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Abstract: Marine sediment samples were collected along the Jeddah coast, Red Sea, Saudi Arabia, in
order to assess radiation hazards and the exposure to human and marine living organisms. Using
collaborative techniques, grain size, mineralogical characteristics, and natural radioactivity were
investigated. To examine the influence of sediment characteristics over the distribution of the mea-
sured radionuclides, resulting data were statistically processed by using multivariate analyses. 238U,
232Th, and 40K levels were specified to be 19.50, 9.38, and 403.31 Bq kg−1, respectively. Radionuclides
distributions were affected by sediment mud content, organic matter, and heavy minerals index. The
calculated radiation risk parameters are within the safe range and lower than the global average.
Natural radiation from these marine sediments is normal and poses no significant radiological risk
to the public or marine living organisms. The natural radioactivity of the marine sediment in this
Jeddah coastline will have to be monitored on a regular basis to avoid overexposure to the residents.

Keywords: marine sediment; radionuclides; radiation hazards; non-human biota; mineralogy; Red
Sea; Jeddah

1. Introduction

Scientists, international organizations, and laypeople are increasingly agreeing that
human exposure to ionizing radiation represents a terrible and unavoidable environmental
issue. Public exposure to radiation come from naturally occurring (primordial) and artificial
(fall-out) radionuclides, with the majority from natural sources [1–3]. Naturally occurring
radionuclides such as Uranium-238 (238U), Thorium-232 (232Th), and Potassium-40 (40K)
are abundant in the Earth’s continental crust [4,5]. These radionuclides can be found in
different environmental components, including rocks, soil, stream sediment, groundwater,
surface water, marine sediment and water, and biota [6–11].

The coastal ecosystem supports a diverse range of inorganic and bio-resources, many
of which, in common fishery, are commercially, culturally, scientific, aesthetically, and
recreationally important to the people of the entire region. The study of various bio-
resources and associated geological processes of the coastal zone improves the proper
understanding of the relationship between biotic and non-biotic components and their
mutual dependence on maintaining ecosystem integrity [12,13]. Marine sediments play
an important role in the ecology and environment of coastal ecosystems and marine
environments. They are constantly changing and are the most dynamic part of these
ecosystems [14,15]. Numerous marine contaminants, including radionuclides, are stored in
marine sediments. Anthropogenic activities have contributed to the radioactivity level in
marine ecosystems. Industrial discharges, nuclear accidents, and the discharge of nuclear
waste have been recognized as main sources of elevated radioactivity levels in many marine
ecosystems [16–18]. Lin et al. [19] recorded anthropogenic uranium imprints in the Baltic
Sea sediments due to human nuclear-related activities. Al-Qasmi et al. [20] ascribed the
enrichment of 238U, 236U, and 234U in the marine sediment from Loch Etive, Scotland, to the
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uranium released from the phosphate plant and Sellafield nuclear-fuel reprocessing facility.
Pappa et al. [21] reported enhanced values of 226Ra and 235U in Stratoni port, Greece, due
to mining-related activities. Aközcan et al. [22] recorded an extraordinary increase in the
background levels of 226Ra and 40K in Bafa Lake, Turkey; these hot spots were attributed
to industrial and agricultural activities. Diab et al. [23] noticed a slight increase in 238U
and 232Th levels due to oil exploration and production activities in Egypt’s Gulf of Suez.
Influences of the Chernobyl disaster are still noted in the marine sediments of numerous
European countries such as the Gulf of Bothnia [24], Swedish coast [25], Amvrakikos Gulf
(Greece) [26], Vefsnfjord (Norway) [27], Black Sea [28], and Baltic Sea [19]. Radionuclides
released from the Fukushima accident have been transported long distances within the
Pacific Ocean and are stored in marine sediments [29,30].

These radionuclides can accumulate in marine biota via sediment and water and
demonstrate biomagnifications through trophic levels. Consequently, these radioactive ele-
ments enter the food chain through the direct consumption of marine foods [4,7,13,31,32].
Radionuclides in marine sediments are frequently used as radiotracers to better understand
sedimentological, morphodynamics, and oceanographic processes and to reconstruct pol-
lution events in the past [18,33]. The detection of radionuclides in sediments contributes
significantly to human background radiation exposure and provides vital information on
human and ecosystem health effects of natural radioactivity [4,23,34]. In addition, it can
provide a critical foundation for evaluating any inadvertent release of radioelements for
the better management and conservation of marine resources [18].

