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Abstract: A method has been developed for the retrieval of the atmospheric boundary layer pa-
rameters in tropical cyclones, namely the dynamic speed, the wind speed at a 10 m height, and the
roughness parameter. For the analysis, the wind speed profiles were obtained from NOAA GPS-
dropsondes and collocated with the data from the Stepped-Frequency Microwave Radiometer (SFMR).
The parameters of the atmospheric boundary layer from the GPS-dropsonde data were obtained
by taking into account the self-similarity of the velocity defect profile. The emissivity, determined
from the radiometric measurement data, was calibrated to the field data from the GPS-dropsondes.
Empirical relations between the wind speed, dynamic wind speed, and aerodynamic drag coefficient
with the surface emissivity have been proposed. Based on a comparison of the measured dynamic
parameters and the surface emissivity, empirical formulas have also been proposed. From an analysis
of cross-polarized Sentinel-1 SAR images and collocated SFMR measurements for hurricanes Irma
(2017/09/07) and Maria (2017/09/21 and 2017/09/23), we have obtained the dependences of the
NRCS on the ocean surface emissivity, surface wind speed, and friction velocity. These results could
potentially be used to improve the algorithm for the retrieval of boundary layer parameters in tropical
cyclones from remote sensing data.

Keywords: hurricane; microwave remote sensing; atmospheric-ocean boundary layers; wind friction
velocity; radiometer; emissivity

1. Introduction

One of the main parameters of the marine boundary layer (MABL) determining the
interaction between atmosphere and ocean is the wind stress τ (see extensive reviews
in [1,2]), which is often used in atmospheric circulation models for hurricane forecasting:

τ = ρau∗
2 (1)

where ρa is the air density and u∗ is the wind friction velocity. It is generally accepted to
parametrize the turbulent stress using the drag coefficient and so-called “bulk-formula”:

τ = ρaCDU2
10 (2)

where CD is the aerodynamic drag coefficient and U10 is the 10 m wind speed. The wind
profile for the neutrally stratified atmosphere is:

U10 = u∗/κ ln(H10/z0) (3)

where κ = 0.4 is the Karman constant, H10 is the 10 m height, and z0 is the roughness
parameter, which cannot be measured directly and is usually estimated using U10 and u∗.
The expressions (1)–(3) show a relation between CD and the roughness parameter:
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CD =
κ2

ln2(H10/z0)
, (4)

A large number of investigations have been conducted to study the dependence
of CD on U10 at low and moderate winds [1,3–7]. Initially, it was assumed that CD is
constant, but later, it was found that it increases linearly on wind speed at a height of
10 m for wind speeds up to 20 m/s [8–11]. At the same time experimental investigation
demonstrates great uncertainty in the dependence of the drag coefficient CD on U10 at high
wind speeds [12–18]. Indeed, it has been demonstrated in [13,14] that the dependence of
CD on U10 tends to saturation at wind speeds of 33–35 m/s. It was shown in [12,15,16]
that CD decreases with increasing U10 at wind speeds above 30–35 m/s; alternatively, its
increase is demonstrated in [17,18], while the level of measurement errors is above 50%.
All this leads to significant uncertainties in determining the friction velocity using the bulk
formula and has motivated a search for means of the direct measurement of u∗.

Recently, remote sensing microwave instruments have been actively used to retrieve
the MABL parameters, as these make it possible to obtain high spatial resolution data on the
state of the ocean surface under any weather conditions. For the retrieval of surface wind
speed at hurricane wind speeds along with satellite measurements, brightness temperature
measurements from the Stepped Frequency Microwave Radiometer (SFMR) installed on
research aircraft belonging to the National Oceanic and Atmospheric Administration
(NOAA/HRD) [19] during their flight through tropical cyclones is widely used. Based on
the obtained measurements of the brightness temperature, the sea surface emissivity is
reconstructed, which is determined by the properties of the ocean surface, depending on
the surface wind speed. This empirical relationship can be used to retrieve the wind speed
from the radiometric measurements.

However, since the emissivity of the sea surface is determined by small-scale rough-
ness, including foam bubbles, spray, etc., it can be expected that the value will be impacted
by the wind forcing quantified due to the wind turbulent shear stress (the wind friction
velocity). In this regard, the present study is aimed at retrieving the dependence of the
emissivity on the shear turbulent stress and the roughness parameter (or drag coefficient.

