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Abstract: A computational fluid–solid dynamic model is employed to simulate the interaction
between water waves and a consolidated ice cover. The model solves the Navier–Stokes equations
for the ocean-wave flow around a solid body, and the solid behavior is formalized by the Maxwell
viscoelastic model. Model predictions are compared against experimental flume tests of waves
interacting with viscoelastic plates. The decay rate and wave dispersion predicted by the model
are shown to be in good agreement with experimental results. Furthermore, the model is scaled,
by simulating the wave interaction with an actual sea ice cover formed in the ocean. The scaled
decay and dispersion results are found to be still valid in full scale. It is shown that the decay rate of
waves in a viscoelastic cover is proportional to the quadratic of wave frequency in long waves, whilst
biquadrate for short waves. The former is likely to be a viscoelastic effect, and the latter is likely to
be related to the energy damping caused by the fluid motion. Overall, the modeling approach and
results of the present paper are expected to provide new insights into wave–ice interactions and help
researchers to dynamically simulate similar fluid–structure interactions with high fidelity.

Keywords: wave–ice interaction; viscoelastic ice; fully coupled fluid–structure interaction; computational
modeling; polar seas

1. Introduction

Water waves propagating towards the ice edge are not perfectly reflected, and they
can advance in the ice cover. Consequently, waves and ice start to mutually affect each
other [1,2]. Waves are weakened as they travel through the sea ice, and the wavelength
can be affected by the ice layer. Accurate prediction of the ice-induced energy decay
and potential changes in the dispersion process is important for forecasting the wave
propagation pattern in ice-covered regions, as well as predicting ice conditions, evolution,
and the associated climate impact. In recent years, this topic has been of increasing research
interest due to climate change, concerning various processes, e.g., decline of ice extent [3],
ice thinning [4], ice shelf vibration and breakup, and Arctic shipping [5–8].

The interaction between water waves and sea ice in the first place has been studied
by using field measurements. Different researchers performed field observations using
various techniques to record gravity waves traveling through the sea ice. According to
field measurements, wave height was observed to be reduced exponentially, dying out
eventually [9,10].

Different mechanisms may trigger the energy damping, depending on the nature of
sea ice and fluid motion [11]. Energy damping can be related to the viscous behavior of sea
ice [12], the motions of sea ice [13,14], friction [15], turbulent boundary layer formation [16],
overwash [17], and the collisions between ice floes [18]. Apart from the energy attenuation,
an ice layer can significantly affect the dispersion process of gravity waves, shortening
or lengthening the wavelength, compared to an open-water condition. This happens due

J. Mar. Sci. Eng. 2022, 10, 1220. https://doi.org/10.3390/jmse10091220 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10091220
https://doi.org/10.3390/jmse10091220
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-7096-7677
https://orcid.org/0000-0002-8595-8204
https://doi.org/10.3390/jmse10091220
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10091220?type=check_update&version=2


J. Mar. Sci. Eng. 2022, 10, 1220 2 of 26

to changes in the upper layer of the ocean, where the solid cover vibrates, giving rise
to vertical motions, causing different types of forces. In the presence of these forces in
covered water, the dispersion process is affected, and the wavelengths along with the wave
group speed are altered [19]. Clear evidence supporting the effect of sea ice on the wave
dispersion process has been documented in some of the recent field observations (see a
collection of examples in Collins et al. [20]).

Different theoretical models have been developed to solve the wave–ice interaction to
date. They provide us with wave energy decay rates of different sea ice types and enable
us to formulate the dispersion relationship (see [21]). The early developed model was
constructed by Greenhill back in the 1880s. An elastic layer was assumed to cover the
upper layer of an ideal fluid domain. Prescribing a linear motion (i.e., small displacements
with no rotation) for solid dynamics, Greenhill [22] formulated the coupled progressive
gravity–elastic wave motion and built a dispersion relationship by setting the dynamic
pressure of the fluid and solid interface to be equal on the fluid–solid interface. A pure
elastic behavior was prescribed for the ice and deformation was assumed to be relatively
small, and thus the model was able to construct the dispersion process of a nondissipative
ice cover.

The aim of most researchers, in developing wave–ice interaction models, was to either
calculate the wave energy decay of sea ice or to include wave scattering in their models,
which were lacking in the original work of Greenhill. For example, Hendrickson [23] used
an Eigenfunction matching method to solve the wave–ice interaction by prescribing an
elastic behavior for the sea ice. The energy damping triggered by the sea ice has been
formulated by using different approaches. The nature that is considered for the ice is
very important in formulating the energy damping rate of the sea ice. For example, the
ice cover can be treated as a viscoelastic thin layer behaving similarly to a Kelvin–Voigt
(KV) material [24], or it can be assumed to be a mass of viscous fluid settling down on the
water [25]. Additionally, in some other studies, the radiation problem, or the effects of
moving loads on ice cover, ice loads on the structures, and impact loads on ice are studied
(see examples in [26–30]).

Each of the developed models has been seen to give the energy decay rate or dispersion
process with a reasonable level of accuracy over some ranges. That is, although models can
accurately predict wave energy decay or dispersion, their boundary of applications is lim-
ited. This has been observed in recent years with the increasing growth in flume/basin and
field experiments. For example, a model that was presented by Fox and Squire [31] was later
further extended by adopting a viscoelastic behavior for the ice layer by Moisg et al. [32].
This model is able to capture the wave energy decay over shorter wavelengths, but its
results diverge from experimental field data as the wavelength increases (see landfast tests
of Voermans et al. [33]), or the model has been seen to fail in reconstructing the energy
decay rate curves of a viscoelastic body interacting with regular waves, but it was found to
fairly predict the dispersion process under that cover (see Sree et al. [34]). The main reason
is perhaps the assumptions made for the ice cover as the sea ice mechanics is related to a
complex field of research. Different types of ice can be formed on the water surface and the
environment in which the ice forms and ice aging can affect the ice behavior. This leaves
us with a wide range of options in building wave–ice interaction models. Yet, theoretical
models normally assume fluid is irrotational, by which viscous, turbulent, and nonlinear
fluid behaviors are excluded.

The fluid can be assumed to be viscous. This may enable us to reproduce the wave–ice
interaction with less restriction (i.e., viscous fluid-based energy damping and nonlinearities
can be considered). Navier–Stokes (NS) equations govern fluid motion, which cannot be
solved analytically except for some limited problems. Instead, computational methods,
such as the meshed ones or meshfree ones, are used to solve the NS equations. We need to
keep in mind that the wave propagation of irrotational flow may need numerical methods
as well (e.g., [35–37]).
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To simulate the interaction of viscous fluid with an ice layer, the fluid dynamics
problems are coupled with the solid dynamic problems. The solid body can be assumed
to be rigid or flexible. The rigid body assumption may provide us with energy damping
caused by the fluid motion (e.g., Bai et al. [38], Tavakoli and Babanin [39]), whereas a flexible
body assumption empowers us in the prediction of dispersion process and solid-based
energy damping—the former is possible if the solid body is assumed to be viscoelastic. The
solution of the interaction between the solid body and the viscous fluid can be achieved
using one-way and two-way coupling. The former is recommended to be used when
the solid motion is not significant [40], because the solid effects on the fluid field are
inconspicuous, but the two-way coupling is preferred over the one-way coupling when
the solid motion can remarkably affect the fluid motion. When ice interacts with water
waves, the second scenario is more possible, and a two-way coupling approach needs to be
considered to carry out a more realistic simulation.

