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Abstract: El Niño Southern Oscillation is one of the significant phenomena that drives global climate
variability, showing a relationship with extreme events. Reliable forecasting of ENSO phases can
minimize the risks in many critical areas, including water supply, food security, health, and public
safety on a global scale. This study develops an ENSO forecasting model using the dynamic evolving
neural fuzzy inference system (DENFIS), an artificial intelligence-based data-driven algorithm. To
forecast ENSO phases for 1, 2, and 3 months ahead, 42 years (1979–2021) of monthly data of 25 oceanic
and continental climatic variables and ENSO-characterizing indices are used. The dataset includes
12 El Niño and 14 La Niña events, of which the latest 2 El Niño and 4 La Niña events are reserved for
testing while the remaining data are used for training the model. The potential input variables to the
model are short-listed using a cross-correlation analysis. Then a systematic input selection procedure
is conducted to identify the best input combinations for the model. The results of this study show
that the best performing combination of such climate variables could achieve up to 78.57% accuracy
in predicting short-term ENSO phases (up to 3 months ahead). Heat content at 0 to 300 m of central
equatorial Pacific shows promising performance in forecasting ENSO phases. Moreover, DENFIS
was found to be a reliable tool for forecasting ENSO events using multiple oceanic and continental
climate variables.

Keywords: ENSO; climate parameters; fuzzy inference systems; DENFIS

1. Introduction

El Niño-Southern Oscillation (ENSO) is defined as periodic variations in winds and
Sea Surface Temperature (SST) due to ocean-atmosphere coupled feedbacks [1,2]. The term
oscillation describes the shifting between El Niño and La Niña conditions occurring every
few years [3]. In the neutral phase, trade winds displace warm water from the eastern
Pacific to the western Pacific while upwelling colder subsurface water in the east [4]. The
resulted east-west SST contrast reinforces the east-west pressure difference, further driving
the trade winds [4]. The equatorial easterly winds gather water vapor and contribute to
the convective rainfall over the western Pacific warm pool. During La Niña (El Niño), the
trade winds strengthen (weaken) and increase (reduce) the eastern cooling and atmospheric
convection. It is a significant driver of precipitation variability far beyond the tropical
Pacific through atmospheric teleconnections [5–7].

During extreme ENSO events, the large-scale changes can elevate the likelihood of
extreme global weather events such as cyclones, drought, and intense rainfall. For example,
the 2015–2016 El Niño event led to major hydrological crises over eastern and southern
Africa, where 29 million people faced food insecurity [8]. Moreover, the hydrological
crises, such as extreme drought conditions, were followed by extensive crop failures [9].
Furthermore, studies have shown that the 2015–2016 El Niño event triggered a series

J. Mar. Sci. Eng. 2022, 10, 1161. https://doi.org/10.3390/jmse10081161 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10081161
https://doi.org/10.3390/jmse10081161
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-9484-2705
https://orcid.org/0000-0003-4971-0567
https://doi.org/10.3390/jmse10081161
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10081161?type=check_update&version=1


J. Mar. Sci. Eng. 2022, 10, 1161 2 of 19

of disease outbreaks and casualties in affected areas [10]. Moreover, this event brought
environmental disruptions such as floods to China, causing mass coral bleaching events
and forest fires in the Amazon [11–13]. Therefore, understanding and predicting such
impactful events are necessary, especially when they have been projected to increase in
frequency due to climate warming [2].

Previous research has established that SST and surface wind stress are dominated
by upper ocean heat content and characterized by a propagating mode during ENSO
events [14]. The spatial and temporal effects of SST anomalies on convective rainfall have
been the focus of many studies [15]. Teleconnection with other climatic variables such as
air temperature and pressure have been studied mainly on a global scale. With the use
of remote sensing data, some studies have shown that, during El Niño, air temperature
is higher in most of the tropics and is strongly correlated with SST [15]. Using statistical
assessment, Gershunov and Barnett (1998) found the modulation of ENSO affects the Pacific
Decadal Oscillation (PDO), a North Pacific climate variability pattern. El Niño (La Niña)
patterns are solid and consistent under a positive (negative) phase of PDO [16,17]. Based
on retrospective research, researchers introduced several indices to describe the phase and
strength of ENSO events using the aforementioned forcing variables (i.e., SST, wind, heat
content, and subsurface temperature) and global multivariate patterns [18].

Since the 1980s, several models have been developed and employed to forecast the
ENSO phenomenon. ENSO forecast models can be categorized into three types: dynamic-
coupled models, statistical models, and hybrid-coupled models. Dynamic-coupled models
generally outperform statistical models [19]. Most statistical models are linear models that
do not reasonably describe the non-linear features of SST and surface wind anomalies in
the Pacific Ocean [20]. However, statistical models still play an essential role in forecasting
ENSO events. For instance, Graham et al. [21] used a linear statistical model to predict
SST for 7–16 months lead time using near-global surface level pressure (SLP). This model
correctly forecasted 13 out of 17 events; however, the authors concluded that their model
showed poor performance at tracking the rise of SST at the beginning of El Niño, especially
in spring [21]. This significant challenge in forecasting before or during spring is associated
with the “spring predictability barrier” (SPB) and has been encountered by both dynamic
and statistical models [14,21–23]. Due to the SPB, the models contain initial errors and
exhibit prominent error growth that is noise-induced and seasonal [23–25].

Most of the major meteorological centers, such as the U.S. Climate Prediction Center
(CPC) and the European Centre for Medium-Range Weather Forecasts (ECMWF), have
developed dynamical seasonal forecasts with comprehensive ocean-atmosphere coupled
general circulation models (CGCMs), using an ensemble approach [26,27]. Jin et al. [22] in-
vestigated the overall performance of ENSO prediction with ten coupled GCMs developed
by meteorological centers. Data of the Niño 3.4 index were used at different lead times to ex-
amine the accuracy of stimulated variability. The authors concluded that the models’ errors
in the simulation of SST were significant, as the forecast performance strongly depended
on the season and ENSO phase and intensity. Neutral phase periods were worse to predict
than strong El Niño phases. A similar evaluation was made by Barnston et al. [28] using
20 prediction models (12 dynamics, 8 statistical) for forecasting SST in Niño 3.4 region.
They reported that the SST forecast for 1981–2010 yielded a correlation coefficient of 0.65
between predicted and observed values. They found that the predictions for the 1990s gave
a slightly lower correlation coefficient of 0.6 compared to the one yielded for the 30-year
prediction [28]. In some studies, forecast models are developed by combining dynamic and
statistical approaches [29]. Using Genetic Algorithms (GA), Hong et al. [29] constructed a
dynamic-statistical forecasting model for SST in Niño 3.4 region (5◦ N–5◦ S, 120◦ W–170◦ W)
using historical data. However, the derived prediction equations were significantly depen-
dent on initial values and the long-term forecasts (i.e., exceeding 5 months ahead) deviated
significantly. Tao and Duan [30], and Tao et al. [31] combined an intermediate-complexity
ENSO model (ICM) with a non-linear forcing singular vector as an approach to suppress
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the initial errors and errors within ICM. As a result, the authors extended the skillful
predictions up to a lead time of 12 months.

