the finite-
time control dependents on the system initial state. As an extension of finite-time control,
which is not affected by the initial system state, fixed-time control is introduced into
the multi-agent control [21,22]. As proposed firstly in [23], using the fixed-time control
algorithm, the upper bound of the convergence time can be calculated without relying on
the initial system state. Therefore, in order to improve convergence rate of the formation
system, the fixed-time control strategy is adopted in this paper.

In a practical environment, the uncertainties and complexity of the marine environ-
ment must be considered in the design of USV formation control algorithms. How to
identify internal unmodeled dynamics and external disturbances of the system quickly
and accurately has become a hot issue in USV formation control research. Many re-
searchers are frequently confronted with the challenge of dealing with complex unknown
disturbances [24]. In addition to applying adaptive fuzzy algorithms, neural networks
techniques and other intelligent algorithms have been deployed to deal with external
disturbances. However, all of them are not capable of dealing with complex unknown
disturbance, and the system could become trapped into local minima. In order to alle-
viate the disadvantages of existing works, the observer reconstruction methodology is
deployed to obtain real-time external state information so as to achieve effective iden-
tification. Numerous observer-based control methods have been proposed to improve
the performance of the USV control system. In [25], a nonlinear observer was proposed
to recover the position and velocity of a USV from measured data corrupted by noise.
In [26], a novel lumped perturbation observer-based robust control method is proposed
to improve the control performance of the system and deal with disturbances. In [27],
a finite time disturbance observer is proposed to deal with severe model nonlinearities
with large parametric uncertainties and external disturbances. At the same time, strict
experimental analysis verifies the effectiveness of the designed observer. In [28], a finite-
time disturbance observer was proposed to observe fault-mixed unknowns of USV with
input saturation. In order to enhance trajectory tracking performance of an asymmetric
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underactuated surface vehicle, a finite-time unknown observer was proposed to exactly
identify complex unknowns in [29], and remarkable performance has been achieved. On
the basis of the aforementioned disturbance observers, in order to further improve the
convergence speed and eliminate the influence of initial observation error on the accuracy
of disturbance observer, we combine fixed-time control theory with disturbance observer
technology to design a novel accurate disturbance observer (ADO) in this paper, which
realizes accurate observation of complex disturbances.

In this paper, in order to solve the formation control problem of USVs with internal
unmodeled dynamics and external unknown disturbances, a fixed-time formation control
strategy is proposed, which contains uncertain and external disturbances to improve
the convergence rate and handling of disturbances. In order to promote the following
development, firstly, for the tracking control subsystem, a novel fixed-time fast terminal
sliding mode tracking control (FTFTSM-TC) strategy is proposed. Secondly, an internal
model of uncertainties and external disturbances in the formation control subsystem is
considered, and a novel accurate disturbance observer (ADO) is designed to accurately
identify disturbances in the USV formation system. Then, to accurately observe lumped
disturbance terms and maintain the desired formation, an ADO-based fixed-time formation
control strategy (ADO-FTFC) is proposed. Finally, vigorous analysis using the Lyapunov
function shows that the proposed formation control strategy is accurate and reliable. The
main contributions of this paper are as follows:

1. Aiming at solving the formation control problem of USVs under complex disturbances,
the overall formation control framework is divided into tracking and formation control
subsystems. Then, we design the FTFTSM-TC strategy and ADO-FTFC strategy. On
the basis of simplifying the formation control structure, the convergence rate and
control accuracy of the system are greatly improved by the proposed method, and the
convergence rate of the system is shown to be independent of the initial state of the
system (Section 3.1).

2. In order to improve the disturbance observation accuracy of the formation control
system, we design an ADO to achieve real-time control of disturbances and perform
accurate observation of the lumped uncertainty item efficiently in the formation
control system (Section 3.2).

The paper is organized as follows: Section 2 introduces preliminaries and the problem
formulation of the USV formation system. Section 3 presents the design process of the
formation control system and establishes the stability of the entire formation system. The
design process of the ADO is also introduced. In Section 4, simulation results which
demonstrate that the proposed formation controller and disturbance observer can achieve
excellent results are presented. Section 5 concludes the paper.

2. Preliminaries and Problem Formulation

This section introduces some key lemmas which are necessary for developing the
formation control strategy.