Lately, considerable emphasis has been dedicated to the development of a scientific
database of radiation baselines in the Middle East, particularly in Arab nations, considering
their ambitious intentions to construct nuclear and renewable energy capacities. For exam-
ple, the United Arab Emirates launched the Arabian Gulf region’s first nuclear program
by constructing four nuclear reactors [35,36]. Egypt has begun restarting its ambitious
program to construct nuclear power reactors [37]. Saudi Arabia’s nuclear energy ambitions
are in the initial stages, and the country recently revealed a proposal for nuclear power
development that will be completed by 2040 [36,38,39]. The construction of a nuclear re-
search reactor in Saudi Arabia is almost finished. Saudi Arabia’s Red Sea coastline contains
many promising sites for nuclear power plant construction [36,40]. The baseline data could
be used to analyze any changes in the radiation background level caused by radioactive
substances-related activities.

The Red Sea is a complicated marine ecosystem that has unique biodiversity, as
well as a vital maritime lane that connects the world’s major oceans for global trade and
commerce [41,42]. Saudi Arabia has rapidly progressed from a developing state with
serious limitations to an ambitious industrialized country. Saudi Arabia’s Red Sea coastline
is densely populated and is thought to be more conducive to many different types of
sustainable economic-development and blue economy activities [41]. Influences of large-
scale human activities on the Red Sea’s environmental compartments have heightened
in recent years, and these influences are now of significant concern [41,43–45]. There is a
scarcity of data on the radioactivity level in Saudi Arabia’s coastal regions along the Red
Sea [41]. Environmental radioactivity studies were concentrated in the Arabian Gulf [46–49].
The study area chosen for this study represents a result of recent industry developments
in the Jeddah coastline over the last two decades. There are no available data about the
natural radioactivity levels in Jeddah area. Thus, the present study attempt to (1) determine
the levels of natural radioactivity in Jeddah coastline marine sediments, (2) compare the
obtained results with literature, and (3) investigate the radiation hazard for members of the
public and marine non-human biota due to exposure to natural radiation. This study will
contribute to the radiation data bank of Saudi Arabia.
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2. Materials and Methods
2.1. The Study Area

The study area covers the coastal of Jeddah, Red Sea, Saudi Arabia, between latitudes
20◦56′50” and 21◦11′30” N and longitudes 39◦8′40” and 39◦19′40” E (Figure 1). Jeddah city
is considered one of the most significant and largest (1765 km2) urban and industrial areas
along Saudi Arabia’s Red Sea coastline. It is characterized by an arid climate with sparse
rainfall [43,50].
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Figure 1. The study area and sampling site’s locations.

Jeddah is part of the eastern Red Sea shelf region, bordered on land by the rough Ara-
bian Shield mountains. These mountains represent Neoproterozoic basement rocks, which
include Precambrian calc-alkaline volcanic, volcaniclastic, intrusive, and metamorphic
rocks. Tertiary clastic succession, basaltic lavas, and gabbro dikes cover these basement
rocks. Quaternary surficial deposits cover the coastal plain, including coral reefs and
carbonate, alluvial deposits, sabkha, and sand dunes [15,51].

The Red Sea is unique among the world’s seas in that it has a few permanent streams
flowing into it and receives extremely scanty irregular rainfall. Terrigenous sediments
are contributed by mostly northwesterly winds and occasional rainstorms. Aeolian and
biogenic materials contribute significantly to the marine realm in arid regions such as Saudi
Arabia, where riverine sediments are rare or completely absent [50,52].

2.2. Sampling and Sample Treatment

Eighteen sampling sites representing the surface marine sediments (0–10 cm depth)
were selected for this study (Figure 1). Approximately 500 g of sediment samples was
collected during March 2020 using a Van-Veen grab sampler by combining three subsam-
ples from each site. In order to prevent cross-contamination, the collected samples were
transferred to new, clean, and labelled plastic jars using a clean stainless-steel shovel. The
samples were immediately stored in ice boxes under −4 ◦C until transportation to the lab.
The sediment samples were blended, homogenized, and dried at room temperature before
being placed in an electric oven (105 ◦C; 24 h) to dispose of the moisture and to achieve
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a constant weight [9,28,32]. These samples were then divided into several portions for
various laboratory examinations.