The two-way coupling of the viscous fluid and solid motions can be achieved by
matching solid and fluid dynamics solvers. This has usually been carried out by coupling
finite volume method (FVM) solvers of fluid motion and finite element method (FEM)
solvers of solid motion which solve beam/plate theories. Examples can be found in the
research concerned with the elastic motions of ships and marine structures exposed to
water waves and sea loads (e.g., Jiao et al. [41], Sun et al. [42], Lakshmynarayanana and
Hirdaris [43], Hosseinzadeh and Tabri [44]).

The FVM has also been used for the simulation of the solid motions in fluid–solid
interaction (FSI) problems. Instead of using beam or plate theories, the momentum conser-
vation of the displacement rate in the solid domain is solved, and the momentum balance
is prescribed on the fluid–solid boundaries. Huang et al. [45] and Huang and Li [46] have
used this method for reproducing the interaction of water waves with elastic ice sheets, and
elastic breakwaters, respectively. Through their simulations, the method was observed to
be accurate. Simulations performed by Huang et al. [45] addressed the elastic motions and
considered the fluid-based energy attention caused by the ice plate (i.e., partial reflection
and overwash). However, Huang et al. [45] did not consider viscoelastic solid bodies. To
better represent wave–ice interactions, the ice can be solved as viscoelastic bodies, because
ice in waves tends to present viscoelastic behavior rather than elastic (Sree et al. [34]).
Thus, enabling viscoelastic modeling of sea ice will enhance understanding and prediction
of wave–ice interactions, which is lacking at the moment. It should be noted that the
computational models may need a very long time to be run, and they cannot be directly
implemented in global wave modeling. Additionally, artificial effects may emerge due to
numerical techniques, giving larger energy dissipation. Moreover, when a computational
model under a viscous flow assumption is used, it is very hard to single out the effects of
one parameter in the whole fluid–solid dynamic problem, as the simulations is performed
using a nonlinear approach and effects of all physical phenomena are acquired at once
(e.g., when the wave–plate interaction is run, the fluid motion caused by radiation and
diffraction cannot be achieved separately). However, as computational models built on the
basis of the viscous flow assumptions are less restricted than the potential flow theory, their
results may provide a deeper understanding of the problem.

In the present paper, a computational fully coupled FSI model is used to solve the
interaction of water waves with a viscoelastic ice sheet. This model solves the air–water
flow around an integrated viscoelastic floating body with a finite length. An initial aim
of this research is to evaluate whether the presented model can be used to numerically
reconstruct wave–ice interaction problems. Thus, the model is first validated by comparing
the obtained results against experimental data collected in flume measurements. Upon the
experimental validation, the scalability of the model is studied to find whether a full-scale
sea ice cover can be scaled into a small-scale floating body. For this purpose, field tests
of full-scale sea ice are reproduced through a scaling approach, and the accuracy level in
predicting the energy decay rate and dispersion process is evaluated.
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2. Problem Statement
2.1. Overall Description of the Problem

An integrated ice layer covering water with a finite depth of D is considered, as shown
in Figure 1. Assuming that a monochromatic wave with a height of H0 at a point with a
longitudinal location of x0 travels into the cover, its wave height is decayed exponentially,
as per

H(x) = H0 e−αi(x−x0). (1)
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Here, αi is the amplitude decay rate which is sensitive to the fluid properties and
the mechanical behavior of the ice covering the liquid. Water waves are assumed to be
harmonic and regular. This allows us to formulate the vertical motion of the free surface in
an open-sea condition, as

ξ(x, t) = H/2 cos(kox−ωt). (2)

In Equation (2), ω = 2π/T is the frequency and ko = 2π/λo is the wavenumber of
the open-sea condition, which are linked together through

ω2 = gk tanhkD. (3)

In Equation (3), g is the gravity acceleration constant and equals 9.81 m/s2.
When the interaction between water waves and a viscoelastic cover is studied, one of

the main challenges is to find the value of αi and the potential changes in the wavelength. In
the next sub-section, the theoretical background, and formulations, which can be employed
to calculate these two parameters, are explained.

2.2. Theoretical Background

The mutual interaction between water waves with a viscoelastic ice cover can be
formulated by using fundamental theories. It is assumed that a thin layer of viscoelastic
body covers the upper layer of water. This layer has a thickness of h. The domain is
assumed to have a finite depth of D, and the extent of the cover is hypothesized to span
over an infinite length. Water fluid is assumed to be ideal, and thus the potential field
represents the fluid motion in the domain. Hence, the fluid motion obeys the Laplace
equation. The solid motion of the cover is hypothesized to be very small. Thus, it follows
the Euler–Bernoulli beam theory. The cover is supposed to be viscoelastic, as mentioned.
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Accordingly, stress and strains can be linked through a viscoelastic model. A Kelvin–Voigt
model is assumed to link up the stress (σ), strain (ε), and strain rate (

.
ε), as

σ = Gε + η
.
ε. (4)

Here, G is the shear modulus of the material and η is the dynamic viscosity of it.
By assuming that solid displacements of the ice layer obey the Euler–Bernoulli beam

theory, a kinematic boundary condition for the upper layer of the water can be formulated.
Then, the dispersion can be built by assuming a harmonic motion for the fluid, as per

ω2 =

(
Gh3

6ρw
k4 − iωρiη

h3

6ρw
k4 − ρi

ρw
ω2 − g

)
k tanhkD. (5)

In a deep-water condition, the above equation has five roots for k, four of which are
complex numbers. The dominant root, related to progressive wave, is written as

k = ki − iαi. (6)

Here, ki (the real part) is the wavenumber related to waves propagating in the ice-
covered sea and αi (the imaginary part) is the wave height decay rate, which was previously
introduced in Equation (1). Note the above method was originally formulated by Fox and
Squire [31] but was adopted for KV material by Moisg et al. [32]. Discussions on the roots
of the dispersion equation are presented in Fox and Squire [31].