Although the representation of ENSO indices in models has shown considerable
advancement in forecasting ENSO events during the past decade, there is still room for
improvement. The systemic errors shown in the projected ENSO events suggest the
deficiencies of existing models’ forecasting ability, especially with their dependency on
the phase, season, and intensity of ENSO. With the advancements in big data analysis and
artificial intelligence (AI), the advantage of AI-based modelling techniques should be taken
to improve forecasting problems such as ENSO predictions.

Among AI techniques, artificial neural networks (ANN) have appeared as a powerful
tool for modelling non-linear and complex problems. ANN consists of layers of computing
nodes, known as neurons, imitating neurons in a biological brain. ANNs can identify the
associations between inputs and outputs by learning it through training using input-output
data samples. Mu et al. [32] designed a multivariate atmosphere-ocean coupled model
using graphical neural networks for ENSO prediction. The authors evaluated the model
performance for ENSO index forecasting and achieved correlation coefficients above 0.5 for
Niño 3.4 index up to 18 months lead time. Moreover, Ham, Kim, and Luo (2019) utilized
the convolutional neural network (CNN) model to predict ENSO indices. The authors
concluded that the CNN was superior to almost all dynamical and statistical models
(with correlation coefficients exceeding 0.5) for Niño 3.4 predictions up to 17 months lead
time. The excellent performance of CNN is consistent with the results found by Zhou
and Zhang [33], where high correlations were achieved for Niño 3.4 predictions up to
a 17-month lead time. In this study, the authors used a hybrid model combining the
principal oscillation patterns (POP) analysis with a CNN-based technique known as the
long short-term memory (LSTM) algorithm. In both the above-discussed studies, the
authors demonstrated that CNNs outperformed other models as they could distinguish
deterministic behavior chaos from random noise [19,33,34]. These recent studies have
indicated the potential of using ANNs for ENSO prediction.

The other family of AI-based modeling techniques is known as neuro-fuzzy systems
(NFS), which combines the connectionist structure of ANNs with the reasoning capabilities
of fuzzy systems. Perhaps this group’s most well-known and widely practiced algorithm is
the adaptive network-based fuzzy inference system (ANFIS) [35], which employs Takagi-
Sugeno fuzzy inference system. ANIFS has been successfully used in several hydrological
modelling applications, including rainfall-runoff modelling [36], river stage forecasting [37],
rainfall forecasting [38], and evapotranspiration simulation [39]. Nguyen et al. [40] inves-
tigated using the ANFIS model to constitute SST anomalies as input variables to predict
precipitation index and evapotranspiration-precipitation index for ENSO-induced drought
forecasting. The authors obtained promising results with a correlation coefficient of up to
0.75 between the observed and forecasted standardized evapotranspiration-precipitation
index (SEPI). The other well-studied NFS algorithm is the dynamic evolving neural fuzzy
inference system (DENFIS), which has been successfully used in a wide range of hydro-
logical modelling applications due to its adaptability, including rainfall-runoff modelling,
runoff forecasting, reference evapotranspiration modelling, and river water level forecast-
ing [41–43]. However, no studies have been reported on applying DENFIS in predicting
ENSO indices or events to our best knowledge.

From the above literature review, it can be inferred that almost all applications of
dynamic-coupled, statistical, and data-driven models in predicting ENSO have been fo-
cused on predicting the ENSO indices (e.g., Niño 3.4) rather than the ENSO events. Perhaps
this is because the definition of ENSO events could differ in each country or region. On
the other hand, several research studies have shown reliable results using NFS algorithms
in hydrological modeling and forecasting. However, very few research studies focus on
forecasting ENSO indices or events using NFS algorithms such as DENFIS. To address these
knowledge gaps, this study aims to directly predict ENSO events up to 3-months ahead
using a data-driven approach, namely the DENFIS model. In this study, climatic variables
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and ENSO-characterizing indices are utilized as inputs for the model to predict the ENSO
events (i.e., neural phase, La Niña, or El Niño). The results of this study will address
the effectiveness of the proposed forecast model and the selected variables in accurately
predicting ENSO events.

2. Materials and Methods
2.1. Data Description

In this study, 42 years of monthly climatic data and indices of the Pacific Ocean and
Indian Ocean (1979–2021) were utilized as potential input variables for the model, as
shown in Table 1. There are 25 variables, including heat content anomalies for different
regions, Trade Wind Index, and months of moving average for the Bivariate El Niño
Southern Oscillation Timeseries (BEST) index values. In Table 1, variables are denoted
as X1 to X25 considering their regions and average values over certain months. The data
was retrieved from National Oceanic and Atmospheric Administration (NOAA) (https:
//www.cpc.ncep.noaa.gov/data/indices/) (accessed on 10 January 2022) and Climate
Prediction Centre (CPC) (https://psl.noaa.gov/enso/dashboard.neut.html) (accessed on
10 January 2022). Most of the data from NOAA represent in situ measurement, especially for
SST, and thus are considered one of the best available direct records of ENSO conditions [44].
In addition, most variables are evaluated in NOAA’s ENSO alert system as advisory criteria
to characterize the duration of ongoing ENSO events.

These indices and climatic variables were selected to characterize ENSO mode. The
major established features of ENSO depend on large-scale spatial distributions of SST
and sea level pressure (SLP) [18]. A see-saw pattern is observed for SLP and SST. Walker
circulation system results in the difference of SST and SLP over western and eastern Pacific.
For example, during a La Niña event, strong Walker circulation causes upwelling of cool
water in the east of the Pacific with low air surface pressure. It amplifies warming in the
western pacific with high sea level pressure, while the converse is true for El Niño. Hence,
SST and SLP over the western, eastern, and central Pacific Ocean are used to characterize the
ENSO mode. SST anomalies in these Pacific regions, computed with different operational
definitions and for various regions, include Niño 3, Niño 3.4, Oceanic Niño Index (ONI),
and Trans-Niño Index (TNI) [45]. Heat content for the upper 300 m depth of the Pacific
was also used as a climatic indicator. The southern oscillation index (SOI) was included to
describe sea level pressure fluctuations between the western and eastern tropical Pacific [46].
The wind-driven ocean dynamics of the Walker circulation can also be characterized by the
Trade Wind Index, a near-surface wind index across the Pacific. During events, positive
SST anomalies in the equatorial are accompanied by anticyclonic anomalous circulations
of 200 mb winds [47]. The formation of rainfall and convective rainfall induced by the
ENSO phases are also characterized. In this regard, El Niño Southern Precipitation Index
(ESPI), El Niño precipitation index (EI), and La Niña precipitation index (LI) were used to
measure the rainfall anomalies induced [48]. Moreover, outgoing longwave radiation (OLR)
anomalies, which measure radiation at the top of the atmosphere, are used to characterize
the cloudiness. This is because clouds formed by the SST anomalies will capture outgoing
infrared radiation and lower values of OLR.