2.1. Preliminaries

Lemma 1. Consider the following nonlinear system [30]:

ẋ(t) = f (x(t))
x(0) = 0, f (0) = 0, x ∈ Rn (1)

where f (x(t)) is a nonlinear function defined in the origin neighborhood, and x = [x1, x2, · · · , xn]T

is the vector of system state. If system (1) has a negative homogeneity degree and is asymptotically
stable, the system is finite-time stable.



J. Mar. Sci. Eng. 2022, 10, 1246 4 of 18

Lemma 2. Consider the following scalar system [31]:

ẏ = −γ1y2−p/q − γ2yp/q, y(0) = y0 (2)

where γ1, γ2 > 0 and p < q and p, q are both positive odd integers. System (2) is fixed-time stable,
and the upper bound of the convergence time satisfies:

Tmax(y0) =
qπ

2
√

γ1γ2(q− p)
. (3)

Lemma 3. Consider the following system [32]:

ẏ = −lasigm1(y)− lbsigm2(y), y(0) = y0 (4)

where m1 > 1, 0 < m2 < 1 and la, lb > 0. When the system equilibrium point is fixed-time stable,
the upper bound of the convergence time can be calculated independently of the initial state and is
given by:

Tmax =
1

la(m1 − 1)
+

1
lb(1−m2)

. (5)

Lemma 4. If there is a continuous radial bounded function, V : Rn → R+ ∪ {0} satisfies:
V(x) = 0 ⇔ x = 0. For any x(t) satisfying V̇(x) 6 −l1V(x)σ1 − l2V(x)σ2 , l1, l2, σ1, σ2 are
positive numbers and 0 < σ1 < 1, σ2 > 1. Then, the system can converge to zero in a fixed time
and the convergence time T satisfies [25]:

T 6 Tmax =
1

l1(1− σ1)
+

1
l2(σ2 − 1)

. (6)

2.2. Problem Formulation

USVs have the characteristics of strong coupling, strong nonlinearity, and high com-
plexity in actual maritime navigation. Unmodeled dynamics and various external distur-
bances cannot be ignored when establishing a USV model. An overly simple USV model
lacks practicality and generality, but an overly complicated model will hinder subsequent
controller design. As shown in Figure 1, the leader–follower formation control framework
is adopted. Based on the distances between the three USVs, a three-degrees-of-freedom
model is used to solve the USV formation problem, which revolves around establishing
the relationship between the surge speed u, sway speed v and yaw angular speed r in
this paper.

Y0

X0

X

G

Y

r
u

V

O

x

y

v

G

G

d1

d2

d0

Trajectory

Figure 1. Earth-fixed and body-fixed coordinate frames of USVs.
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Using the earth-fixed and body-fixed coordinate frames of USVs, the kinetic and
dynamic models of the USV can be expressed as follows:{

η̇ = R(ψ)ν
Mν̇ + C(ν)ν + D(ν)ν = τ + δ

(7)

where ν = [u, v, r]T denotes the velocity vector in the earth-fixed coordinate system,
η = [x, y, ψ]T denotes the position and heading angle in the earth-fixed coordinate sys-
tem, and τ = [τi1, τi2, τi3]

T denotes the USV control input vector. δ= MRT(ψ)d(t) denotes
external disturbances caused by wind, waves, and currents; M = MT > 0 is the inertia
matrix; R(ψ) is the rotation matrix; D(ν) is the damping matrix; and C(ν) = −C(ν)T is the
skew-symmetric matrix given by:

M =

 m11 0 0
0 m22 m23
0 m32 m33

 (8)

R(ψ) =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (9)

D(ν) =

 d11(ν) 0 0
0 d22(ν) d23(ν)
0 −d32(ν) d33(ν)

 (10)

C(ν) =

 0 0 c13(ν)
0 0 c23(ν)

−c13(ν) −c23(ν) 0

 (11)

Note that the aforementioned matrices satisfy the following properties:

Ṙ(ψ) = R(ψ)S(r)
RT(ψ)S(r)R(ψ) = R(ψ)S(r)RT(ψ) = S(r)
‖R(ψ)‖ = 1, RT(ψ)R(ψ) = I, ∀ψ ∈ [0, 2π]

(12)

The S(r) matrix is given by:

S(r) =

 0 −r 0
r 0 0
0 0 0

 (13)

Rewriting the USV mathematical model to the following Lagrangian mathematical
model, we have:

M ′(η)η̈+ C′(η, η̇)η̇+ D′(η, η̇)η̇ = R(η)τ + δ(t) (14)

where M ′, C′ and D′ can be expressed as follows:

M ′(η) = R(η)MRT(η)
C′(η, η̇) = R(η)(C−MS)RT(η)
D′(η, η̇) = R(η)DRT(η)
M(η) = MT(η) > 0
M(η)− 2C(η, η̇) = −[M(η)− 2C(η, η̇)]T

(15)

To facilitate the following analysis, we define:{
ẋ1 = x2

ẋ2 = M ′−1(x1)R(x1)τ + Z(·) (16)
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where Z(·) = M ′−1[δ(t)− C∗(x1, x2)x2 − D∗(x1, x2)x2], x1 = η, x2 = η̇, the term f repre-
sents the lumped uncertainty term of disturbances in the formation system, which satisfies
continuous differentiability and boundedness conditions, i.e., ‖Z(·)‖ ≤ Ω, where Ω is a
bounded positive constant.

Definitions of each parameter are shown in Table 1. The term X∗, Y∗, Z∗ denotes the
hydrodynamic derivatives, Iz is the moment of inertia, m is the mass of the USV, and
Nv̇ = Yṙ.

Table 1. Definitions of parameters in M, C, D.

Parameter Value Parameter Value

m11 m− Xu̇ c23(ν) m11u
m22 m−Yv̇ d11(ν) −Xu − X|u|u|u| − Xuuuu2

m23 mxg −Yṙ d22(ν) −Yv −Y|v|v|v|
m32 mxg − Nv̇ d23(ν) −Yr −Y|v|r|v| −Y|r|r|r|
m33 Iz − Nṙ d32(ν) −Nv − N|v|v|v| − N|r|v|r|
c13(ν) m11 −m23r d33(ν) −Nr − N|v|r|v| − N|r|r|r|

The desired trajectory is given by:{
η̇d = R(ψd)νd
M
′
dν̇d+C(νd)νd+D(νd)νd = τd

(17)

where η = [xd, yd, ψd]
T is the desired position vector, νd=[ud,vd,rd]

T is the velocity vector
of the USV, and τd=[τd1, τd2, τd3]

T is the desired control input.

3. Design of the Proposed Controller

As shown in Figure 2, the formation system is divided into a tracking control subsys-
tem and a formation control subsystem to facilitate controller design. Moreover, for ease of
analysis, lumped disturbances are not considered when the trajectory tracking controller
is designed.

Leader-follower formation control framework

Desired 

trajectory

Tracking 

controller

Leader 

USV

Formation 

controller

Follower 

USV

Triangular 

formation

FTFTSM

FTFTSM

ADO

dη

,d dη η ,η η

η

,η η

,i iη η

i

 Z

 Ẑ

,i iη η

Tracking control subsystem Formation control subsystem
   

Leader

Followers1 2, 

,1 ,2,i i 

Figure 2. The algorithm architecture of the integrated USV formation system.

3.1. Tracking Control Subsystem

Dynamic tracking errors of the leader USV and the desired trajectory are defined
as follows: {

<1 = x1 − ηd
<2 = x2 − η̇d

(18)
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It follows from (16) and (18) that:{
<̇1 = <2

<̇2 = M
′−1

(x1)R(x1)τ + Z(·)− η̈d
(19)

A novel fixed-time fast terminal sliding mode (FTFTSM) is designed to ensure that the
USV formation control system has a faster convergence rate and converge in fixed time in
the entire universe, shown as follows:

s = <1 +
[

<2
a1<1

H−N+b1

] 1
N (20)

The derivation is as follows:

ṡ = <2 +
1
N

[
(a1<1

H−N + b1)
−1<2

] 1
N−1[

−a1(H − N)(a1<1
H−N + b1)

−2<1
H−N−1<2

2 + (a1<1
H−N + b1)

−1<̇2

] (21)

where a1 > 0, b1 > 0, H = h1
h2

, N = n1
n2

, h1, h2, n1, n2 are positive odd numbers and satisfy
h1 > h2, n1 < n2, H − N > 1.