2.3. Scaling Law

To study the role of a viscoelastic cover on wavenumber and wave amplitude of waves
traveling from uncovered sea to covered sea, dimensionless parameters are identified. To
do so, Buckingham Pi-theorem is employed. Parameters that are involved in the problem
are the wavelength in open-sea (λo) condition, wavelength under the viscoelastic cover (λi),
amplitude decay rate (αi), Young’s modulus of the cover (E), ice viscosity (η), the thickness
of cover (h), water density (ρw), the density of the cover (ρi) and the gravity acceleration (g).
Three main physical parameters, mass, time, and length, are incorporated. Accordingly,
five dimensionless numbers should be formulated. The following dimensionless numbers
are identified:

The first dimensionless number is normalized wavelength in open water, which can
be formulated as

λ̂o = λo/h. (7)

This number represents the ratio of the wavelength over the thickness of the cover.
The second dimensionless number is

k̂i = ki/ko = λo/λi. (8)

This number describes the relative wavenumber under the ice cover (see, e.g., in [34]).
The third dimensionless number is formulated as

α̂i = αi/ko. (9)

α̂i indicates the normalized decay rate. The fourth dimensionless number is

Ê =
√
(E/ρi)/

√
(gh), (10)

which describes the elasticity per unit mass (see [47]). The other dimensionless number is

η̂ = η/ρi
√(gh3

)
. (11)
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The above number indicates the viscosity per mass of the material. The last dimen-
sionless number is

ρ̂i =
ρi
ρw

, (12)

which is the relative density of the ice. The normalized dispersion equation of a deep-water
condition, i.e., tanhkD ∼ 1, is built as

Êρ̂(2π)3

12(1− ν)λ̂4
o

k̂5 − i
η̂ρ̂(2π)3

6(1− ν)λ̂4
o

k̂5 − k̂− ρ̂

λ̂o
k̂− 1 = 0. (13)

A =
Êρ̂(2π)3

12(1− ν)λ̂4
o

,B =
η̂ρ̂(2π)3

6(1− ν)λ̂4
o

,C =
ρ̂

λ̂o
.

Thus, there are three dimensionless parameters A, B, and C which determine the
dispersion relation. Note that λ̂o is related to wave frequency through an open-water
dispersion relationship. The root of the above equation gives the relative wavenumber.
When we present dispersion curves, we plot wavenumber versus wave frequency. For this
aim, we plot kh versus dimensionless frequency which is a product of ω and

√
h/g.

3. Computational Model
3.1. Problem Formulation

A two-dimensional fluid domain that is bounded at its two ends at the left and right is
considered. This fluid domain is filled with two phases: air and water. The water depth is
D. In this domain, a floating viscoelastic solid body is located that can mutually interact
with water waves. Fluid is also assumed to be incompressible.

We define three unknown parameters for the fluid flow. The first one is the fluid
velocity at any point in the domain, which is shown by v = v(x; t). The next one is the
pressure p = p(x; t), which is equal to the atmospheric pressure above the water surface
and varies linearly by the increase in the depth under the water when there is no fluid
motion. As the fluid particles move from one point to another, pressure changes due
to the changes in the momentum. The last unknown parameter is the volume fraction,
F = F (x; t), which denotes the volume fraction field.

We use an Eulerian approach to formulate the equations governing the velocity and
pressure fields. The fluid is assumed to be Newtonian. As such, the shear stresses, generated
near the walls and the boundaries, change linearly with the increase in the velocity gradient.

Considering a two-phase fluid domain, two equations govern the velocity and pressure
fields in the domain. The first one is the continuity equation of an incompressible fluid
flow, which is given by

∇·v = 0. (14)

The next equation is the momentum equation, which was formulated by Navier and
Stokes, connecting velocity and pressure fields of Newtonian flow. The Navier–Stokes
equation is given by

ρm

(
Dv
Dt

)
= −∇p + µm∇2v +

1
3

µm∇(∇·v) + ρmg, (15)

where ρm and µm denote the effective values of the fluid (density and dynamic viscosity).
The values of these two parameters vary at different points of the two-phase fluid domain
depending on the volume fraction of each phase, g is the gravity vector.

The volume fraction field (F ) is applied to model the air–water flow and obeys the
following equation:

∂F
∂t

+ v·∇F = 0. (16)
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The properties of the air–water mixture are computed by

ρm = (1−F )ρa +Fρw, (17)

µm = (1−F )µa +Fµw.

The left and right ends of the domain are respectively equipped with a numerical
wavemaker and a numerical wave damper. The numerical wavemaker generates linear
water waves with the frequency of ω. The velocity profile of the fluid motion generated by
the surface waves obeys a linear theory as{

vx(x, t) = H
2 ωekz cos(kx−ωt),

vz(x, t) = H
2 ωekz sin(kx−ωt).

(18)

On the floor of the fluid domain, an impermeable sea-bed is considered. No-slip
condition is satisfied on this surface, and thus shear stresses may emerge. The upper
surface of the domain is an open atmosphere boundary (see Figure 2).
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The viscoelastic body is identified as the solid domain. We present the equations
governing this domain by using a conservative-based approach. The length and thickness
of the solid body are L and h, respectively. Assuming that motions in the solid body are
small, we can neglect the difference between the deformed and undeformed configurations.
We define the relative displacement in the solid by the vector u(x; t). The motions obey a
conservation equation, given by

∫
ρB

∂2u
∂t2 dΩS =

∮
ΓS

n · σ dΓS +
∫

ΩS

ρBbdΩS. (19)

Here, ΩS is the solid domain, and ΓS indicates the surfaces of the solid. b is the body
force vector, σ is the stress tensor which is related to the strain tensor (e) by the general
Maxwell equation, as

σ(t) =
∫ t

−∞
g(t− s)2µeds + κ Tr[ε]I g(t) = γ∞ + ∑N

i=1 γi exp(−t/τi). (20)



J. Mar. Sci. Eng. 2022, 10, 1220 8 of 26

In the above equation, γ∞ is the Young’s modulus of the elastic element, and γi is the
Young’s modulus of the i-th element of the model. In addition, Tr is the trace operator. τi is
the relaxation time of the i-th element, and is found as

τi = ηi/γi, (21)

where ηi is the viscosity of the i-th element. e is the deviatoric component of the strain
tensor, which is given by

e = dev(ε) = ε− 1/3tr[ε]I. (22)

Here, I is the unit matrix and ε is the strain tensor, which is calculated as

ε = symm[∇u] =
1
2

(
∇u +∇uT

)
. (23)

All surfaces of the solid are surrounded by fluid (either air or water). Conditions
of a fluid–solid coupling boundary are therefore satisfied on these surfaces. This means
that, first, kinematic boundary conditions govern the motion of the fluid–solid structure,
i.e., velocity, and displacements of the solid and fluid particles are equal on the fluid–
solid surfaces:

uF = uS, (24)

vF = vS.

In addition, dynamic boundary conditions are also satisfied on the fluid–solid bound-
ary as

n·σF = n·σS, (25)

where n is the normal vector. σF and σS, respectively, refer to the fluid and solid stress tensor.
The stress tensor generated by the fluid motion (σF) is computed by

n·σF = −pI + τ, (26)

where τ is the shear stress tensor and p is the fluid pressure. The traction at the fluid–solid
interface is related to the velocity of solid as

n·σS = −pni + µni·∇vt − 2µm(∇s·vs)ni + µm∇svs. (27)

Here, ∇s = ∇− nn·∇, which is the surface tangential gradient operator.