Besides climatic variables associated with the phenomenon, ENSO events are also
linked to other modes. Quasi-biennial oscillation (QBO) is the oscillation of downward
propagating easterly or westerly zonal winds in the equatorial stratosphere [49]. The zonal
winds oscillate from east to west for around 28 months [50]. El Niño (La Niña) development
is hypothesized to be associated with the east (west) phase of QBO. This has been observed
from the circulation anomalies and regional pressure matching consistently with ENSO
trends. Hence, this model used the QBO wind index with equivalent pressure of 30 hPa
(QBO30) and 50 hPa (QBO50) to understand the possible underlying relationships. The
Indian Ocean Dipole (IOD), oscillation of SST in the Indian Ocean, is also linked to ENSO.
The warming and cooling of the eastern part of the Indian Ocean correspond to the western
Pacific, which is one of the forcing effects hypothesized by Pinault [51].

https://www.cpc.ncep.noaa.gov/data/indices/
https://www.cpc.ncep.noaa.gov/data/indices/
https://psl.noaa.gov/enso/dashboard.neut.html
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Similarly, Pacific Decadal Oscillation (PDO) defines SST oscillation between the central
north and eastern pacific. The warming and cooling are hypothesized as remote forcing
by ENSO [52]. As their indicators, dipole mode index (DMI) and Pacific Decadal Oscil-
lation index (PDO) describe oscillation of IOD and PDO, respectively [53,54]. Next, the
geopotential height, defined as the height of a pressure surface above mean sea level, is
strongly influenced by ENSO. It refers to a level of the atmosphere above sea level at
which a specified atmospheric pressure (pressure surface) is constant. Since cold air is
denser than warm air, the pressure surface is lower in colder air masses, and the contrary
is true. Hence, warm (cold) SST in the eastern Pacific developed in El Niño (La Niña)
simulates above (below) average geopotential height, which gives a positive (negative)
Pacific North American index (PNA). Lastly, a composite index such as multivariate ENSO
index (MEI) and bivariate ENSO index (BEST) comprising the mathematical operation of
the aforementioned variables are used to characterize ENSO [55]. In order to demonstrate
dynamic forecasting, the moving average of monthly values are computed considering
the past months only. For example, BEST composite index with 3 months average was
calculated by averaging the past 3 months’ values until the current month to forecast one
month ahead in this model. A similar approach was conducted for the 3-month average of
ONI, and the 5-month average of BEST and TNI.

Besides climatic variables and indicators, historical records of ENSO monthly events
are considered for training and testing. These historical ENSO events were defined using
the NOAA’s criteria. A threshold value of the Oceanic Niño Index (ONI) was used as the
defining criteria. The value of ONI meeting the threshold of +0.5 ◦C for five consecutive
months defines an El Niño event, whereas –0.5 ◦C for a La Niña event [56]. The past event
records were expressed so that only three possible values represent each ENSO phase. The
value of 0 means the neutral phase of ENSO, whereas the value of 1 defines El Niño and
the value of 2 represents La Niña. There is a total of 12 El Niño and 14 La Niña events
among the 512 months of historical data. In this study, 400 out of 512 months (10 El Niño
and 10 La Niña events) were used as training data, while the remaining 112 months (2 El
Niño and 4 La Niña events) were used as testing data. Based on trials, this distribution of
training and testing proportion gives the best result.

Table 1. Input variables used in this study with their description and corresponding source.

Ref Input Variables Description Datasets Source

X1 Niño3 Average SST anomalies average over 5◦ S–5◦ N and 150◦–90◦ W HadISST1 NOAA PSL [57]

X2 Niño3.4 Average SST anomalies average over 5◦ S–5◦ N and 170◦–120◦ W HadISST1 NOAA PSL
[57]

X3 SOI Normalized pressure difference between Tahiti (equatorial of Pacific)
and Darwin (east of Pacific), which then standardized itself CRU NOAA PSL/CRU

[46]

X4 DMI
Difference of anomalous SST between western equatorial Indian
Ocean (50◦–70◦ E and 10◦ S–10◦ N) and south equatorial Indian

Ocean (90◦–110◦ E and 10◦ S–10◦ N)

HadISST1.1
[55] NOAA PSL

X5 ONI Past 3 months moving average of Niño 3.4 index based on centered
30-year base period updated every 5 years

ERSSTv5 and
ERSSTv3

[58]
NOAA PSL

X6–X8 BEST Standardized sum of SOI and Niño 3.4 index in moving average of
past 1, 3, and 5 months, respectively.

HadISST1.1
[57]

NOAA PSL
[55]

X9 MEI v2

Computed as leading principal component time series using the
empirical orthogonal function (EOF) of standardized anomalies of
sea level pressure, sea surface temperature, zonal and meridional
wind component, and outgoing longwave over (30◦ S–30◦ N and

100◦ E–70◦ W)

NOAA CDR and
JRA-55 global
reanalysis [59]

NOAA PSL

X10 TNI Standardized difference between Niño1+2 and Niño 4 with past
5-month moving average

HadISST1
[57] NOAA PSL [45]

X11 PDO Standardized principal component time series using EOF of SST
anomalies over North Pacific (poleward of 20◦ N)

HadISST1.1 and
ERSSTv5

[57,58]
NOAA PSL
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Table 1. Cont.