In order to simplify the controller design, let = = (a1<1
H−N + b1)

−1, simplified
as follows:

ṡ = <2 +
1
N
(=<2)

1
N −1

[−a1(H − N)=2<1
H−N−1

<2
2 +=<̇2]

= <2 −
a1(H − N)

N
=

1
N +1
<1

H−N−1<2

1
N +1

+
1
N
=

1
N<2

1
N −1
<̇2

(22)

Combined with Lemma 2, the FTFTSM-TC strategy is designed as follows:

τ = −M(x1)
′R(x1)

−1[<2 −
N

=
1
N<

1
N −1

2

(
a1(H − N)

N
=

1
N +1
<H−N−1

1 <
1
N +1

2

+ε0s + ε1s2−p/q + ε2sp/q)− η̈d]

(23)

where ε0, ε1, ε2 are the control coefficients of the controller, and p, q are positive odd numbers
satisfying p < q.

Now, the main results of this work are presented as follows.

Theorem 1. Consider the USV tracking control system governed by (19) under the assumption
that there is no lumped disturbance, the proposed FTFTSM-TC strategy can ensure that velocity
vector η̇ and the position vector η of the leader USV can accurately track the desired trajectory in
fixed time.

Proof of Theorem 1. Reaching phase: Here, we establish that the errors <1,<2 can reach
the sliding surface in fixed time.

The following Lyapunov function is selected:

V =
1
2

sTs (24)

The derivation is as follows:
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V̇ = sTṡ

= sT[<2 − a1(H−N)
N =

1
N +1
<H−N−1

1 <
1
N +1

2 + 1
N=

1
N<

1
N −1

2 <̇2]

= sT[<2 − a1(H−N)
N =

1
N +1
<H−N−1

1 <
1
N +1

2

+ 1
N=

1
N<

1
N −1

2 (M
′−1(x1)R(x1)τ − η̈d)]

= −sT[ε0s + ε1s2−p/q + ε2sp/q]

= −ε0s2 − ε12
3q−p

2q ( 1
2 s2)

3q−p
2q − ε22

q+p
2q ( 1

2 s2)
q+p
2q

6 −ε12
3q−p

2q V2− p+q
2q − ε22

p+q
2q V

p+q
2q

(25)

According to Lemma 2, the upper bound of the convergence time is computed by:

T0 =
qπ

2
√

ε1ε2(q− p) (26)

Then, in the maximum set time T0, the sliding surface s can be reached. After the
sliding surface arrives, s= 0, ṡ= 0, and we have:

<2 = <̇1 = −a1<H
1 − b1<N

1 (27)

Furthermore, according to Lemma 3, the tracking errors <1, <2 will converge to zero
along the manifold in a fixed time. In summary, the controller designed for the tracking
subsystem can guarantee that η = ηd, ν = νd in fixed time, i.e., the leader USV can track
the desired trajectory accurately.

Theorem 1 is proven complete.

3.2. Formation Control Subsystem

We consider the lumped disturbance Z(·) in the design process of the formation
control subsystem, which includes the external environment disturbance δ and the internal
disturbance. The internal disturbance contains items C∗(xi,1, xi,2)xi,2 and D∗(xi,1, xi,2)xi,2
related to the internal unmodeled dynamics of the USV. Definition C†(xi,1, xi,2)xi,2 =
C(xi,1, xi,2)xi,2 − C∗(xi,1, xi,2)xi,2 and D†(xi,1, xi,2)xi,2 = D(xi,1, xi,2)xi,2 − D∗(xi,1, xi,2)xi,2.

First, we rewrite the Lagrangian model of the follower USVs:{
ẋi,1 = xi,2

ẋi,2 = M
′−1

(xi,1)[τi − C†(xi,1, xi,2)xi,2 − D†(xi,1, xi,2)xi,2] + Z(·)
(28)

where i = 1, 2 denotes follower USV1 and USV2, and Z(·) is defined as follows:

Z(·) = M
′−1

[δ(t)− C∗(xi,1, xi,2)xi,2 − D∗(xi,1, xi,2)xi,2] (29)

where xi,1 = ηi and xi,2 = η̇i.