3.2. Computational Technique

The problem is solved by using OpenFOAM code, which allows us to decompose the
equations governing the fluid and solid domains by using the finite volume method (FVM).
The solids4Foam library is used [48], by employing which the coupled fluid–structure
interaction problem can be simulated numerically. The upstream length is set to be greater
than 3λo and the downstream length is set to be greater than 6λo in all tests. This prevents
any artificial effect that the body can have on the wave generation.

The transient terms of both solid and fluid motions are decomposed by using an
implicit method. Convection terms are decomposed by using a second-order method.
Diffusion terms are decomposed by applying a second-order method. The Gauss linear
method is used for the numerical solution of the unknown matrices. The tolerance values
of the pressure and velocity are respectively set to be 10−8 and 10−6. The fluid problem is
solved by using the interFoam solver. The pressure correction method is performed with a
tolerance of 0.001. The momentum equations are solved by applying a Pressure-Implicit
with Splitting of Operators (PISO) algorithm. Water waves are generated by using the
waves2foam library [49,50]. Waves are generated at the left boundary. A relaxation zone as
long as λo is defined forward the wave-maker. This allows water waves to be developed
over a wavelength distance and decreases numerical errors. Waves are dampened near the
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right end of the domain, where a damping zone is generated. Thus, no wave reflection
occurs. The damping zone spans over a length of γλo, where γ is set to be equal to 2. The
Courant number is set to be lower than 0.5 at all time steps. This stops the growth of errors
over time and simulations may not diverge.

The water surface is initialized to be calm, and then water waves are generated. A
ramp time is set to avoid any sudden change in the water surface elevation. This ramp
time is set to be two times greater than the wave period. Simulations are run up to 17 wave
periods, which ensures that 15 cycles of desirable regular waves were simulated to capture
valid data. Data are sampled with a frequency of 1000 Hz. Readers interested in simulating
wave-structure interaction using OpenFOAM are referred to [51].

A structured mesh strategy is used as shown in Figure 3. Orthogonal cells are gen-
erated as the geometries of both fluid and solid domains are very simple. Cells are set to
have finer size near the free surface, and in the vicinity of the cover. In the free surface
neighborhood, the ratio of the length of the cell over its height has a maximum value of
1.5, which cancels out the artificial numerical energy damping that can be triggered by the
cell size. A mesh study is also performed to evaluate the effect of cell size on the generated
waves, and to find the cell size that can be employed to simulate the problem. The results
of the mesh study are presented in Appendix A. In the solid domain, cells are set to be
structured as well. The longitudinal motion of the solid body is stopped by defining vertical
virtual patches, on which the shear stress is set to be zero. This means that, while these
patches transport the momentum, they never have any longitudinal motion. The mesh
motion is performed by computing the velocity of the fluid–solid interface. The mesh is
regenerated at every single time step. A tolerance of 10−6 is set for the cell motions.
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Figure 3. The mesh used to solve the wave–ice interaction in the present research. The structure of
the mesh generated in the fluid domain is shown on the left, and the one related to the solid domain
is shown on the right. Zoomed-in views are indicated in the circles.

4. Studied Cases

Three different sets of experiments are studied in the present research. Related ex-
periments took place in flume and in an actual Arctic field. The first set of flume tests
were carried out by Sree et al. [52], who documented the wave interaction with viscoelastic
covers. The second set of flume tests were carried out by Yiew et al. [53], who measured
dispersion and dissipation of gravity waves traveling through a continuous ice sheet. The
Arctic field tests were carried out by Voermans et al. [33], who measured wave dispersion
and dissipation in landfast ice. The first set of experiments helps us to evaluate the validity
of the model. The second and third sets of experiments help us to find the viscosity of ice
and evaluate the ability of the model in simulating wave–ice interaction. Meanwhile, a scale
effect study is also performed to examine whether the present computational fluid–solid
model follows the scaling law or not.
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5. Results and Discussion
5.1. Viscoelastic Cover Exposed to Water Waves

The first set of tests are performed to model interactions of four different solid covers
with water waves, aiming to evaluate the accuracy of the method in the reconstruction of
wave interaction with a viscoelastic sheet. Tests were performed by Sree et al. [52]. Decay
rates and the dispersion process were measured. Through dry dynamic tests, the solid
material was observed to follow the KV model. The summary of the measured storage and
loss moduli is presented in Figure 4.
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Figure 4. Measured values of storage (circles) and loss (triangles) moduli. The upper row shows
the mechanical properties of covers 1 (left) and 2 (right), and the lower row shows the mechanical
properties of covers 3 (left) and 4 (right). The data were measured by Sree et al. [34].

In the present research, as stated before, a Maxwell model is used to calculate the shear
stress generation in the solid cover. The storage and loss moduli of a Kelvin–Voigt material
are given as

G′ = G, (28)

G′′ = iωη. (29)

In addition, the storage and loss moduli of Maxwell material are formulated as

G′ =
G
(
τ2ω2)

(1 + τ2ω2)
, (30)

G′′ = i
G(τω)

(1 + τ2ω2)
. (31)

To run the model, the storage and loss moduli are kept constant, and the relaxation time
and the shear modulus are calculated. Here, it should be noted that it is more reasonable to
assume that the loss moduli are linear functions of frequency, as seen in Figure 4. However,
as the present computational approach embedded in OpenFOAM does not include the
Kelvin–Voigt model, we have used the Maxwell model.
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5.1.1. Viscoelastic Cover Exposed to Water Waves

In this sub-section, the results corresponding to the wave interaction with viscoelastic
covers considered in the present research are presented. Simulations are run for four
different covers with different material properties. The main aim is to evaluate the accuracy
of the computational fluid–solid model and the setup in numerical replication of the
problem. In one case, the left end of the cover is set to be fixed. Such a scenario resembles
the interaction of water waves with a cantilever beam. In the experiments performed in
the wave flume, the left end was set to be free. The cantilever simulation is run to evaluate
whether the fixed end can affect the results or not.

Samples of the recorded wave at two different points on the cover, located with a
distance of 0.2 m from each other, are shown in Figure 5. The presented curves are the time
series of the deformation of the cover.
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Figure 5. Wave motion at two different points of the viscoelastic cover. The data are related to the
waves with a period of 0.65 s. Here, Hin is the height of the incoming wave.

As seen, there is a time lag between the recorded wave motions at these two points,
signifying that the wave celerity can be calculated by using the time differences between
similar phases. This was carried out later.

It can also be seen that the amplitude of the blue curve is slightly smaller than that of
the red curve. This confirms that waves are reduced as they propagate into the viscoelastic
cover. This well matches with the physics of the problem since the cover is viscoelastic, and
is expected to dampen the energy of the fluid motion.