Ref Input Variables Description Datasets Source

X12 PNA Rotated Principal Component Analysis (RPCA) based on anomalies
of geopotential height fields at 500 mb over 20◦–90◦ N CDAS [60] NOAA CPC

X13 OLR Anomalies of the outgoing long wave over central equatorial Pacific
(160◦ E–160◦ W)

CDAS/Reanalysis
[60] NOAA CPC

X14–X16 Heat Content Pacific integrated temperature anomalies at 0 to 300 m over 3
regions, 160◦ E–80◦ W, 130◦ E–80◦ W, and 180◦–100◦ W

GODAS
[61] NOAA CPC

X17 200 mb Wind Zonal average wind anomalies over 2.5◦ S–2.5◦ N and 165◦–100◦ W
at the altitude of air pressure 200 millibars equivalence

CDAS/Reanalysis
[60] NOAA PSL

X18–X20 850 mb Trade
Wind Index

Zonal average wind anomalies over 3 regions over 5◦ S–5◦ N,
southwest pacific (135◦ E–180◦ W), south central pacific

(175◦ W–140◦ W) and southeast pacific (135◦ E–120◦ W) at the
altitude of air pressure 850 millibars equivalence

CDAS/Reanalysis
[60] NOAA CPC

X21 ESPI Normalized sum of precipitation index EI and LI GPCP v2.2
[48] NOAA PSL

X22 EI Rainfall anomalies over eastern Pacific, 10◦ S–10◦ N and
160◦ E–100◦ W

GPCP v2.2
[48] NOAA PSL

X23 LI Rainfall anomalies over Maritime Continent, 10◦ S–10◦ N and
90◦ E–150◦ E

GPCP v2.2
[48] NOAA PSL

X24 QBO50 Lower stratospheric, downward propagating zonally average wind
at the equator with equivalent pressure of 50 hPa

CDAS/Reanalysis
[60] NOAA CPC

X25 QBO30 Lower stratospheric, downward propagating zonally average wind
at the equator with equivalent pressure of 30 hPa

CDAS/Reanalysis
[60] NOAA CPC

2.2. Model Description

DENFIS inherits a similar structure to evolving fuzzy neural network (EFuNN) [62]. In
this network, the first layer represents input variables, while the second layer implements
the fuzzification process of transforming crisp values (non-linguistic) into fuzzy values
(linguistic) [63]. The fuzzy quantification of each input variable space is made using
membership functions. These functions describe the degree of membership of the datapoint
with the linguistic variables. However, in DENFIS, the first-order Takagi-Sugeno fuzzy
rules are employed where a weighted linear combination of crisp inputs is used to generate
the outputs instead of producing fuzzy values. The samples of rules in such a system are
denoted in Equations (1) and (2):

IF (x is A1) AND (y is B1) THEN (ƒ1 = p1x + q1y + r1) (1)

IF (x is A2) AND (y is B2) THEN (ƒ2 = p2x + q2y + r2) (2)

where A1, A2, and B1, B2 are membership values of input variables x and y, respectively;
p1, q1, r1, and p2, q2, r2 are parameters of output functions ƒ1 and ƒ2, respectively. In
DENFIS, the fuzzy inference rules are formed using evolving clustering method (ECM) [62].
Clusters are formed by partitioning the scatters of input space and dynamically updating
based on new input. When new input is introduced, a new cluster will be created, or the
existing cluster center is repositioned, depending on the maximum cluster radius inserted,
denoted as Dthr. In DENFIS, the Gaussian membership functions are formulated based on
the Euclidean distance of data point to the cluster centres. In the learning process, DENFIS
employs a linear least-square estimator (LSE) to create and update linear functions, as
shown in Equations (1) and (2). The fuzzy rules are dynamically created and updated in the
DENFIS online model through learning based on errors in estimating output. The details
of this clustering process can be found in a study by Chang et al. [64].

2.3. Input Data Selection and Model Development

Input selection analysis is required to identify the potential informative input variables
that can contribute to capturing the desired output variable. One of the well-known
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methods for input selection is correlation analysis, where the correlation coefficient (CC)
can be calculated as follows:

CC(x, y) =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ×
√

∑n
i=1(yi − y)2

(3)

where x and y define x-variable and y-variable; x and y are average values of x and y,
respectively; and n is the number of data points calculated between ENSO events as desired
output and climatic variables and ENSO-characterizing indices as inputs. The correlation
coefficient is computed using monthly time series for input and output variables. As was
stated earlier, the monthly ENSO event data come in values of 0, 1, and 2, representing
neutral, El Niño, and La Niña, respectively. Since this study is focused on forecasting ENSO
events for 1, 2, and 3 months ahead, the corresponding time series is shifted accordingly
to represent such forecasting time leads. The CC values are then compared relatively to
identify the best possible set of inputs. The CC values for 25 potential input variables are
summarized in Table 2. Based on the CC values, 19 variables are selected as potential inputs.
The variables with correlation values lower than 0.1 are excluded for model development
and highlighted in Table 2. The excluded variables are DMI, PNA, trade wind index
for 135◦ W–120◦ W, EI, QBO30, and QBO50. However, this study conducts a sensitivity
analysis with the excluded variables to evaluate their forecast possibilities despite their low
CC values.

Table 2. Pearson correlation coefficient values between the monthly time series of ENSO phases and
input variables.

Forecasting
Lead Time

Variables

Niño 3 Niño 3.4 SOI DMI ONI

BEST

MEI TNI PDO PNA OLR1-Month
Average

3-Month
Average

5-Month
Average

1-month 0.230 0.327 0.289 0.040 * 0.321 0.353 0.342 0.307 0.305 0.295 0.266 0.071 * 0.178

2-month 0.216 0.304 0.263 0.060 * 0.287 0.323 0.303 0.258 0.292 0.246 0.265 0.094 0.159

3-month 0.192 0.270 0.261 0.094 0.240 0.300 0.256 0.205 0.265 0.207 0.248 0.097 0.144

Heat content
200 mb
Wind

850 mb Trade Wind

ESPI
EI

(ESPI)
LI

(ESPI) QBO50 QBO30130◦
E–80◦ W

160◦
E–80◦ W

180◦
E–100◦ W

135◦
E–180◦ W

175◦ W–
140◦ W

135◦ W–
120◦ W

1-month 0.286 0.340 0.364 0.222 0.317 0.200 0.006 * 0.185 0.102 0.268 0.044 * 0.009 *

2-month 0.314 0.358 0.382 0.188 0.296 0.169 0.012 * 0.177 0.102 0.249 0.017 * 0.008 *

3-month 0.328 0.357 0.379 0.163 0.290 0.174 0.003 * 0.173 0.088 0.257 0.003 * 0.019 *

* Marks the results that are statistically insignificant at a 95% confidence level.

In model development, all possible combinations of n number of variables are fed into
the model where n = 1, 2, 3, . . . , k. In this study, the maximum value of k = 7 for the number
of variables is considered as the subsequent increase of input number does not improve
the forecast abilities. It is worth mentioning that the desired outputs for each input set are
1, 2, and 3 months ahead of ENSO events, denoted by Output (t + 1), Output (t + 2), and
Output (t + 3), respectively. Since the result of the model in forecasting ENSO events is a
time series of real numbers, the values need to be rounded to either 0, 1, or 2 (Neutral: 0; El
Niño: 1; La Niña: 2) before performance evaluation.