Recently, there have been studies devoted to creating algorithms for wind speed
retrieval from satellite active microwave remote sensing data covering hurricane conditions.
It is known that at wind speeds exceeding 25–30 m/s, the sensitivity of the traditionally
used co-polarization NRCS (normalized radar cross-section) to wind speed change drops
significantly. In this regard, algorithms such as CMOD5 [20] are unsuitable for retrieving
wind speed within hurricanes. However, cross-pol NRCS does retain its sensitivity [21–23].
When constructing a geophysical model function relating the cross-pol NRCS to the wind
speed, SFMR data are used, along with a few ground data. The possibilities of constructing
an algorithm for restoring the friction velocity from satellite cross-pol SAR- images were
discussed in [24], where GPS-dropsonde data collocated with the acquisition of cross-pol
SAR images were used. The dependencies constructed here, which retrieve the values of
the wind friction velocity and the drag coefficient from the airborne SFMR data, provide
a significant expansion of the data array compared to the case in which the SAR data are
collocated only with GPS-dropsondes.

In this paper, GPS-dropsonde measurements for tropical cyclones and their collocated
measurements from SFMR have been used to establish a new geophysical model function
(GMF). Section 3 presents a method for retrieval of the wind friction velocity and the
roughness parameter based on the analysis of data obtained from GPS-dropsondes; wind
velocity profiles are used for the analysis, and an assumption is made about their self-
similarity. In Section 4, based on a comparison of data obtained from GPS-dropsondes
and SFMR measurements, the empirical dependences of wind speed at a height of 10 m,
dynamic wind speed, and the aerodynamic drag coefficient on emissivity are proposed. In
Section 5, we obtain the dependencies of the cross-pol NRCS from Sentinel-1 SAR-images
on the friction velocity and 10 m wind speed retrieved from the collocated SFMR data
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for Category 5 hurricanes. In conclusion, we discuss the dependences obtained and the
prospects for their use in remote sensing of the dynamic parameters of the atmosphere.

2. Data
2.1. GPS-Dropsonde Dataset

The data from the NOAA (National Oceanic and Atmospheric Administration) GPS-
dropsondes was used to obtain wind speed profiles in tropical cyclones. The datasets are
available on the NOAA Hurricane Research mission website (http://www.aoml.noaa.gov/
hrd/data_sub/hurr.html (accessed on 14 July 2022)) and contain temperature, pressure,
relative humidity, wind speeds, and the corresponding heights measured at 0.5 s resolution.
All the data are recorded in ASCII format in AVAPS (Airborne Vertical Atmospheric
Profiling System) files for individual GPS-dropsonde. The analysis of wind speed profiles,
measured by GPS-dropsondes, was conducted for 25 Category 4 and 5 tropical cyclones
(TC) observed in the period from 2001–2017 in the Atlantic basin (see Table 1).

Table 1. Tropical cyclones selected for the analysis and the acquisition time for different instruments.

TC Name Category GPS-Dropsondes
Launch Time

SFMR
Acquisition Time SAR Acquisition Time

Lili 4 2002/10/02–2002/10/03 2002/10/02–2002/10/03
Frances 4 2004/08/30–2004/09/02 2004/08/30–2004/09/02
Dennis 4 2005/07/08–2005/07/10 -

Ike 4 2008/09/06–2008/09/07 2008/09/06–2008/09/07
Omar 4 2008/10/16 -

Paloma 4 2008/11/08 2008/11/08
Bill 4 2009/08/19–2009/08/20 2009/08/19–2009/08/20

Fabian 4 2003/09/01–2003/09/05 -
Gustav 4 2008/08/30–2008/08/31 2008/08/30–2008/08/31

Earl 4 2010/08/30–2010/09/02 2010/08/30–2010/09/02
Katia 4 2011/09/06 -

Gonzalo 4 2014/10/15–2014/10/17 2014/10/15–2014/10/17
Joaquin 4 2015/10/01–2015/10/02 2015/10/02
Harvey 4 2017/08/26 -
Florence 4 2018/09/09–2018/09/12 -

Jose 4 2017/09/18–2017/09/20 2017/09/19–2017/09/20

Dean 5 2007/08/16–2007/08/22
(except 2007/08/18) -

Irma 5 2017/09/03–2017/09/10 2017/09/04–2017/09/09 2017/09/07
Isabel 5 2003/09/12–2003/09/18 2017/09/09, 2003/09/12

Ivan 5 2004/09/07–2004/09/15
(except 2004/09/08)