5.1.2. Example of Wave Attenuation

The wave height at any point of the cover can be calculated. This has been carried
out by using a zero-crossing approach. Wave heights of fifteen cycles are computed and
then the average value is calculated. Examples of the recorded wave heights along the
viscoelastic cover are shown in Figure 6. One of the examples corresponds to a cover
clamped at its right end, and the other shows the wave height variation of a viscoelastic
cover having two free ends. Presented results in this figure are related to waves with an
open-water wavelength of 72 h (wave period of 0.75 s). Two solid curves demonstrate the
computed wave heights. The dashed curves show the exponential curves fitted through
the numerical data.

The cover with one fixed end is seen to lead to a lower damping rate, compared with
the cover having two free ends. The possible reason for this behavior is the elastic wave
motion reflected by the clamped end, which can result in a partial standing wave in the
cover. The damping ratio of the free–free cover is closer to that of the experimental value,
measured by Sree et al. [52].

5.1.3. Example of Wave Attenuation

As was seen in Figure 5, there is a phase lag between the recorded waves at two
different points. Hence, the phase speed of waves traveling into the cover can be computed.
Consequently, the wavelength and wavenumber can be calculated.
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Figure 6. Reduction in the wave motion along the viscoelastic cover exposed to water waves. The
red and the blue curves show the data found by free–free and free–fixed conditions assumed for the
solid body.

The phase lag between two points, located with a distance of δx = 12.5 h (correspond-
ing to 0.125 m) from each other, is computed. The phase speed is calculated by using

ci =
δx
δt

. (32)

Here, δt is the time lag between two consecutive wave crests. Then, the wavelength is
computed by

λi = ciT. (33)

By using the computed wavelength, the wavenumber under the viscoelastic body is
computed by

ki = 2π/λi. (34)

Wavenumber under the viscoelastic cover is computed over fifteen cycles at different
points. Then, the mean value of the phase speed recorded at every point is found, which is
compared against experimental data in one of the upcoming sub-sections. Figure 7 shows
examples of the recorded phase speed along the viscoelastic cover. This figure includes four
different panels, each of which demonstrates the results corresponding to a different wave
period. In all panels, the phase speed is normalized by using phase speed of the open-sea
condition, which helps us interpret the data more easily. As is apparent, phase speed does
not have a constant value along the cover. It varies locally, though the variation is not very
significant. It can be concluded that the phase speed is practically constant along the cover
and the variations are likely to be caused by the artificial effects. The phase speed of the
shortest wave is seen to be greater than 1.0, signifying that the developed wave becomes
longer under the cover.

5.1.4. Snapshots

Snapshots of the simulations are shown in Figure 8, providing us with an image of
the water surface profile around the viscoelastic cover interacting with water waves. Four
different panels are shown in this figure. Each of these panels corresponds to the water field
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around the cover at a specific instant. The time interval between the snapshots is 0.25 T.
This covers a full wave period. Water is marked with yellow and the cover is marked with
red. As seen, the wave crest in the front field, left, is in a different location at each instant.
In addition, the transmitted wave field, right, is seen to be lower compared to the waves
observed in the left. This demonstrates that wave height reduces under the effects of the
viscoelastic cover, which matches with the physics.
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5.2. Validation of the Model

The present computational fluid–solid model is validated by comparing its results
against the experimental work of Sree et al. [52], as explained previously. Sree et al. [52]
documented the decay rates and wavenumbers of covers interacting with water waves
over a wide range of wavelengths.

Figure 9 shows the normalized attenuation rates as a function of normalized wave-
length in an open-sea condition. Note that the cover has a finite length, and it is reasonable
to plot decay rate as a function of wavelength of the open-water condition (as in seakeeping
analysis). Note that the decay rate versus frequency plots shall be presented in Section 5.6.
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Figure 9. Comparison between computational and experimental decay rates. Experimental and
computational data are respectively shown by yellow and blue markers. The black plot shows the
predictions of Equation (5). The experimental data are taken from Sree et al. [52].

Four different panels are shown in Figure 9. Each panel displays the data correspond-
ing to a specific cover. The mechanical properties of these covers have been described
earlier in Figure 4. In addition, the values that the theoretical model gives are also plotted
in this figure. As seen, α̂i might change and decrease with an increase in λo over the tested
wave condition. Experimental data and the ones that are predicted by the computational
fluid–solid model are seen to be close to each other in most cases. The attenuation rates
of cover 1 and cover 2 are seen to be slightly over-predicted by the present model. These
two covers have lower rigidity. Hence, larger stresses may emerge in the body when it
flexes. Thus, larger errors are more likely to occur. Attenuation rates of cover 3 and cover 4,
however, are computed with a greater level of accuracy. The theoretical model is seen to
under-predict the attenuation rates significantly. The attenuation rate that the theoretical
model gives monotonically reduces with the increase in open-water wavelength. The theo-
retical model is formulated by considering viscoelastic behavior for the material. However,
other mechanisms, such as water damping, or added mass variation over the length of
the cover, may contribute to energy dissipation. The contribution of these mechanisms to
energy dissipation is more likely to be great in small frequencies. Inasmuch as the present
computational FSI model considers fluid motion around the body without restricting the
fluid motion-induced damping, it can capture the effects of the mentioned mechanisms.
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Thus, its data are much closer to experimental data compared to the ones predicted by the
theoretical model.

Figure 10 shows a comparison between dispersion curves found through experiments
and those of the present model. The horizontal axis refers to the dimensionless wave
frequency and the vertical axis shows the product of wavenumber and thickness of the
cover. The curves constructed by the theoretical model are also plotted. The open-water
dispersion curve is also added to the figure.
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Figure 10. Dispersion curves of waves traveling into uncovered water (dash-dotted red curve) and
covered water (markers and solid curves). Experimental and computational data are respectively
shown by yellow and blue markers. The black plot shows the predictions of Equation (5). The
experimental data are taken from Sree et al. [52].

The wavelength in the covered water is longer than that of the open-water condition
when open-water waves are short, i.e., wavenumber in the covered region is smaller than
that of the uncovered region. This has been seen to occur when waves interact with covers 3
and 4. However, cover 1 and cover 2 do not increase the wavelength of generated waves
(the markers are not below the red curve). The reason for this behavior is that covers 3 and 4
have larger Young’s moduli, and thus they can increase the wavelength more significantly.

When a progressive wave has a shorter frequency, the viscoelastic cover may make
them shorter, compared to open-sea conditions (markers can be above the red curve). How-
ever, note that this change, the decrease in the wavelength (increase in the wavenumber),
is not significant. The lengths of waves obtain 95% of their initial value for covers 1 and
2. Interestingly, the cover with a larger stiffness value, which has larger shear modules,
makes waves longer at a wider range of wave frequency. This shows that the stiffness
of the cover has a very important role in the dispersion relationship. The results of the
computational fluid–solid model and experiments are seen to be in fair agreement. There
are some differences, which might be due to numerical errors of the model, possible wave
reflection from the free end or even the sampling frequency used for recording the data.