DENFIS model requires user input only for independent parameters, Dthr and m.
Dthr is the clustering parameter that determines the maximum size of clusters in the ECM
algorithm and, consequently, the number of rules. The initial value, m, defines the smallest
number of initial rules to be created. Based on trials, Dthr = 0.1 and m = 3 were found to
give the best results. This is aligned with values reported in the literature using DENFIS in
rainfall-runoff modelling studies [43,64,65].

2.4. Performance Criterion

To evaluate the model performance, the simulated outputs by the model are compared
with the observed outputs. The performance is calculated by the ratio of correctly forecasted
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events to the total number of predicted events. The performance criterion is called overall
accuracy percentage and can be calculated by the below equation:

A (%) =
c
t
× 100 (4)

where c is the number of months with correctly predicted ENSO phase and t is the total
number of prediction months. In this study, t defines the total of 112 months of the testing
data set. Then, the accuracy of predicting the El Niño and La Niña phases solely was
calculated using the same approach with ce as the number of correctly forecasted ENSO
events, and te is the total number of predicted ENSO events. The top 1% highest overall
accuracy of each combination of n variables is recorded.

Instead of selecting input combinations with the highest overall accuracy, the set of
the top 1% combinations is taken to assess the model accuracy. As a result, the standard
deviation of overall accuracy among the top 1% of n variables (n = 1 to 7) combinations is
found to be between 0.52% and 2.52%. The combinations of input variables may produce
coincidental results instead of persistent ones; this could be attributed to the random noise
in ENSO features and adaptability of the input variables. Hence, the frequency of variables
in the top 1% combinations and the overall accuracy loss when a specific variable is removed
from a combination are also computed to find consistently high-performing variables.

3. Results and Discussion
3.1. Input Selection

The frequency of variables is presented as a frequency distribution in Figure 1 for 1-
month ahead prediction. The frequency of variables varies, especially when the number of
variables in a combination increases from 3 to 5. Hence, variables that frequently appear in
combinations with different lengths (i.e., n = 1 to 7) are recommended for the next stage.
The BEST 5-months averaged index (X8), MEI (X9), and heat content (X14–X16) were found
to have high frequency across different numbers of variables (n) and forecasting lead times
(i.e., 1–3 months ahead). The frequency of SOI (X3) and PNA (X12) appearance in input
combinations becomes significant for the longest forecasting lead time of 3-months. The
overall accuracy loss, however, is presented as a box plot. For example, Figure 2 shows
the spread of accuracy loss in the top 1% combinations with six variables for forecasting
ENSO events one month ahead, Output (t + 1). The box plots indicate the 25th percentile
(Q1), median, and 75th percentile (Q3) statistics. The lower and upper whiskers indicate
Q1 − 1.5 (IQR) and Q3 + 1.5 (IQR), respectively, while IQR is the interquartile range,
Q1 − Q3. Based on the box plots, variables with lower IQR and median were considered
the recommended input set. A negative accuracy difference means accuracy loss, while
a positive accuracy difference means accuracy gain. This analysis showed that removing
one variable in combinations with 4, 5, and 6 variables may not cause accuracy loss and
may even increase the accuracy. This can be seen as the upper whisker extends to the
boxplot’s positive side and extends more as the number of variables increases. Then, the
final justification was made by comparing the top 1% of input combinations as certain
variables might perform better with a specific variable in the combination. The frequency
of duo and trio of variables in the combinations were also recorded to evaluate the possible
relationship between variables. The processes specified were repeated for up to six variables
in combination for forecasting Output (t + 2) and Output (t + 3) to find the recommended
set of variables.
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Lastly, a cross-correlation analysis is conducted to inspect the inter-association between
variables in characterizing the ENSO. The results of this analysis are presented in Figure 3
using a color-coded demonstration of the correlation coefficient between different variables.
As it can be seen, the SST characterizing variables such as Niño indices, ONI, BEST indices,
and MEI are strongly correlated with one another. OLR and ESPI are correlated to the
cluster of SST variables as well. Moreover, another two clusters of variables are found to
be inter-correlated including wind variables (200 mb wind & Trade Wind Index) and heat
content variables. Indices such as TNI, PDO, PNA, QBO, and DMI demonstrated weak
linear relationship (low correlation) with other variables. These observations suggest the
potential mutual information or dependence between some variables. The results of this
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stage could aid in selecting the most informative variables as inputs to the model while
avoiding the ones with potentially repeated information.
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3.2. Forecasting of the ENSO Event up to 3-Months Ahead

The DENFIS model was trained and validated using the input variables. The averaged
overall accuracy in the top 5 combinations of n number of variables are presented for Output
(t + 1), Output (t + 2), and Output (t + 3), as shown in Figure 4. The top 5 combinations
achieving the highest accuracy are tabulated in Table 3. The highest accuracy for Output
(t + 1), Output (t + 2), and Output (t + 3) are 78.57%, 74.11%, and 71.43%, respectively. The
spread of overall accuracy in the top 1% of each combination of n variables is investigated.
The standard deviation of accuracy in the top 1% decreases as the n, the number of variables
in combination converges from 5 to 7. The gradual increase in the number of input variables
from 1 to 6 shows a gradual improvement in overall accuracy for all forecasting time leads.
However, a further increase over six input variables does not elevate the highest accuracy
in the model. This is because the redundant variables are attributed to the excessive
complexity of DENFIS architecture. In the combination of a large number of variables (e.g.,
5, 6, and 7), the variables within the combinations complement each other in forecasting the
desired output, achieving higher overall accuracy. The specific information or signals from
ENSO characterizing variables are increasingly contributed to the simulated output as the
number of variables increases. At the same time, repeated information might be introduced,
causing the saturation of accuracy gain. Based on an observation of the boxplots for n (i.e.,
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n = 1 to 7) variables, the medians were found to increase as n increased. The increased
medians indicate a reduced accuracy loss (negative values) in the spread. The upper
whiskers extend to the positive side for a combination of six variables, as shown in Figure 2.
It indicates that removing a variable in input combinations may increase or decrease the
accuracy of the prediction. Similar diagrams are also developed for other n values not
shown here. It was observed that the frequency and its spread toward the positive side
increase when the number of variables, n, increases to 7. This finding also suggests that the
highest accuracy of the model has reached a saturation level. Moreover, the larger spread
of accuracy difference (seen as extended upper whiskers) indicates larger uncertainties
in removing variables; hence, an unreliable approach for selecting them. Therefore, the
frequency of variables appearing in the top 1% combinations may be a better factor in
selecting variables for combinations with a larger n.
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variables in combination with shaded error bar signifying one standard deviation.