2004/09/09,
2004/09/12–2004/09/15

Katrina 5 2005/08/26–2005/08/29 2005/08/27–2005/08/28

Maria 5 2017/09/18–2017/09/27 2017/09/22–2017/09/26 2017/09/21,
2017/09/23

Matthew 5 2016/09/29,
2016/10/01–2016/10/08

2016/09/29, 2016/10/01,
2016/10/04–2016/10/06

Rita 5 2005/09/19–2005/09/24 2005/09/20–2005/09/23

Wilma 5 2005/10/18,
2005/10/20–2005/10/24 2005/10/22–2005/10/23

2.2. SFMR Wind Speed Measurements

Measurements made by the Stepped Frequency Microwave Radiometer (SFMR) are
usually synchronized with the launch of the GPS-dropsondes. The SFMR measures bright-
ness temperature at six frequencies (4.55, 5.06, 5.64, 6.34, 6.96, 7.22 GHz) in a 200 MHz
bandwidth, from which the ocean surface emissivity is retrieved; it is associated with
surface wind speed and precipitation intensity from their contribution to the brightness
temperature budget at the specified microwave frequencies. The time period for receiving
a dataset from all six channels was 10 s. At a typical aircraft speed of 150 m/s, that corre-

http://www.aoml.noaa.gov/hrd/data_sub/hurr.html
http://www.aoml.noaa.gov/hrd/data_sub/hurr.html
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sponds to a spatial resolution of 1.5 km along the flight path. In addition, the cross-scale of
the studied area of the ocean surface depends on the flight altitude, the physical dimensions
of the antenna, and the frequency of the microwaves. At a typical flight altitude of 1500 m,
the transverse scale of the study area has a diameter of 600 to 800 m, depending on the
channel. The acquisition time of SFMR data for selected tropical cyclones is presented
in Table 1.

2.3. Sentinel-1 Data

In this study, we use the data acquired by the C-SAR radar with the frequency
5.405 GHz of the Sentinel-1 satellite (European Space Agency). The images are usually
made for different modes: Wave mode, Stripmap mode, Extrawide Swath mode, and
Interferometric Wide Swath mode. The last one was used in the present study at VH
cross-polarization. SAR images were collected from the ESA Copernicus Open Acess
Hub (https://scihub.copernicus.eu/ (accessed on 14 July 2022)) for the hurricanes Maria
(2017/09/18–2017/09/27, Category 5 (SSHS)) and Irma (2017/09/03–2017/09/10, Category
5 (SSHS)) (see Table 1).

3. Retrieval of Atmospheric Boundary Layer Dynamic Parameters from GPS-
Dropsonde Data

The generally accepted approach used in technical hydrodynamics to describe turbu-
lent boundary layers in pipes and on flat plates is based on the retrieval of the dynamic
wind speed from the airflow velocity profiles averaged over turbulent fluctuations (see [25]).
It is assumed that the velocity profiles in the boundary layer are self-similar and can be
conditionally subdivided into a logarithmic part (a layer of constant flows) and a “wake”
part located above, where the flow adapts to the undisturbed flow [25]. Using the self-
similarity property, the parameters of the wind flow (dynamic wind speed, roughness
parameter) can be determined from the data obtained in the region of the profile wake
part. Based on the proposed approach, it is possible to avoid the effect of velocity profile
deformation due to the wave momentum flux (see, for example, [26]), as well as to reduce
the high level of errors that are observed in the region of constant fluxes close to the surface
where measurements are often missing or inaccurate. In the present paper, the proposed ap-
proach is applied to wind speed profiles using NOAA (National Oceanic and Atmospheric
Administration) GPS dropsondes for selected tropical cyclones (see Table 1). With these,
the problem is especially noticeable for measurements in the vicinity of tropical cyclones,
where data loss near the surface is much more significant compared to measurements far
from the surface (see [27]).

The self-similar laws mentioned above may be applied only to the statistically av-
eraged turbulent boundary layer velocity profiles, while the individual airflow velocity
profiles measured by the GPS-dropsondes demonstrate stochastic behavior on the vertical
coordinate and should be grouped into statistical ensembles for further averaging. In the
present study, for each hurricane, a selected dataset from GPS-dropsondes (see Table 1) was
analyzed, and data obtained for several days and containing high wind speeds were con-
sidered. The statistical ensembles were formed from sets of wind velocity profiles selected
during the day at approximately the same distance from the hurricane center and demon-
strated a similar dependence of wind speed on height. To obtain the statistical ensembles,
the selected groups of vertical profiles of the boundary layer velocities measured by the
GPS-dropsondes were displayed in three-dimensional coordinates—wind speed, vertical
coordinates, and distance from the center of a tropical cyclone. For a visual assessment of
the configuration of the statistical ensembles see Figure 1. Such a graphical representation
clearly illustrates that profiles with similar qualitative and quantitative characteristics can
be conditionally combined into three arrays located at a certain distance from the center of
the hurricane: the first array is the profiles grouped inside the eye of the hurricane, with
velocities at the upper boundary of the boundary layer less than 20 m/s (red profiles in
Figure 1) (they are excluded from the statistical analysis due to low wind speeds); the