2.3. Sediment Granulometry and Mineralogy

Utilizing loss in ignition methods [53], organic matter content (OM%) was determined
in the sediment. Following digestion in HCl (1 N), the gravimetric technique was used to
calculate CaCO3 concentrations [54]. Wet sieving was used to calculate the proportions of
the different particle size grades (sand 2.00–0.063 mm and mud < 0.063 mm) [55]. Heavy
minerals were separated using heavy liquid technique (Bromoform) and examined using
a polarizing microscope [56,57]. The mineralogical compositions of the bulk powdered
sediment samples were determined by using the X-ray diffraction technique (XRD). The
qualitative chemical composition of selected heavy mineral grains were examined utilizing
environmental scanning electron microscope (ESEM) and energy dispersive spectrometer
(EDS) techniques (SEM/EDX, XL 30 ESEM, Philips Co., Amsterdam, The Netherlands).
Extensive technical descriptions of OM% and CaCO3%, grain size and heavy minerals
determination and the specification of SEX/EDX and XRD instruments are provided in
Table S1 (in Supplementary Materials).

2.4. Radiometric Analysis

Dried and homogenized marine sediment samples were weighed and instantly placed
into a 100 mL plastic standard cylinder and firmly sealed using Teflon tape around their
screw necks, and wide Vinyl tape was used around their caps and secured for 30 days
until examination. The radiogenic gases 222Rn and 220Rn are prevented from escaping
by the in-growth of U and Th decay, which additionally allows for secular equilibrium
between 238U, 232Th, and their decay products [58]. A well-calibrated sodium-iodide and
thallium-activated gamma-ray spectrometry scintillation detector (3′′ × 3′′ NaI (Tl)) was
used to specify the amounts of 238U (234Th-0.0633 MeV), 232Th (212Pb-0.2386 MeV) and
40K (1.461 MeV) activity concentrations in the collected marine sediment samples. This
detector is sealed with a photomultiplier tube in aluminum housing. The tube is adequately
protected against induced X-rays by a cylindrical copper (0.6 cm thickness) and isolated
from environmental radiation by a chamber of lead bricks and lead cover (5 cm). Standard
point sources (60Co and 137Cs) were used to calibrate the detector’s energy. Every sample
has been counted for 1000 s. Additional details for the exact calculation of the activity
concentration can be obtained from the literature [4,5].

Samples preparation, grain size analysis and heavy minerals separation were con-
ducted at the Geology Department, Faculty of Science, Ain Shams University Laboratories.
The XRD analysis were carried out at the Central Laboratories Sector of The Egyptian
Mineral Resources Authority. SEM/EDX and radiometric analysis were performed at the
Egyptian Nuclear Materials Authority.

2.5. Calculation of the Radiation Hazard Indices

The radium equivalent activity index (Raeq) [1,59], external hazard index (Hex) [1,60],
absorbed dose rate (D) [1], annual effective dose (AEDE) [1], and excess lifetime cancer
risk (ELCR) [6,61,62] have all been calculated in order to evaluate the external radiation
hazards brought on by the activity concentration of the measured radionuclides in the
marine sediment of the Jeddah Coast, Red Sea, Saudi Arabia. Table S2 (in Supplementary
Materials) provides an overview of the descriptions and formulas used to calculate external
hazard indicators.

The total dose rate (TD) per organism to biota (non-human) in the marine environ-
ments was calculated utilizing the ERICA Tool software (ERICA tool version 2.0.185,
https://erica-tool.com/, accessed on 3 July 2022) [63]. The ERICA software is a dosimetry
model that calculates the internal and external absorbed dose rates to (marine living or-
ganisms across a broad range of body masses and habitats for all radioactive elements of

https://erica-tool.com/
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concern (238U and 232Th). The ERICA tool is thoroughly described in the literature [63,64];
more details can be found in Table S1.

2.6. Statistical Analyses

To reveal and emphasize the interrelationship between the investigated radionuclide
(238U, 232Th, and 40K) activity concentrations and sediment properties (grain size, CaCO3,
OM, and Heavy Minerals index), a multivariate Pearson’s correlation coefficient matrix
(PCC), hierarchical cluster analysis (HCA) in Q mode, and principal component analysis
(PCA) were performed using SPSS (version 21.0, New York, NY, USA) and OriginLab
(version OriginPro 2021, Northampton, MA, USA).