The event accuracy was found to be comparable to or better than the overall accuracy
with a range of 77.36% to 88.68% for the top 5 combinations showing a larger spread than
overall accuracy. This may be due to the limited events in the testing stage. The event
accuracy of the top 1% combination gives standard deviations of 1.7 to 2.4 in forecasting
ENSO events for 1, 2, and 3-month ahead. The overall accuracy of Output (t + 1) has a
relatively steepest gradient and the highest value. Both infer the variables’ dependency on
the recent changes to correctly forecasted events. This is aligned with other models as there
are larger uncertainties introduced before the precedent phases. A study using a statistical
model showed that ENSO events were better predicted using stronger SSTs [22]. This is also
true in this study since relatively high anomalies are observed near the mature phase of the
ENSO event, which provides better prediction to the model [66]. The values of observed
and simulated events for the sample of the first 46 months in the testing data are plotted
in Figure 5. The observed and simulated values are presented in the form of the ENSO
phases, i.e., 0 for neutral, 1 for El Niño, and 2 for La Niña. For a better presentation of the
results, both raw and rounded outputs are plotted against observed values in Figure 5.
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Table 3. Top 5 highest accuracy combinations of variables grouped separately for each month lag
and their corresponding accuracy.

Forecast Rank Variables Combination Overall
Accuracy

Output (t + 1)

1 DMI, ONI, BEST (1 month), MEI, Heat Content (160◦ E–80◦ W), Trade Wind (175◦ W–140◦ W) 78.57%

2 Niño 3.4, DMI, MEI, Heat Content (130◦ E–80◦ W), Heat Content (180◦ E–100◦ W), Trade Wind
(175◦ W–140◦ W) 76.79%

3 Niño 3, BEST (3 months), BEST (5 months), Heat Content (130◦ E–80◦ W), Heat Content
(160◦ E–80◦ W), ESPI 75.89%

4 BEST (1 month), BEST (3 months), BEST (5 months), MEI, Heat Content (130◦ E–80◦ W), Heat
Content (160◦ E–80◦ W) 75.89%

5 BEST (5 months), MEI, TNI, Heat Content (130◦ E–80◦ W), Heat Content (160◦ E–80◦ W) 75.89%

Output (t + 2)

1 BEST (1 month), MEI, TNI, PNA, Heat Content (130◦ E–80◦ W), Trade Wind (175◦ W–140◦ W) 74.11%

2 Niño 3, SOI, BEST (5 months), PNA, Heat Content (130◦ E–80◦ W), 200 mb wind 72.32%

3 Niño 3, BEST (1 month), MEI, TNI, PNA, (160◦ E–80◦ W) 72.32%

4 Niño 3, ONI, MEI, PNA, Heat Content (180◦ E–100◦ W), Trade Wind (175◦ W–140◦ W) 71.43%

5 Niño 3, BEST (1 month), MEI, PNA, Heat Content (180◦ E–100◦ W), 200 mb wind 71.43%

Output (t + 3)

1 SOI, ONI, MEI, PDO, Heat Content (130◦ E–80◦ W), Heat Content (180◦ E–100◦ W) 71.43%

2 Niño 3, SOI, BEST (3 months), MEI, PDO, Heat Content (130◦ E–80◦ W) 69.64%

3 SOI, DMI, BEST (3 months), Heat Content (180◦ E–100◦ W), 200 mb wind, Trade Wind
(135◦ W–180◦ W) 69.64%

4 Niño 3, Niño 3.4, BEST (3 months), BEST (5 months), PNA, Heat Content (130◦ E–80◦ W) 68.75%

5 Niño 3, BEST (1 month), MEI, PNA, Heat Content (130◦ E–80◦ W), Trade Wind (175◦ W–140◦ W) 67.86%
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Based on simulated phases using best input combinations for Output (t + 2) in
Figure 5b, major false positives were observed at the on-set and decay of the ENSO
phase. The occurrence includes early and delayed prediction during a non-neutral phase
(Figure 5b) in the on-set and decay in September 2014 and March 2016, respectively. The
delay increases in forecasting Output (t + 3) due to further differences in lead times between
input anomalies and Output (t + 3). Different combinations of input variables were tried,
but no significant improvement in overall accuracy was observed. It is worth mentioning
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that the overall accuracy of the proposed model of this study is not directly comparable to
the results available in the literature as those studies forecast the climate variables of SST
or indices; the results of those models are generally reported in terms of the correlation
coefficient between observed and simulated values [19,21,28–30,32,33]. For example, Gra-
ham et al. [21] achieved a maximum correlation coefficient of 0.6 for the predicted ENSO
indices. In this study, the correlation values between non-rounded simulated and observed
phases were calculated as a comparative indicator. The correlation coefficients in predicting
Output (t + 1), Output (t + 2), and Output (t + 3) were 0.75, 0.62, and 0.6, respectively. As
stated earlier, these results are not directly comparable with the literature as the present
study predicts the ENSO phases, not the indices, and the intensities of such events were
not part of this study’s scope. Despite the promising accuracy attained, the results have
shown limitations in predicting larger lead times (months ahead). However, the proposed
DENFIS model could be a reliable and quick forecasting asset for short-term forecasting
and early warning systems.