Assumption 1. The term Z(·) represents external disturbances of the formation control subsystem
and the internal lumped uncertainty items, which is satisfying the conditions of boundedness and
continuous differentiability, i.e., ‖Z(·)‖ ≤ Ω, where Ω is a bounded positive constant.

Auxiliary variables are defined as follows:

Θ = xi,2 −ω

ω̇ = M
′−1(xi,1)[τi − C†(xi,1, xi,2)xi,2 − D†(xi,1, xi,2)xi,2]

+`1Θ + `2Θκ1 + `3Θκ2 + `4sign(Θ)

(30)
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where `1, `2, `3, `4 are positive definite diagonal matrices satisfying `4 > Ω. κ1, κ2 are
positive numbers and satisfy 0 < κ1 < 1, κ2 > 1.

The derivative of Θ is as follows:

Θ̇ = ẋi,2 − ω̇

= M
′−1(xi,1)[τi − C†(xi,1, xi,2)xi,2 − D†(xi,1, xi,2)xi,2] + Z(·)

−M
′−1(xi,1)[τi − C†(xi,1, xi,2)xi,2 − D†(xi,1, xi,2)xi,2]

−[`1Θ + `2Θκ1 + `3Θκ2 + `4sign(Θ)]
= Z(·)− [`1Θ + `2Θκ1 + `3Θκ2 + `4sign(Θ)]

(31)

The ADO is designed as follows:

Ẑ(·) = `1Θ + `2Θκ1 + `3Θκ2 + `4sign(Θ) (32)

Z̃(·) is the observation error, which is defined as follows:

Z̃(·) = Ẑ(·)− Z(·)
= `1Θ + `2Θκ1 + `3Θκ2 + `4sign(Θ)+

M
′−1(xi,1)[τi − C†(xi,1, xi,2)xi,2 − D†(xi,1, xi,2)xi,2]− ẋi,2

= ω̇− ẋi,2
= −Θ̇

(33)

From the above formula, if Θ̇ converges, then Z̃(·) converges. We select the following
Lyapunov function:

VZ = 1
2 ΘTΘ (34)

The derivation of the above formula is as follows:

V̇Z = ΘTΘ̇

= ΘT [Z(·)− `1Θ− `2Θκ1 − `3Θκ2 − `4sign(Θ)]
6 −`1ΘTΘ− `2ΘTΘκ1 − `3ΘTΘκ2

6 −2
κ1+1

2 `2,min(
1
2 ΘTΘ)

κ1+1
2 − 2

κ2+1
2 `3,min(

1
2 ΘTΘ)

κ2+1
2

= −αz,1VZ
βz,1 −−αz,2VZ

βz,2

(35)

where αz,1 = 2
κ1+1

2 `2,min, αz,2 = 2
κ2+1

2 `3,min, 0 < βz,1 = κ1+1
2 < 1, βz,2 = κ2+1

2 > 1.
Furthermore, according to Lemma 4, Θ is globally fixed time stable. The convergence

time Tz is as follows:

TZ 6 TZ,max = 1
αz,1(1−βz,1)

+ 1
αz,2(βz,2−1) (36)

Then we can obtain:

Θ̇ = 0→ Z̃(·) = 0, t > TZ (37)

In summary, the designed ADO can accurately observe the disturbances in fixed time
and ensure that the observation error is independent of the initial observation error.

Theorem 2. Consider the USV formation control system with a lumped uncertainty term Z(·)
governed by (29): the designed ADO can accurately identify the disturbances. Moreover, the
proposed ADO-FTFC strategy can ensure the position vector ηi, and velocity vector η̇i of the
followers can accurately track the velocity vector η̇ and position vector η of the leader and maintain
the desired formation in fixed time.
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Proof of Theorem 2. The dynamic error between the leader and the follower USV is de-
fined as follows: {

<i,1 = xi,1 − η
<i,2 = xi,2 − η̇

(38)

The derivation of the above formula is as follows:{
<̇i,1 = <i,2
<̇i,2 = M

′−1(xi,1)R(xi,1)τi + Z(·)− η̈
(39)

Considering the FTFTSM (20), we have:

si = <i,1 +

[
<i,2

ai,1<i,1
Hi−Ni+bi,1

] 1
Ni (40)

The derivation is as follows:

ṡi = <i,2 −
ai,1(Hi − Ni)