3. Results and Discussion
3.1. Textural Attributes

Findings of grain-size analysis of the collected marine sediment samples are provided
in Table 1. Their CaCO3 contents varied from 6.80 to 62.80%, these sediments are generally
rich in carbonate. The organic matter content (OM%) of these sediments ranged from 0.00
to 1.20%. The low OM observed in these sediments can be explained by the deposition
of siliciclastic terrigenous materials, which are low in OM or by rapid degradation of
recently formed, easily decomposable endogenic biological activity [65]. Compared to mud
fraction (silt and clay), sand fractions were found to be dominant in all studied samples
(23.00–92.80%). On the other hand, the mud fraction has no clear trend. It is obvious that
these sediments are composed mainly of carbonate and sand with minor amounts of mud
and OM. The carbonate content in these coastal sediments is sourced from the erosions of
carbonate-rich coastal rocks and the mixing of sediments with shell fragments and other
calcareous debris [44,66,67].

Table 1. Grain size data, heavy minerals index, and activity concentration of the measured radionuclides.

Sample
No.

CaCO3
%

OM
%

Sand%
(2.00–0.063 mm)

Mud%
(<0.063 mm)

Heavy
Minerals%

238U
(Bq kg−1)

232Th
(Bq kg−1)

40K
(Bq kg−1)

1 44.00 0.20 50.60 5.20 4.96 39.72 12.64 387.38
2 21.40 0.00 78.60 0.00 3.94 12.43 4.14 387.45
3 7.60 0.00 77.80 14.60 6.44 24.35 8.28 433.87
4 18.00 0.00 75.80 6.20 10.08 24.86 12.13 356.39
5 38.80 0.20 56.80 4.20 8.12 12.47 8.26 472.61
6 25.00 0.00 75.00 0.00 5.30 12.22 8.34 470.02
7 17.00 0.00 74.00 9.00 15.16 37.29 16.17 315.07
8 6.80 0.00 92.80 0.40 6.06 12.92 8.54 454.53
9 19.20 0.20 75.80 4.80 6.32 12.43 8.22 449.36
10 62.80 1.20 23.00 13.00 2.44 37.77 8.82 338.31
11 54.60 0.40 39.40 5.60 4.38 24.74 8.55 250.51
12 56.80 0.40 38.40 4.40 4.02 12.35 8.17 253.09
13 50.20 0.00 48.60 1.20 8.90 12.47 16.17 317.65
14 15.40 0.40 84.20 0.00 10.90 12.41 12.24 557.83
15 50.40 0.20 49.00 0.40 4.06 12.38 4.04 374.47
16 42.40 0.00 57.20 0.40 0.48 24.95 8.05 537.17
17 47.80 0.00 52.00 0.20 0.56 12.93 8.08 444.20
18 48.20 0.00 51.20 0.60 2.54 12.28 8.05 459.69

Min. 6.80 0.00 23.00 0.00 0.48 12.22 4.04 250.51
Max. 62.80 1.20 92.80 14.60 15.16 39.72 16.17 557.83
Mean 34.80 0.18 61.12 3.90 5.81 19.50 9.38 403.31
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3.2. Mineralogy

The mineral composition of representative bulk sediment samples (Figure S1) revealed
the dominance of silicate minerals (quartz, albite, and amphiboles) and non-silicate min-
erals (calcite, aragonite, and gypsum). The heavy minerals indices of the studied marine
sediments range from 0.48% and 15.16% (mean 5.81%).

The light minerals fractions of these marine sediments consist mostly of quartz and
feldspar grains (mainly albite). Both opaque and non-opaque minerals varieties identified
within the heavy mineral assemblage. The opaque minerals are mostly magnetite, ilmenite,
and chromite (Figure 2). The non-opaque minerals assemblages consist of amphiboles,
pyroxenes, epidote, zircon, sphene, garnet, monazite, tourmaline, and kyanite (Figure 3).
Andalusite, rutile, and staurolite were recorded in a few samples in minor amounts. In-
terestingly, monazite grains show U and Th concentrations in their chemical composition
(Figure 4). Monazite is thought to be the primary source of natural radioactivity in marine
and beach sand [68–72].
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The heavy mineral assemblages of Jeddah coastal marine sediments are, to a large
extent similar, suggesting inheritance from the same source rocks. The nature of these
assemblages indicates a variety of probable source rocks, including sedimentary, igneous,
and metamorphic, with a relatively short distance of transportation. This explains the
distinctly low roundness of the heavy grains (Figure 3) and the considerable amounts
of feldspars grains. The distinctly high proportions of amphiboles and pyroxenes in
the marine sediments studied indicate a major role of the surrounding basement. The
potential contribution of a metamorphic rock source has pointed to the presence of garnet,
kyanite, staurolite, and andalusite [57,73]. These results are consistent with many research
studies [52,66,74].
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3.3. Activity Concentrations