Overall, the accuracy deficiency can be explained by two aspects: forecast skills of
the model and event-capturing abilities of input variables. Regarding forecasting skills,
simulated phases using the best combinations are presented in Figure 5. Besides errors
in predicting on-set and decay of phase, false positive predictions were observed within
an event. It was found that 37.5% of errors in forecasting Output (t + 1) happened during
the on-set and decay phase of ENSO events. An example of the errors is that El Niño
month was incorrectly predicted amidst the La Niña months (see Figure 5a) between July
and November 2016. A similar case was observed during the neutral months (between
August 2013 and September 2014) and La Niña months (between July and November
2016). The oscillation between phases generally follows a gradual change (typically with
observable variations on a monthly timescale), and abrupt shifts between phases have not
been commonly seen in historical data. Such sudden phase shifts in simulated data could
be attributed to the weakening of specific signals represented by input variables of that
combination. Second, inter-El Niño differences and seasonality may introduce uncertainties
in climate anomalies. One of such characteristics is the spring predictability barrier (SPB),
where SST errors are observed to be relatively larger in the spring months (April-May-
June) [67]. The possible cause is hypothesized to be the weak ocean-atmosphere coupling
in the eastern Pacific during the spring [24]. Hence, during these months, the model finds
SST anomalies difficult to detect and forecast. This was observed in forecasting Output (t +
1) using the best combination of variables. Similar situations were perceived in forecasting
Output (t + 2) and Output (t + 3), but in the prediction of the months after spring due to the
shift in lead time. The errors of forecasting solely in spring months for Output (t + 1), Output
(t + 2), and Output (t + 3) were observed to be around 24.1%, 32.1%, and 37%, respectively.
Besides SPB, inter-El Niño differences may also contribute to the errors. Recent studies
have shown that El Niños can be classified into eastern-Pacific (EP) and central-Pacific (CP)
types [66]. EP-El Niño was found in the center of the SST anomaly located in the eastern
equatorial Pacific, whereas CP-El Niño has most of its surface wind, SST, and subsurface
anomalies confined in the central Pacific. Furthermore, studies have shown that there
are different timing for triggering SST anomalies in El Niño events [66,68]. To investigate
this aspect, El Niño events during the testing and training stage were then determined to
address these issues. Based on the EP/CP-index method of Kao and Yu (2009), there are
9 CP-El Niño and 3 EP-El Niño events within this study’s dataset. The presented results
account solely for 2 CP-El Niño when forecasting Output (t + 1) in the testing data, with
overall and event accuracy of 78.6% and 83%, respectively. Thus, an investigation was
made with another trial using 60% of data for training (6 CP and 2 EP) and 40% for testing
(3 CP and 1 EP). The overall and event accuracy for forecasting Output (t + 1) were found to
be 54.6% and 49.2%, respectively. The stimulated ENSO phases showed correct prediction
for the whole EP events, but false warnings were provided in other CP events. However,
the decay and on-set of phases were found to be predicted one months earlier or later.
This may reflect the insufficiency of the training data. Furthermore, the overall and event
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accuracy in forecasting Output (t + 3) was 45.2% and 43.4%, respectively, with increased
false positives amidst the events. Overall, the results showed good performance in the
short-term prediction of the CP-El and EP-El Niño events.

3.3. Sensitivity Analysis of Climatic Parameters

Table 4 presents the recommended set of variables corresponding to each number of
variables in a combination. These sets of input variables were selected to show persistent
promising accuracy in the model. There were several combinations of variables attaining
similar accuracy, and the top 1% combinations prevailed with significant differences up to
2–3% from what is presented in Table 3. It may be coincidental; hence, they are evaluated
based on frequency distribution, accuracy loss addressed for each variable, the computed
accuracy of the model, and their cross-correlation with other variables. Some of the
variables in the combinations are interchangeable (denoted by “/”), meaning they can be
replaced by other options. The combination of variables recommended here has comparable
forecasting performance relative to the top combinations presented in Table 3.

Table 4. Set of 6 recommended variables to forecast ENSO events up to 3 months ahead sorted based
on the priority (1 stands for the highest while 6 for the lowest).

Number
(Priority)

Recommended Combination of Variables for Forecasting *

Output (t + 1) Output (t + 2) Output (t + 3)

1 Heat (160◦ E–80◦ W)/(130◦ E–80◦ W) Heat (130◦ E–80◦ W)/(160◦ E–80◦ W)/
(180◦ W–100◦ W) Heat (130◦ E–80◦ W)/(160◦ E–80◦ W)

2
Heat (130◦ E–80◦ W)/

(180◦ W–100◦ W)/ONI/Niño 3/Niño 3.4/BEST
(5 months/3 months)

Trade Wind (175◦ W–140◦ W)/200 mb
wind/LI/ESPI MEI/BEST (5 months)

3 Trade Wind (175◦ W–140◦ W)/200 mb
wind/ESPI/QBO30 PNA PNA/PDO

4 MEI/BEST (5 months) MEI/BEST (5 months) SOI

5 DMI/TNI SOI/BEST (3 months/1 month) BEST (5 months/3 months/
1 month)/TNI/DMI/Heat (160◦ E–80◦ W)

6 BEST (5 months/3 months/1 month)/SOI Niño 3/TNI BEST (5 months/3 months/
1 month)/TNI/DMI/Heat (160◦ E–80◦ W)

* The notation “/” means the variables are interchangeable.

Among all the variables, heat content in different regions was observed to be the
most common and well-performing variable across combinations with a different number
of variables and different forecasting lead times. The median of accuracy loss and the
frequency for the heat content was the highest compared to other variables. In forecasting
Output (t + 1), heat content anomalies in region 160◦ E–80◦ W were recommended over
other regions. On the other hand, heat anomalies in region 130◦ E–80◦ W were favorable
for forecasting ENSO events for two and three months ahead. Heat anomalies in region
130◦ E–80◦ W appear to give the highest accuracy as a single variable for forecasts for
two and three months ahead. Studies have classified El Niño into two different types of
time lag. In El Niño events with a negative time lag, SST anomalies form in the eastern
Pacific and extend westward beyond 160◦ E, reaching maturity [68]. In El Niño events
with a positive time lag, SST anomalies form in the central Pacific and join in the eastern
basin, reaching maturity at 100◦ W [68]. Hence, it is inferred that the central Pacific region
160◦ E–80◦ W captures both SST anomalies well during offsetting these cases. However,
region 130◦ E–80◦ W covers a larger zone of the Pacific, introducing more uncertainties
in short-term predictions. Region 180◦ W–80◦ W, however, concentrating in the central
Pacific may capture lesser information and forecast solely the maturity of CP-El Niño
well [68]. Although heat content with different regions was strongly cross-correlated with
>|±0.95| correlation values, the trio of heat regions 130◦ E–80◦ W, 160◦ E–80◦ W, and
BEST (5-month) were found to have the highest frequency among other trio of variables
in forecasting Output (t + 1). To avoid repeated information, variables characterizing sea
surface temperature were recommended in replacement for one of the two heat content
variables in a combination.
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The trade wind index for the south central Pacific region (175◦ W–140◦ W) is observed
mainly in the short-term forecast (one-month lead time). Relatively weaker 200 mb wind
anomalies are proposed as a replacement since both wind components are interlinked
in the circulation. The accuracy loss and frequency of the trade wind index decrease as
the forecasting lead time increases. However, the SOI index, which describes sea level
pressure, is found to be a good input in forecasting ENSO events for all studied lead
times, especially two and three-months ahead forecasts. This finding was also confirmed
in composite indices, where the presence of SOI in those indices enhanced the forecasting
skills for 2 and 3-months ahead forecasts. MEI and BEST indices were computed using
SOI as part of their components, reflecting their capabilities in forecasting 1–3 months
ahead. It is further aligned with the results of linear statistical models using sea level
pressure and wind anomalies [21]. The authors suggested that the wind anomalies that
show consistent features from one event to another are not responsible for generating
temperature anomalies. The analysis of their models concluded that SLP anomalies provide
SST development information up to 7 to 16 months lead time, whereas wind models only
do well for 1 to 3 months forecasting lead time. Kao and Yu [66] also suggested that
the SST anomalies are the main forcing factors of EP and CP-El Niño. Hence, it can be
inferred that high trade wind anomalies are generally observed in the central Pacific near
the maturity phase instead of acting as a forcing factor for SST. Therefore, models may
perform relatively better in the South-Central Pacific region, where both CP and EP types of
El Niño wind anomalies are present. Regarding SLP, previous studies have suggested that
tropical SST variations can force extratropical SLP variability, while the SLP are precursors
of SST variability [69]. Hence, the variation of SST may be captured and characterized
better by SLP compared to trade winds of antecedent months.

