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Almost three years have passed since the publication of the first Special Issue on three-
dimensional underwater acoustics in 2019 [1], and some new ideas have since emerged
in this field, while others have been developed to the extent that a new paper collection
focused on the modelling of sound propagation has become necessary.

When planning this Special Issue, we intentionally extended the scope (as com-
pared to [1]) and attempted to cover two-dimensional propagation alongside with three-
dimensional models and effects. The paper collection is relatively small but well-focused.
It consists of thirteen research works of three different kinds.

Papers of the first kind [2–7] are related to new or insufficiently investigated physical
effects related to sound propagation in complex media with various inhomogeneities,
including undulating bottom [3], variations in acoustical properties of the bottom across the
propagation path [2], the presence of seamounts [4], and bubbles [6] or internal waves [7] in
the water column. It is remarkable that both new 2D [3,7] and 3D [2,4] effects are reported
in these papers. In most of them, new interesting features of sound fields are investigated
both theoretically and experimentally, and the modeling results are compared with the
measurement data. The spectrum of theoretical approaches used by the authors covers
almost all techniques existing in theoretical underwater acoustics, including parabolic
equations theory [3], normal modes [2], and ray-theoretical considerations.

Papers of the second type are related to applications of underwater acoustics where
the models of sound propagation play a significant role [8–11]. These include geoacoustic
inversion [9], source-bearing estimation [8], a technique that allows one to estimate both the
source position and the media properties [11], and the problem of estimating the acoustic
noise levels over some water areas neighbouring the source [10]. For example, the novel
geoacoustic inversion technique from [9] requires the precise calculation of ray paths (which
is performed using the BELLHOP code) that are necessary to estimate travel times of head
waves. Source image methods are used in [8] to analyze the effect of horizontal refraction
onto the source bearing estimation. This study once again highlights the need in accurate
and efficient 3D models for the solution of everyday practical problems of ocean acoustics.
Similar conclusion can be drawn from the paper [10], where the authors show that 3D
effects are important for the estimation of noise levels in shallow-water environments.

There are also three papers in which some advances in mathematical approaches to
the modelling of sound propagation are reported [12–14]. In particular, the study of [13]
describes a versatile and robust finite-element-based method for solving sound propagation
problems. In the paper [14], which is dedicated to the anniversary of the pioneering work
on the invariant imbedding in wave propagation problems [15], the results of the latter
study are generalized to the case of a vector-valued unknown function. This generalization
allows one to handle mode coupling equations without neglecting the coupling effects
(and also without using staircase approximation). Finally, in [12], the mode perturbation
theory developed by the authors is used to improve the performance of 3D propagation
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codes that require multiple solutions of the acoustic spectral problem. In particular, the
perturbative formulae from [12] are important for computationally efficient implementation
of the numerical techniques based on the mode parabolic equations [10].

Currently, the mathematical aspect of underwater acoustics is steadily gaining im-
portance for their applications. The increased performance of modern computers and the
development in sound propagation modelling approaches is demonstrated in the growth
in the publication output in this research field throughout the past 20 years. This trend will
likely persist in the near future, and it is our hope that our Special Issue may become some
tiny milestone of this long road.
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