Table 1 lists the measured activity concentrations of 238U, 232Th, and 40K in the inves-
tigated marine sediment. These values are presented by graduated symbols method in
Figure 5. The activity concentrations of the measured radionuclide have the order of 40K
> 238U > 232Th. The results clearly reveal that the observed concentration of 40K greatly
surpasses those of both 238U and 232Th. This indicates that 40K in common is a more
prevalent radioactive element in these marine sediments. Potassium is more abundant
in magmatic rocks as a major constituent of several rock-forming minerals than U and
Th [75–77]. The activity concentration of 238U, 232Th, and 40K varied site-by-site, because
the physical, chemical, geochemical, and mineralogical components of the marine sediment
vary greatly [78,79]. The mean concentration values of 238U, 232Th, and 40K are 19.50 Bq
kg−1, 9.38 Bq kg−1, and 403.31 Bq kg−1; respectively. These mean values are significantly
lower than the world average [6] (Table 2). The current investigation revealed that 238U,
232Th, and 40K levels in marine sediment of Jeddah coastline are remarkably natural.
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We attempted to compile a recent comparison of natural radiation levels in marine
sediment from various regions of Saudi Arabia and those worldwide. Table 2 showed that
the mean values of 238U in the Jeddah marine sediment were lower than that reported in
Saudi Arabia and other countries except for the Arabian Gulf [48], Addurrah beach [49],
Egyptian Gulf of Suez [23], Egyptian Mediterranean Sea [69], and Turkey [80]. The mean
activity concentrations of 232Th in Jeddah marine sediments were lower than all other
locations in the world except for the Arabian Gulf [48], Farasan Island [46], Oman [81],
and Turkey [80]. Conversely, the 40K mean values were higher than all other locations
in the world except Addurrah beach [49], Serbia [82], Cyprus [4], and Bangladesh [32].
It is worth noting that U and Th series disequilibria were well documented [31,83]. The
presented values of 226Ra and 228Ra (Table 2) do not assume that there are 238U/226Ra and
232Th/228Ra equilibria in those samples; they are merely displayed for simple comparisons.

Table 2. Comparison of 238U, 232Th, and 40K mean activity concentration in marine sediment and
sand samples reported for different region in Saudi Arabia and worldwide.

Location Samples 238U Series * 232Th Series ** 40K Reference

Saudi Arabia

Jeddah Marine Sediment (N = 18) 19.50 9.38 403.31 Present study
Arabian Gulf Marine Sediment (N = 9) 3.50 * 5.90 ** 113.50 [48]
Arabian Gulf Marine Sediment (N = 12) 26.40 * 16.30 351.00 [47]
Arabian Gulf Beach sand (N = 12) 22.70 * 14.80 392.00 [47]

Farasan Island Marine Sediment (N = 8) 35.46 1.84 34.34 [46]
Gulf of Aqaba

(Addurrah beach) Marine Sediment (N = 19) 16.97 22.48 641.08 [49]

Worldwide

World average 32 45 412 [6]
Egypt (Gulf of Suez) Shore Sediment (N = 36) 13.79 14.55 128.67 [23]

Egypt (Red Sea) Marine Sediment (N = 84) 23.80 * 19.60 374.90 [84]
Egypt (Mediterranean Sea) Beach sand (N = 12) 8.80 * 30.80 106.9 [69]

Oman Marine Sediment (N = 11) 20.49 2.26 44.83 [81]
Iran (Caspian Sea) Marine Sediment (N = 8) 34.40 * 11.40 310.00 [9]

Serbia (Boka Kotorska Bay) Marine Sediment (N = 12) 37.00 35.00 580.00 [82]
Cyprus (East coast region) Marine Sediment (N = 15) 23.00 * 19.00 628.10 [4]

China (Beibu Gulf) Marine Sediment (N = 50) 25.90 37.6 263 [85]
India (Tamilnadu) Beach sand (N = 101) 47.04 26.63 372.49 [86]

Bangladesh (Bay of Bengal) Offshore Sediment (N= 6) 31.20 51.90 686.40 [32]
Turkey (Kocaeli- black sea) Beach sand (N = 20) 8.85 8.93 219.41 [80]

Ghana (Tema Harbour) Marine Sediment (N = 21) 34.00 30.00 320.00 [31]
Nigeria (Akwa Ibom) Beach Sediment (N = 15) 23.00 36.00 145.00 [2]

* 226Ra activity concentration. ** 228Ra activity concentration.