The theoretical model works with a great level of accuracy. As discussed previously,
the theoretical model under-predicts the attenuation rate. Here, a very important message
can be taken. When the dispersion and attenuation rate of a viscoelastic cover with a
finite length are calculated by using a theoretical model, the attenuation coefficient may be
computed with a large error, but the dispersion of waves is computed with a great level of
accuracy. Note that some experiments have proven that the presence of notches or cracks



J. Mar. Sci. Eng. 2022, 10, 1220 16 of 26

also affects the accuracy of the theoretical model. However, for the present viscoelastic
cover, the mass of the body is homogeneous, and there is no sudden change in vertical
displacement and stresses. Any crack or sudden change in the body can affect the physics
of the problem and, of course, can decrease the effects of stiffness/rigidity of the cover
(Squire and Dixon [54,55]).

5.3. Results of Different Scales

The scaling law that can be used to study the interaction between water waves and
a viscoelastic cover was explained earlier. In this sub-section, analyses are performed to
understand whether different scales give similar data or not. To do so, three different
thicknesses are considered. The values of Ê and η̂ of all three covers are set to be constant.
Then, their responses to four different waves with normalized wavelengths of 56, 76, 100
and 125 are numerically simulated.

The computed data are shown in Figure 11. The left panel shows the relative wavenum-
bers, and the right panel shows the normalized decay rates, respectively. As evident,
relative wavenumbers of all three different thicknesses follow each other. There are some
differences between them, though the difference is not noticeable. The most possible reason
for differences that are observed is the scale effect. The normalized decay rates of different
scales also tend to align. Again, they might be different from each other, but the discrepancy
between attenuation rates of various scales is not remarkable, which is likely to be caused
by the scale effects.
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Figure 11. Results of different scales found by using the present computational model. Left and right
panels respectively show the dispersion and attenuation rates at different incoming wavelengths.

The phase speed variation over the length of the viscoelastic covers, having different
thicknesses, is displayed in Figure 12. As seen, the local phase speeds of all three different
thicknesses are close to each other. Their mean values are very close to each other. The
local values of phase speed of different cases are slightly different from each other. These
differences are not significant, and they were expected. It is almost impossible that all three
different scales result in highly similar local phase speeds at every point.

5.4. Freshwater Ice Cover Exposed to Water Waves

As mentioned previously, the present computational FSI model is used to replicate
the mutual interaction between water waves and freshwater ice. The experiments of
Yiew et al. [53] are numerically reproduced by using the present model. Two different ice
covers with thicknesses of 1 and 1.5 cm are modeled.

Wave motion in the ice cover is computed over fifteen cycles. The recorded wave
heights are used to compute the attenuation rate, phase speed and wavelength. The
viscosity of the ice was not measured in the experiments. To run the problem, tests for
different viscosities were run, which helped us to understand the effects of change in
viscosity on the attenuation rate, and to find the proper value of the viscosity that can
be prescribed for the ice viscosity. Figure 13 shows the effects of change in viscosity
on recorded wave heights and the attenuation rate. The results presented in this figure
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correspond to waves propagating into a cover with a thickness of 1 cm. The left panel
shows the variation in wave height over the length of the plate for four different considered
values for ice viscosity. The data correspond to a wave period of 1 s (λ̂o = 125). As seen, an
increase in the normalized viscosity from 1.2× 107 to 3.1× 107 leads to an increase in the
decay rate. However, when the normalized viscosity increases from 3.1× 107 to 1.2× 109,
the attenuation rate decreases. The wave height along the ice cover with a dynamic viscosity
of 1.2× 109 is very similar to that of an elastic body, i.e., recorded waves have the largest
heights at both ends, and they are minimized at the middle of the cover.
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Figure 13. Effects of dynamic viscosity on the wave decay along an ice cover. Left panel shows the
wave decay over the length of the cover, and right panel shows the computed attenuation rates (found
through exponential curve fitting). The horizontal line refers to the value reported in experiments of
Yiew et al. [53].

The reason for the observed trend for α̂i as a function of η̂ can be explained by using
the viscoelastic model employed to solve the solid problem. As was explained earlier, the
Maxwell model is used to compute the stresses in the body. The loss moduli of the solid
model G′′ depend on both frequency and relaxation time. The differentiation of G′′ with
respect to relaxation time is

dG′′

dτ
=

Gω
(
1− τ2ω2)

(1− τ2ω2)
2 . (35)
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The critical relaxation time is

dG′′

dτ
= 0 → τ = ±1/ω. (36)

For a wave period of 1.0 s, the peak value of the attenuation rate occurs at τ = 0.16 s,
which is equivalent to η̂ = 6.3× 107. This means that the attenuation rate monotonically
increases with the increase in viscosity as long as η̂ does not exceed η̂ = 6.3× 107. However,
as normalized viscosity becomes greater than η̂ = 6.3× 107, the attenuation rate decreases.
This well matches with the results observed in Figure 13.

The right panel of Figure 13 shows the computed values of attenuation rate for different
prescribed values for η̂. The results presented in this figure correspond to a wave period
of 0.6 s (λ̂o = 56). As seen, attenuation rate increases with an increase in η̂ when η̂ < 108.
For greater values of viscosity, the attenuation rate decreases. This well matches with
the theoretical supposition. The peak value of the attenuation rate is expected to occur
at τ = 0.1 s, which is equivalent to a normalized viscosity of η̂ = 6.3× 107. A dashed
line is plotted in the right panel of Figure 13, indicating the attenuation rate measured in
experiments. As can be seen, η̂ = 1.28× 107 results in an acceptable value of attenuation
rate, which is close to the experimental result.

Figure 14 displays the attenuation rate of covers with thicknesses of 1 (left) and
1.5 cm (right). Both experimental (* marker) and numerical data (o marker) are shown in
this figure. Additionally, a dashed curve is plotted in each panel, showing the attenuation
rates computed by using the theoretical method (which is built based on the Kelvin–Voigt
model). The results of the present fluid–solid model are computed by setting the normalized
value of the viscosity to be η̂ = 1.28× 107. The attenuation rates of the dashed solid curves
correspond to η̂ = 3.2× 108 (which is equivalent to a dynamic viscosity of η = 108 Pa.s). It
is important to note that the difference between the dynamic viscosity of both models (the
present computational one and the theoretical ones) is reasonable because each of them is
built by assuming a different behavior for a viscoelastic substance. As seen, the present
computational results agree well with experimental data. However, the theoretical model
under-predicts the attenuation rate of both ice covers. The theoretical model is less accurate
in the prediction of the attenuation rate of the thicker ice. Despite the fact that the approach
used to connect the shear stresses and strain rates in each model is different, the present
computational model considers the fluid-based energy damping which is absent in the
theoretical model.
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Figure 14. Comparison between decay rates given by the present computational model and the
experimental values presented in Yiew et al. [53]. The dashed curves show the decay rate vs. open-
water wavelength curves constructed by using Equation (5). Left and right panels respectively show
the results corresponding to the ice covers with thicknesses of 1 and 1.5 cm.