Ni
=i

1
Ni

+1

<i,1
Hi−Ni−1

<i,2

1
Ni

+1

+
1
Ni
=i

1
Ni <i,2

1
Ni
−1

<̇i,2 (41)

where i = 1, 2. We design the ADO-FTFC strategy as follows:

τi = −M(xi,1)
′
R(xi,1)

−1[<i,2 −
Ni

=
1

Ni
i <

1
Ni
−1

i,2

(
ai,1(Hi − Ni)

Ni
=

1
Ni

+1

i <
Hi−Ni−1

i,1 <
1

Ni
+1

i,2

+εi,0si + εi,1si
2−p/q + εi,2si

p/q) + Ẑ(·)− η̈]

(42)

where εi,0, εi,1, εi,2 are the control coefficients of the controller, and p, q are positive odd
numbers satisfying p < q.

The following Lyapunov function is selected to prove that the errors <i,1,<i,2 can
reach the sliding surface in a fixed time:

Vi =
1
2

sT
i si (43)

The derivation is as follows:

V̇i = si
Tṡi

= si
T[<i,2 −

ai,1(Hi−Ni)
Ni

=
1

Ni
+1

i <Hi−Ni−1

i,1 <
1

Ni
+1

i,2 + 1
Ni
=i

1
Ni <

1
Ni
−1

i,2 <̇i,2]

= si
T[<i,2 −

ai,1(Hi−Ni)
Ni

=
1

Ni
+1

i <Hi−Ni−1

i,1 <
1

Ni
+1

i,2

+ 1
Ni
=

1
Ni
i <

1
Ni
−1

i,2 (M
′−1(xi,1)R(xi,1)τi + Z(·)− η̈d)]

= −sT
i [εi,0si + εi,1s2−p/q

i + εi,2sp/q
i + (Z(·)− Ẑ(·))]

= −sT
i [εi,0si + εi,1s2−p/q

i + εi,2sp/q
i ]

= −εi,0s2
i − εi,12

3q−p
2q ( 1

2 s2
i )

3q−p
2q − εi,22

q+p
2q ( 1

2 s2
i )

q+p
2q

6 −εi,12
3q−p

2q Vi
2− p+q

2q − εi,22
p+q
2q Vi

p+q
2q

(44)

The upper bound of the convergence time is computed according to Lemma 2, shown
as follows:

Ti =
qπ

2√εi,1εi,2(q− p) (45)

Then, the sliding surface si can be reached within the maximum set time T0. After the
sliding surface arrives, si = 0, ṡi = 0, and we have:

<i,2 = <̇i,1 = −ai,1<Hi
i,1 − bi,1<Ni

i,1 (46)
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Furthermore, according to Lemma 3, the formation errors <i,1, <i,2 will converge to
zero along the manifold in a fixed time, and three USVs can quickly and accurately form
and maintain the desired formation.

Theorem 2 is proven complete.

4. Simulation and Discussion

The parameters of the FTFTSM and ADO are shown in Table 2. In order to verify
the effectiveness of the FTFTSM-TC strategy and the ADO-FTTC strategy proposed in
this paper, the benchmark USV model Cybership II is used. The main parameters of
the Cybership II are shown in Table 3. The initial values of the formation system are as
follows: ηd(0) = [0, 0, π/2]T, νd(0) = [0.2, 0, 0]T. The initial states of the leader USV and
the follower USV1 and USV2 are as follows: η0(0) = [−5, 0.5, 0]T, η1(0) = [−5, −2, 0]T,
η2(0) = [−5, 2.5, 0]T, ν0(0) = ν1(0) = ν2(0) = [0, 0, 0]T.

Table 2. Parameter values.

Parameters Values Parameters Values Parameters Values

h1, hi,1 9 h2, hi,2 5 n1, ni,1 3
n2, ni,2 5 a1, ai,1 1 b1, bi,1 1
ε0; εi,0 0.1; 0.1 ε1; εi,1 0.8; 0.6 ε3; εi,3 0.7; 0.4

p 7 q 9 `1 diag[3, 3, 3]
`2 diag[7/9, 7/9, 7/9] `3 diag[5/7, 5/7, 5/7] `4 diag[8, 7, 8]
κ1 7/9 κ2 7/5

Table 3. Main parameters of CyberShip II.