3.4. Multivariate Statistical Analyses

A comparative PCC (Table 3) analysis was conducted to pinpoint the direct association
between the specific characteristics of the considered marine sediments and 238U, 232Th,
and 40K. Correlations of 0.20–0.39, 0.40- 0.59, 0.60–0.79, and 0.80–1.00 are considered weak,
moderate, strong, and very strong, respectively [87]. 238U has significant strong positive
correlations with mud content (Pearson’s R = 0.678) and weak positive correlation with
OM (Pearson’s R = 0.357), indicating the effect of fine particles and OM on the distribution
of 238U [37]. 238U has moderate positive correlations with 232Th (Pearson’s R = 0.419), this
is due to the co-existence of U and Th radionuclides in nature [69,85,88], which is reflected
by the presence of both radioelements in the SEM/EDX of monazite grain (Figure 4). 232Th
has significant strong positive correlations with heavy minerals index (Pearson’s R = 0.696).
On the other hand, 40K has moderate positive correlations with sand content (Pearson’s
R = 0.510).
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Table 3. PCC analysis.

CaCO3 OM Sand Mud HI 238U 232Th 40K
CaCO3 1 0.488 −0.969 −0.052 −0.544 0.101 −0.123 −0.425

OM 1 −0.597 0.437 −0.172 0.357 −0.073 −0.278
Sand 1 −0.198 0.477 −0.268 0.069 0.510
Mud 1 0.227 0.678 0.217 −0.381
HI 1 0.154 0.696 −0.114

238U 1 0.419 −0.312
232Th 1 −0.186

40K 1
Weak Moderate Strong Very Strong

The observed HCA results (Figure 6) were remarkably similar to the PCC results. It
revealed that there are two groups of variables. Cluster (1) is related to 40K and sand. This
suggests that 40K is more linked with sand in the considered marine sediments. Cluster (2)
splits into two subclusters: A (238U, 232Th, HI, and Mud) and B (CaCO3). This indicates
that 238U and 232Th are more associated with HI and, to a lesser extent, mud content. In
addition, no possible association is noted between CaCO3 and the measured radionuclides.
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Figure 7 present the 3D loading of PCA component; three components (PC1 (38.92),
PC2 (30.04%), and PC3 (12.47%)) were extracted. The 3D plots of the extracted three
components positively confirms the findings of PCC and HCA analyses.
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3.5. Radiation Hazard
3.5.1. Radiation Hazard for Humans

The calculated values of the radiological hazard parameters for the investigated
marine sediments are shown in Table 4. In order to establish homogeneity with regard to
radiation dose from the measured naturally occurring radionuclides, the radium equivalent
activity index (Raeq) was calculated [1,59]. The obtained Raeq values ranged from 43.526 to
87.620 Bq kg−1 (mean 63.969 Bq kg−1). These levels are considerably below 370 Bq kg−1,
which is the suggested maximum value [1,59]. Gamma radiation from emitting natural
radionuclides in the studied marine sediment has an external hazard index (Hex) that
ranges from 0.118 to 0.237 (mean 0.173). All calculated Hex values in this investigation
are below the safety level of one [60], which is regarded as negligible. Absorbed dose
rate (D) is the exposure of an individual to external, terrestrial radiation while engaged
in outdoor activity. The calculated D values varied from 21.196 to 42.137 nGy h−1 (mean
31.493 nGy h−1). These values were below the world average (57 nGy h−1) [1] in all studied
marine sediment samples. Figure 8 shows the contributions of 238U, 232Th, and 40K to the
obtained D values contained in each sediment sampling site. Evidently, the contribution
of 40K is the greater one, and the contribution of the measured radionuclides in D values
varies from one site to another.
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Table 4. Calculated radiological parameters in Jeddah Coast sediment.