Dispersion curves of freshwater ice covers are plotted in Figure 15. Experimental and
numerical data are shown in this figure. In addition, the results of the theoretical model and
open-water dispersion relationship are displayed in this figure. Waves are seen to become
shorter under the freshwater ice cover, i.e., markers are below the dash-dotted curve. The
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experimental and numerical data related to 1.5 cm cover are seen to be in fair agreement,
whereas they do not favorably match for the 1 cm cover. The artificial effects related to a
thinner cover may be more significant, decreasing the effects of cover on the wavenumber.
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Figure 15. Dispersion curves of waves propagating in the freshwater ice (dashed curve and markers)
and open-water conditions (dash-dotted blue curve). Experimental data are taken from [53]. The
dashed curve is constructed using Equation (5).

The theoretical model is seen to under-predict the wavenumber. This means that
this model predicts longer waves (compared to measurements) in the freshwater ice. This
matches with the observations of previous researchers, who performed experimental
studies, and compared the measured wavelength against the theoretical models. In some
of these studies, wavenumber was seen to be under-predict by the pure elastic model,
which is likely to be caused by the boundary conditions of the solid body, and the possible
nonlinear motion occurring in it (see examples in Sree et al. [34]).

5.5. Sea Ice Cover Exposed to Water Waves

At the final stage, the interaction of water waves with sea ice cover was simulated by
using the present computational fluid–solid model. Recorded waves were measured in a
recent field experiment, performed by Voermans et al. [33]. The sea ice was modeled by
using the scaling law since running simulations for a real-scale condition is not efficient in
terms of computational time. The real sea ice had a thickness of 35 cm, which was scaled
into a 1.25 cm viscoelastic cover. Through the field measurements, the recorded wave
periods were seen to vary between 5 and 15 s. For a viscoelastic cover with a thickness of
1.25 cm, wave periods varying from 0.85 to 2.5 s covered the mentioned range.

Wave amplitude attenuation and dispersion were computed under the ice cover by us-
ing the present computational fluid–solid model. To run the simulations, Ê was prescribed
to be 763. This number corresponds to a Young’s modulus of 2× 109 Pa. Different values
for η̂ were considered, and the related attenuation coefficients were computed. For the
tested wave periods, the maximum attenuation rate occurred at 0.13 s < τ < 0.4 s.

This range corresponds to 107 < η̂ < 2.85× 107. This signifies that an increase in the
normalized viscosity leads to an increase in attenuation rate as long as its value is smaller
than η̂ ∼ 1.9× 107 (note that 1.9× 107 is the average value of the mentioned range). The
maximum attenuation rate is expected to occur when normalized viscosity is close to
1.9× 107.

Some runs were first performed by setting the normalized viscosity to be close to
the critical value of normalized viscosity. Attenuation rates are seen to be close to field
measurements when normalized viscosity is set to be η̂ ∼ 1.9 × 106. The predicted
values for attenuation rates are shown in Figure 16. Field data are also plotted in this
figure. Attenuation rates and wavelengths of the incoming waves were all normalized.
Thus, the field data and the ones found by using the computational fluid–solid model
can be compared against each other. In addition, the attenuation rates were computed
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by employing the theoretical model and setting two different values of η̂ = 2.1 × 105

(corresponding to η = 108 Pa.s) and η̂ = 2.1 × 106 (η = 109 Pa.s) for the ice viscosity.
Therefore, the results of the computational fluid–solid model and the theoretical model
can be compared with each other. The results of the computational FSI model are seen to
be in line with the field data. The results of the theoretical model, however, do not match
with the field data. The results of the theoretical model decrease with a high rate when
normalized wavelengths are longer than 200 h. However, the field data and results of the
present computational fluid–solid model do not behave in this way. Instead, they slightly
decrease with the increase in wavelength, and at some wavelengths they experience a very
sudden and small increase or decrease, which can be caused by different mechanisms.
The sudden jumps in the attenuation rate, which can be seen in the results of the present
computational data, are likely to be caused by the solid vibration of the cover and the
boundary effects. The cover has a finite length with the upstream end being free, which
can lead to partial energy reflection from the free end. The largest jump is seen to occur at
the longest wave.
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Figure 16. Comparison between decay rate given by the model (o markers) and the measured data
(* marker) in the field tests of Voermans et al. [33]. The dashed and dotted curves show the decay rate
vs. open-water wavelength curves constructed by using Equation (5).

The normalized viscosity that has been used corresponds to a dynamic viscosity of
η = 2.3× 109 Pa.s. This value is greater compared to the value that was found to provide
the greatest accuracy in computation of the attenuation rate of the freshwater ice. The
possible reason for this discrepancy is the difference between the problems. First of all, the
previous tests are related to freshwater ice, which has a different viscosity compared to
sea ice. Second, the freshwater tests were carried out in a wave flume and ice had a finite
length. Flume walls and the other two ends of the ice can affect the attenuation rate. This
is much different from the landfast ice, where such artificial effects do not contribute to
energy dissipation. Finally, the model has been run for a cover with a thickness of 1.25 cm.
The scale effects can influence the result of the model as well. Overall, the results presented
in Figure 16 confirm that the present computational fluid–solid model can predict the
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attenuation of a consolidated ice cover with a proper level of accuracy. Its accuracy can
also be improved by modifying the setup and also reproducing more field tests, both of
which may help us to calibrate the model in future.

Figure 17 illustrates the dispersion curve of the waves propagating through the land-
fast ice. The results of the present computational fluid–solid model, field data and the
predictions given by the theoretical model are plotted in this figure. According to the field
data, wavenumbers of waves with greater frequencies become smaller as they travel into
the sea ice cover. This has been observed in simulations performed with the present compu-
tational fluid–solid model. The results of the computational fluid–solid model and the field
data fairly agree. This well shows that the scaling methodology used for reconstruction of
waves’ interaction with ice works. In addition, the theoretical model has a reliable level of
accuracy in the prediction of the wavenumber.
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Figure 17. Dispersion curves of waves propagating in the covered (markers and dashed curve) and
uncovered sea (dash-dotted blue curve). Field data (* markers) are taken from [33]. The dashed
curves show the dispersion curve constructed using Equation (5). The results of the present model
(circle markers) are found by running the model for small-scale ice.

5.6. Dependency of Decay Rates on the Frequency

Results of the present model are interpreted with the aim to understand the depen-
dency of the decay rate on the wave frequency. This can be very helpful in wave climate
modeling. As was seen in Figures 14 and 16, the results of experiments deviate from the
predictions of a previous theoretical model. This is more significant with longer waves.
The dissipation mechanism of the theoretical model is based on the viscoelastic behavior of
the material. The difference between its results and those of experiments is perhaps due to
the contribution of other dissipation mechanisms, as was explained.