The next most repeated variables across Table 4 are the BEST indices with a 3-month
and 5-month moving average, followed by ONI with a 3-month moving average of Niño
3.4. The moving average of variables is usually used in the statistical model of predicting
SST to reduce the uncertainty of abrupt changes. The superior performance from these
moving average indices originates from the information in averaged antecedent monthly
values. This information provides better forecasting abilities in larger lead times where
recent information is absent. Hence, the moving average variables perform better than the
monthly value of Niño 3.4, Niño 3, and BEST index when forecasting 2–3 months ahead. In
forecasting Output (t + 1), Niño 3.4 and Niño 3 indices are proposed to be replaced with
ONI as they address the similar region of SST anomalies with different spatial computations.
Niño 3.4 and Niño 3 were interchangeable in the input combinations as each one may
capture an event that the other one lost to capture. This is supported by studies showing
Niño 3.4 could not capture EP-La Niña due to their general lower intensity and spread of
anomalies that are not within the region [66]. MEI was present in the top 1% combinations
and can replace BEST indices as both constitute the SLP and SST components.

All 25 variables were considered in the input selection process during the model
validation. It was found that the previously excluded variables, DMI, PNA, EI, and QBO30,
appeared in the top 1% combinations. Although these variables showed relatively low
correlation values with the desired output, their presence in the top high-performing
input combinations suggests their potential non-linear associations with the output that
have been informative for the model. However, due to their low frequency, it could be
inferred that these variables played the role of a supplementary variable in the input
combination. Interestingly, DMI, PNA, and QBO30 had lower cross-correlation values
with other variables suggesting their different information compared to other variables.
PNA performed well in forecasting two and three months ahead with a high frequency of
appearance and accuracy loss in removal. The frequency of duo of PNA and heat anomalies
in region 130◦ E–80◦ W prevails the highest performance in forecasting Output (t + 3),
whereas duo of BEST (5-month averaged) and heat anomalies in region 130◦ E–80◦ W for
Output (t + 2) and Output (t + 1) performed very well. TNI was another observed variable
with relatively lower cross-correlation values with the output. TNIs have been used for
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classifying CP-El Niño [18]; however, in the present study, the model’s performance in using
TNI was not promising. DMI, QBO30, and OLR showed considerable high accuracy loss
but low frequency. It may suggest their insufficient characterizing abilities in forecasting
ENSO events. Since OLR describes only the central pacific, uncertainties may be introduced
in the long term.

Similarly, ESPI, EI, and LI precipitation index have a relatively low frequency. How-
ever, the ESPI precipitation index showed the highest overall accuracy in forecasting Output
(t + 1) as a single variable but was insignificant for larger forecasting lead times. One possi-
ble explanation is that the precipitation may require a shorter time scale than the resolved
1-month average to better characterize the phases [21]. The monthly anomalies may have
averaged the predictive characteristics of the index. Among all the variables, the QBO50
wind index had the least appearance.

Overall, SOI and PNA showed reasonable forecasting abilities (increased frequency
and accuracy loss) as the forecasting lead time increased. LI and QBO30 showed distinc-
tive decreased spread and increased accuracy loss, but their frequency decreased as the
forecasting lead time increased. The frequency of the trio of variables was insignificant,
but the frequency of the trio increases when progressing from Output (t + 1) to Output
(t + 3). The highest frequency of trio combination was observed in MEI, PNA, heat content
(130◦ E–80◦ W), and BEST (1 month averaged)/SOI forecasting Output (t + 3) trios.

4. Conclusions

In this study, the forecasting ability of AI-based data-driven technique, dynamic
evolving neural fuzzy inference system (DENFIS), in forecasting ENSO events on a monthly
timescale up to 3-months ahead using climatic variables and ENSO-characterizing indices
is investigated. Furthermore, the model performance is evaluated using its accuracy in
predicting ENSO events.

The following can be concluded in this study:
(1) The proposed model achieved accuracy up to 78.57% in forecasting ENSO phases

one month ahead, Output (t + 1). The input combination that gave such an accuracy con-
sisted of DMI, ONI, BEST (1 month averaged), MEI, heat content in region (160◦ E–80◦ W),
and trade wind index in the central Pacific (175◦ W–140◦ W). The accuracy decays to
71.43% when forecasting 3 months ahead, Output (t + 3). The other successful variables in
predicting ENSO events were SOI, BEST index with 3 and 5 averaged months values, PNA,
and heat content at region (130◦ E–80◦ W). Trade wind index for central Pacific prevails
SOI in forecasting Output (t + 1), while SOI performs better in larger forecasting lead times.
Overall, heat content at three specified regions showed the best performance across all
variables. It is inferred that the region of 160◦ E–80◦ W could describe the characteristics of
most types of ENSO events.

(2) DENFIS model was observed to perform well in capturing events under the
uncertainty compounded by both seasonality (SGB) and inter-difference of the ENSO
events. It is inferred that the model can describe the non-linear features of variables.
However, the false positive predictions indicate the model’s weakness in replicating the
gradual changes of the ENSO events, as most of the errors were attributed to abrupt
changes in the forecast. The on-set and decay of ENSO phases were also wrongly predicted,
especially for longer forecasting lead times. Overall, the model shows the potential as an
early warning tool in deciding the phases of ENSO.

(3) As recommendations, pre-processing data such as averaging antecedent values
could be investigated to achieve better accuracy. Sensitivity analysis can be conducted
to find the model’s best-customized heat content and trade wind region. Moreover, the
model may be specifically trained for a different type of ENSO events to address the inter-
difference of ENSO events and produce better accuracy, especially in longer forecasting
lead times.
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