Sample No. Raeq Hex D AEDE ELCR × 10–3

1 87.620 0.237 42.137 0.052 0.181
2 48.176 0.130 24.397 0.030 0.105
3 69.589 0.188 34.339 0.042 0.147
4 69.639 0.188 33.670 0.041 0.145
5 60.678 0.164 30.460 0.037 0.131
6 60.335 0.163 30.282 0.037 0.130
7 84.667 0.229 40.130 0.049 0.172
8 60.132 0.162 30.081 0.037 0.129
9 58.778 0.159 29.443 0.036 0.126
10 76.434 0.206 36.885 0.045 0.158
11 56.253 0.152 27.039 0.033 0.116
12 43.526 0.118 21.196 0.026 0.091
13 60.058 0.162 28.776 0.035 0.124
14 72.869 0.197 36.389 0.045 0.156
15 46.991 0.127 23.775 0.029 0.102
16 77.830 0.210 38.792 0.048 0.167
17 58.688 0.158 29.377 0.036 0.126
18 59.182 0.160 29.702 0.036 0.127

Min 43.526 0.118 21.196 0.026 0.091
Max 87.620 0.237 42.137 0.052 0.181

Mean 63.969 0.173 31.493 0.039 0.135
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The annual effective doses (AEDEs) for inhabitants were calculated based on D values.
AEDE values ranged from 0.026 to 0.052 mSv yr−1 (mean 0.039 mSv yr−1). These values
were lower than the worldwide average (0.07 mSv yr−1) [1] in all the studied sediment
samples. Long-term exposure to ionizing radiation typically leads to further risks described
as excess lifetime cancer risk (ELCR). To obtain a better insight of the health effects of
external exposure to the measured natural radionuclides in Jeddah coast marine sediments,
ELCR factors were calculated using AEDE values. The obtained values ranged from
0.091 × 10−3 to 0.181 × 10−3 (mean 0.135 × 10−3). The ELCR-calculated values are lower
than the world’s average (0.29× 10−3) [6,61]. This demonstrates that public exposure to the
investigated marine sediments in Jeddah coastal area cannot cause cancer over the course
of their lives. Figure 9 depicts the GIS-based distribution pattern maps of the calculated
radiological risk parameters.
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3.5.2. Radiation Hazard for Non-Human Biota

Using the ERICA Tool [63,64], the TD to non-human biota (marine organisms) as a
result of exposure to 238U and 232Th in Jeddah coast marine sediments was estimated and
is displayed in Table 5. As shown, the expected TD values were far below the background
dose rates. The estimated TD values from Jeddah coast marine sediments radionuclide
concentrations to non-human biota are not considerable biological hazards. The assessed
TD values for phytoplankton and polychaete worms were considerably greater than other
organisms. This indicates that sediment radioactivity may end up causing phytoplankton
and polychaete worms to receive the highest dose rates. As the base of the food chain,
phytoplankton can be regarded as a significant bioindicator for continuous monitoring of
radiological hazard in aquatic ecosystems [31].

Table 5. Estimated TD for marine organism in Jeddah Coastline marine sediment.

Sample
No.

Benthic
Fish Crustacean Macroalgae Mollusca–

Bivalve
Pelagic

Fish Phytoplankton Polychaete
Worm Zooplankton

1 2.84 × 10–3 3.14 × 10–3 2.85 × 10–2 1.45 × 10–2 1.72 × 10–3 1.08 × 10–1 3.70 × 10–1 1.23 × 10–3

2 8.90 × 10–4 9.90 × 10–4 8.92 × 10–3 4.55 × 10–3 5.40 × 10–4 3.43 × 10–2 1.16 × 10–1 3.90 × 10–4

3 1.75 × 10–3 1.93 × 10–3 1.75 × 10–2 8.91 × 10–3 1.05 × 10–3 6.77 × 10–2 2.27 × 10–1 7.60 × 10–4

4 1.85 × 10–3 2.04 × 10–3 1.79 × 10–2 9.17 × 10–3 1.08 × 10–3 7.73 × 10–2 2.32 × 10–1 8.60 × 10–4

5 9.60 × 10–4 1.06 × 10–3 9.05 × 10–3 4.64 × 10–3 5.40 × 10–4 4.37 × 10–2 1.16 × 10–1 4.80 × 10–4

6 9.50 × 10–4 1.04 × 10–3 8.88 × 10–3 4.55 × 10–3 5.30 × 10–4 4.33 × 10–2 1.14 × 10–1 4.70 × 10–4

7 2.74 × 10–3 3.02 × 10–3 2.69 × 10–2 1.37 × 10–2 1.61 × 10–3 1.11 × 10–1 3.48 × 10–1 1.25 × 10–3