Parameters Values Parameters Values Parameters Values

m 23.8000 Yv −0.8612 Xµ̇ −2.0
Iz 1.7600 Y|v|v −36.2823 Yv̇ −10.0
xg 0.460 Yr 0.1079 Yṙ 0.0
Xµ −0.7225 Nv 0.1052 Nv̇ 0.0

X|µ|µ −1.3274 N|v|v 5.0437 Nṙ −1.0
Xµµµ −5.8664

The following disturbances are used in the simulation study:

di =

 5 cos( π
10 t− π

3 )
4 cos(π

5 t + π
2 )

3 cos( π
10 t + π

6 )

 (47)

Simulation results are shown in Figures 3–10. Figure 3 shows the comparison results
of the proposed FTFTSM-TC strategy with the ISM-TC strategy. The desired trajectory is
set as follows: ηd = [3 sin(0.04t) + 0.2, −1.5 sin(0.06t), π

2 cos(0.03t)]T. The results show
that the ISM-TC strategy cannot deal with external disturbances in real time, and the
FTFTSM-TC strategy proposed can achieve accurate tracking control. The FTFTSM-TC
strategy proposed can ensure that the leader USV accurately track the desired trajectory
and maintain stable movement along the desired trajectory.

In order to compare position and velocity tracking performances in different directions,
Figures 4 and 5 show position tracking and velocity tracking under the FTFTSM-TC strategy
and the ISM-TC strategy. They clearly demonstrate that the FTFTSM-TC strategy is superior
to the ISM-TC strategy.

Figure 6 shows the performance of the ADO disturbance observation. Simulation
results show that the ADO strategy proposed can quickly and accurately handle the lumped
uncertainty item of the formation system. The norm and derivatives of the tracking errors
are shown in Figure 7, which clearly show that the approach of handling the lumped
disturbances by the proposed ADO is effective and efficient.
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Figure 8 demonstrates that all the USVs maintain a stable straight triangular formation
operation, which show that three USVs quickly form the desired formation from different
positions in five seconds and maintain stable kinestate and verify closed-loop stability
and the effectiveness of the proposed ADO-FTFC strategy. In order to compare control
performances on different positions and velocities, Figures 9 and 10 show velocity tracking
error and the position tracking error when the leader USV and two follower USVs maintain
triangular formation. The results clearly demonstrate that the ADO-FTFC strategy proposed
can ensure that the leader and follower USVs can maintain accurate and stable formation.
From the change curve of control input with time shown in Figures 11 and 12, it is verified
that the designed controller can be stable in a fixed time.

-2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

1.2 1.4

-0.9

-0.8

-0.7

Figure 3. Tracking curve of FTFTSM-TC and ISM-TC. The asterisk represents the start position of
the USV.

Figure 4. Position tracking of FTFTSM-TC and ISM-TC.
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Figure 5. Velocity tracking of FTFTSM-TC and ISM-TC.
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Figure 6. Observation results of ADO.
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Figure 7. Norm of tracking errors and their derivatives.

Figure 8. Triangular formation of USVs. The asterisk represents the start position of the USV.
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Figure 9. Position tracking of triangular formation of USVs.
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Figure 10. Velocity tracking of triangular formation of USVs.
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Figure 11. Position tracking of triangular formation of USVs.
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Figure 12. Velocity tracking of triangular formation of USVs.

5. Conclusions

In order to solve the key problems in the field of cooperative control of USVs, the
leader–follower formation control strategy of USVs under unknown disturbances has been
successfully designed. We divide the entire formation control system into the tracking
control subsystem and the formation control subsystem. In the tracking control subsystem,
the FTFTSM-TC strategy is proposed to improve the convergence rate and precision of the
tracking control system. In the formation control subsystem, the ADO-FTFC strategy is
proposed to observe lumped disturbances, and excellent disturbance identification results
have been achieved, thereby ensuring stable and effective USV formation control. Rigorous
stability analysis and simulation studies demonstrate that the proposed strategy is superior
to the state-of-the-art methods. However, there are still some limitations in this paper. We
design the controller based on the leader follower formation framework, which simplifies
the interaction between individuals but reduces the flexibility of the formation. Therefore,
this is the problem we need to solve in the future. The research results of this paper provide
a bright research direction for the future USV formation control.
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