The decay rates predicted by the present model are plotted versus wave frequencies
(Figure 18). The decay rate increases under the increase in the wave frequency, but the trend
of its increase alters at greater wave frequencies. Assuming there is a turning point at which
the decay rate follows a different trend, two different regimes can be introduced. In the
first regime (long-wave regime), the decay rate is proportional to ω4, and in the second one
(short-wave regime), the decay rate is proportional to ω2. In the first regime, fluid-based
energy damping, which can be due to turbulent behavior of the flow or radiation damping,
is dominant. Note that the former is not activated in the present research. In the second
regime, the solid-based energy damping is likely to be dominant. The frequency that marks
the sudden change in behavior of the decay rate as a function of the frequency is termed
critical frequency. Dimensionless critical frequency decreases with the increase in elasticity
number (note that this is not observed for cover 1; it can be due to the contribution of
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elastic modes or artificial errors). This signifies that the solid-based decay rate may dFigure
minate over a wider range of waves when the solid body has a larger elasticity number.
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present model.

Similar behavior for the decay rate was observed by Meylan et al. [56], who docu-
mented and analyzed decay rates of their field measurements which took place in the
Antarctic. They observed that decay rates of wave periods greater than 10 s grow with ω4,
but those of shorter waves grow with ω2. Assuming that ice was 1 m thick, the elasticity
number of their test would be ≈590. The critical dimensionless frequency of their data is
≈0.2 which is in between what is found for scaled ice (≈0.13) and cover 4 (≈0.33), which
have elasticity numbers of ≈763 and ≈40, respectively. This gives more credit to our
hypothesis, namely “the critical dimensionless wave frequency decreases with the increase in
elasticity number”. Finally, note that the data presented in Figure 18 are very similar to
experimental values and such an analysis could be performed using experimental data
as well.

6. Conclusions

In the present paper, a computational model was developed to replicate the wave
motion of a viscoelastic ice cover interacting with gravity waves. The model solves viscous
air–water fluid flow around a flexible body through a strongly coupled FSI approach. Both
fluid and solid motions were solved by using a conservative-based approach and the FVM
technique was employed to solve the equations governing the fluid and solid motions. The
fluid fields were reconstructed by solving the NS equations, and the solid material was
simulated through a Maxwell model.

The first set of simulations were run to evaluate the accuracy of the computational
fluid–solid model and the related setup. The available flume tests of Sree et al. [34] were
numerically reproduced by using the model. The results of simulations, including decay
rates and dimensionless wavenumber, were seen to follow experimental data. The present
computational approach was seen to be much more accurate than the theoretical model in
the computation of the attenuation rate, which provided a promising message about the
reliability of the model. Unlike the theoretical model, the attenuation rates predicted by the
present computational fluid–solid model do not decrease with the increase in wavelength
at a high rate. Instead, they decrease with a very slow rate, which fairly matches the
experimental results.

The second set of simulations were run to understand whether the model follows
the scaling law or not. Performing simulations for three different ice thicknesses, it was
demonstrated that the present computational fluid–solid model obeys the scaling law.
The dimensionless attenuation rates and wavenumbers of different scales were seen to
align with each other. Small differences were observed, which seem to be reasonable. It is
impossible to provide a 100% fitting between the results of different scales as the scale itself
can slightly affect simulations.
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The model was later used to simulate the interaction between water waves and ice
covers. Two sets of tests covering freshwater ice and sea ice were numerically reproduced.
The former was tested in a flume, and the other was tested in the real field. Throughout
manual fitting, tests were run for different values of viscosity for the freshwater ice. A
critical dynamic viscosity was seen to emerge. The attenuation rate was observed to be
maximized when this critical viscosity was prescribed for the ice. This behavior was
shown to fit with the nature of the Maxwell model, which was used to treat the mechanical
behavior of the viscoelastic ice. A proper value for ice viscosity was found, which was used
to compute the attenuation rate. The field tests were numerically replicated by scaling the
sea ice into a 1.25 cm cover. A proper value for the viscosity was found through a manual
fitting. The results of the model were seen to follow the field data. This confirmed that
the present computational model can capture the contribution of the different mechanisms
to energy dissipation. Such a good performance of the model in the computation of the
attenuation rate was seen for the flume tests of Sree et al. [52]. For the modeled sea ice, the
viscosity that was found to work with an acceptable level of accuracy was greater compared
to that for the freshwater ice. This may be caused by different mechanisms, including the
boundary effects, numerical errors, scale effects and the nature of ice, i.e., the difference
between the freshwater ice and sea ice. The results computed by the present model are
seen not to abruptly decrease with the increase in the wavelength. Based on the validation
series, it can be concluded that the present computational model can be used for simulating
the interaction between the consolidated ice and water waves.

An analysis was performed to interpret the behavior of decay rate as a function of
the wave frequency. Waves were hypothesized to fall into regimes: short-wave regime
and long-wave regime. In the short-wave regime, decay rate was demonstrated to grow
with ω2, though it was seen to grow with ω4 in the long-wave regime. In a short-wave
regime, the viscosity nature of the cover is believed to be the main mechanism modifying
waves, though the fluid motion is likely to be the main dissipative mechanism attenuating
waves. The ranges of short waves were shown to be increased under the increase in
elasticity number, suggesting that solid-based energy damping of a body with a larger
elastic modulus may be in effect over a greater range of waves.

All in all, the present computational fluid–solid model was seen to be capable of
simulating the interaction between viscoelastic bodies and gravity waves. As the method
uses the Maxwell model to link stresses to strains and their rates, the Maxwell model is
expected to have an acceptable level of accuracy in computation of the attenuation rate
and dispersion under the viscoelastic covers. The computational FSI model can be further
calibrated in future. The main concern is the possible effects of the trailing edge on water
waves, which can increase the errors in the computation of wavelength and dispersion
under the body. This is more probable when waves are longer. In addition, the present
computational model can be used to simulate the wave-induced motions of viscoelastic
bodies with one fixed end. Such a problem has not been simulated by using the FVM and a
viscous fluid assumption, but it has been recently solved by using potential flow theories.
Since the present model is less restricted in different aspects, it can capture the frictional
energy dissipation and the boundary layer development, which are lacking in the potential
flow theory that is currently used for most occasions. Thus, it is recommended to use the
present computational FSI model for simulating strongly nonlinear interactive problems,
where the high-order approach is expected to obtain further insights into relevant physical
and engineering problems.
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Appendix A

As was explained in the manuscript, a mesh study is performed to select the proper
mesh resolution that can be employed to reconstruct the wave interaction with the vis-
coelastic cover. Water waves are generated in different grids. For each grid, different
numbers of cells are placed in the region spanning from z = −0.5075H to z = −0.5075H.
Waves are generated and water surface elevation is sampled at a point with a position
of x = 4λo behind the numerical wave-maker (left end of the numerical tank).

The acquired wave height and the wave crests are sampled over 15 cycles. The mean
values are then found and plotted in Figure A1. The results are seen to converge with a
cell size of ∆z = 1.15H/58. Therefore, this mesh size is used to simulate the problem. Note
that the results presented in Figure A1 correspond to water waves with a period of 0.8 s.
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