8 1.00 × 10–3 1.10 × 10–3 9.38 × 10–3 4.81 × 10–3 5.60 × 10–4 4.52 × 10–2 1.21 × 10–1 5.00 × 10–4

9 9.60 × 10–4 1.06 × 10–3 9.02 × 10–3 4.62 × 10–3 5.40 × 10–4 4.35 × 10–2 1.16 × 10–1 4.80 × 10–4

10 2.65 × 10–3 2.93 × 10–3 2.70 × 10–2 1.37 × 10–2 1.63 × 10–3 9.60 × 10–2 3.52 × 10–1 1.10 × 10–3

11 1.78 × 10–3 1.97 × 10–3 1.78 × 10–2 9.06 × 10–3 1.07 × 10–3 6.91 × 10–2 2.31 × 10–1 7.80 × 10–4

12 9.50 × 10–4 1.05 × 10–3 8.96 × 10–3 4.60 × 10–3 5.40 × 10–4 4.32 × 10–2 1.15 × 10–1 4.70 × 10–4

13 1.09 × 10–3 1.20 × 10–3 9.25 × 10–3 4.79 × 10–3 5.40 × 10–4 6.13 × 10–2 1.17 × 10–1 6.50 × 10–4

14 1.02 × 10–3 1.13 × 10–3 9.11 × 10–3 4.70 × 10–3 5.40 × 10–4 5.24 × 10–2 1.16 × 10–1 5.60 × 10–4

15 8.90 × 10–4 9.80 × 10–4 8.88 × 10–3 4.53 × 10–3 5.40 × 10–4 3.40 × 10–2 1.15 × 10–1 3.90 × 10–4

16 1.79 × 10–3 1.97 × 10–3 1.79 × 10–2 9.12 × 10–3 1.08 × 10–3 6.84 × 10–2 2.32 × 10–1 7.70 × 10–4

17 9.90 × 10–4 1.09 × 10–3 9.37 × 10–3 4.80 × 10–3 5.60 × 10–4 4.42 × 10–2 1.21 × 10–1 4.90 × 10–4

18 9.50 × 10–4 1.04 × 10–3 8.91 × 10–3 4.57 × 10–3 5.30 × 10–4 4.28 × 10–2 1.15 × 10–1 4.70 × 10–4

Min 8.90 × 10–4 9.80 × 10–4 8.88 × 10–3 4.53 × 10–3 5.30 × 10–4 3.40 × 10–2 1.14 × 10–1 3.90 × 10–4

Max 2.84 × 10–3 3.14 × 10–3 2.85 × 10–2 1.45 × 10–2 1.72 × 10–3 1.11 × 10–1 3.70 × 10–1 1.25 × 10–3

Mean 1.45 × 10–3 1.60 × 10–3 1.41 × 10–2 7.19 × 10–3 8.40 × 10–4 6.03 × 10–2 1.82 × 10–1 6.70 × 10–4

Background
Dose Rates 0.58 0.59 0.87 2 0.42 0.38 1.6 0.94

4. Conclusions

From textural and mineralogical attributes, the Jeddah coastal marine sediments are a
mixture of materials of marine and continental origin. These sediments are dominated by
sand fraction and CaCO3 with low OM content. The identified non-opaque heavy minerals
are amphiboles, pyroxenes, epidote, zircon, sphene, garnet, monazite, tourmaline, and
kyanite with minor amounts of andalusite, rutile, and staurolite. The measured activity
concentrations have the order of 40K > 238U > 232Th. The mean concentration values of
238U, 232Th, and 40K are 19.50 Bq kg−1, 9.38 Bq kg−1, and 403.31 Bq kg−1, respectively.
The radionuclide distributions were influenced by sediment mud content, organic matter,
and heavy minerals index. The calculated Raeq, Hex, D, AEDE, and ELCR are within
the safe range and lower than the global average. The estimated TD per organism was
far below the background dose rates. Natural radiation from these marine sediments is
normal and poses no significant radiological risk to the public or non-human biota. The
natural radioactivity of the marine sediment in this Jeddah coastline must be monitored on
a regular basis to avoid unnecessary radiation exposure to the residents. Additional studies
on natural radioactivity in marine water and other radionuclides level such as 137Cs could
provide improved insights into the status of natural radioactivity in this area. This research
can assist regulatory bodies and government agencies in planning for urban and industrial
expansion while keeping environmental radiation in mind.
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