https://scihub.copernicus.eu/
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second array—GPS-dropsondes with wind speeds at the upper boundary of the boundary
layer above 20 m/s (included in the statistical analysis) (green profiles in Figure 1); the
third array—GPS-dropsondes that fell in the area of the outer vortex of the hurricanes, at
large distances from the center (blue profiles in Figure 1) (also not taken into account when
compiling the statistical ensemble due to low wind speeds at the upper boundary of the
boundary layer—less than 20 m/s).
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Figure 1. 3-D illustrations, the axes respectively show the distance from the center of the hurricane
(obtained by comparing the measurement data of the coordinates of the NOAA GPS-dropsondes and
the coordinates of the hurricane’s track at the time the GPS-dropsonde fell), with the wind speed
and altitude measured by the GPS sensor of the falling GPS-dropsonde. Dataset for hurricane Dean,
2007/08/19. Red profiles correspond to the eye of the tropical cyclone (excluded from the analysis);
blue profiles indicate the data obtained far from the tropical cyclone center (wind speeds less than
20 m/s, excluded from the analysis); green profiles represent the data used for the statistical analysis.

As a result, wind speed profiles averaged over the profile groups could be obtained
(see Figure 2a).
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from John Wiley & Sons, 2012) (b). The straight solid line is the logarithmic approximation.

Since the phenomenon of capping inversion is observed above the convective layer in
the planetary boundary layer, it can act as a cover, and the atmospheric boundary layer in a
tropical cyclone can be considered to be a flow in a channel. Such flows can typically be
subdivided into two characteristic regions (see Figure 2b): a layer of constant fluxes, for
which the velocity profile is characterized by a logarithmic law with a thickness of ~ 0.3δ
(δ is the thickness of the turbulent boundary layer, [29]) and the wake part, in which the
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maximum wind speed is observed (described by a parabolic dependence, see [25]). For
a tropical cyclone, the thickness of the turbulent boundary layer is usually about 1 km
(see, for example, Figure 2a); consequently, the thickness of the layer of constant fluxes
can be estimated as ~300 m. The atmospheric boundary layer in a tropical cyclone as part
of the layer of constant fluxes contains a region where momentum is exchanged between
the airflow and surface waves, with a scale of λ/10, where λ is the wavelength [30], so
in this region, the sum of turbulent and wave fluxes remains constant [26]. In the case of
intense tropical cyclones of categories 4 and 5, when the wavelengths are in the hundreds
of meters, the height of the layer containing the wave flux turns out to be of the order of
several tens of meters, which means that the logarithmic approximation of the velocity
profile is valid only for a narrow range of heights and the method of dynamic velocity
retrieval from the logarithmic part of the profile leads to significant errors. In this regard,
an approach was developed based on determining the parameters of the boundary layer
from the data obtained in the wake part of self-similar velocity profiles. The authors used a
similar approach in laboratory experiments on a wind wave flume when measuring the
dynamic wind speed [28], which was based on the self-similarity property of the velocity
defect profile [25]:

Umax − U(z)
u∗

= F
( z

δ

)
, (5)

where Umax is the maximum velocity in the turbulent boundary layer and u∗ is the friction
velocity, δ—the boundary layer thickness. In [25], the following self-similar velocity profile
approximation was used for the case of a non-gradient turbulent boundary layer on a flat
plate or in a wind channel:

Umax − U(z) =

{
u∗
(
− 1

κ ln(z/δ) + γ
)

; z/δ < 0.3

βu∗(1 − z/δ)2; z/δ > 0.3
, (6)

where κ = 0.4 is the von Karman constant and γ, β are the constants; their values will be
defined using an algorithm described below. In [13] this method was used for estimation
of the atmospheric boundary layer parameters in a hurricane. The parameters Umax, u∗, δ
included in formula (6) can be easily obtained using the second-degree polynomial approx-
imation of the measured velocity profile in the “wake” part, i.e., at z/δ > 0.3:

U(z) = p3 + p2z + p1z2, (7)

Comparison with (3) implies relations that make it possible to calculate the parameters
of the turbulent boundary layer (Umax, u∗, δ):

βu∗ = −
p2

2
4p1

; δ = − p2

2p1
; Umax = p3 + βu∗, (8)

Figure 2 shows the velocity profiles in the boundary layer which are expressed in the
self-similar variables Umax−U(z)

βu∗
and z

δ . These profiles were obtained by averaging the en-
semble of velocity profiles realizations measured under approximately the same conditions,
similar to the example shown in Figure 1. It is seen from Figure 3 that the velocity profiles
expressed in self-similar variables collapse to one curve expressed by Equation (6).

Approximation of the experimental data by formula (6) gives −1/(κβ) = 0.3474 ± 0.014
while the coefficient γ/β = 0.07318 with 95% confidence lies in the interval from 0.04648 to
0.09988.The friction velocity u∗ was calculated from the obtained βu∗(see formula (8)) and
β, and then, using the obtained values of Umax, u∗, δ the roughness parameter and surface
wind speed were determined:

z0 = δ exp(−κUmax/u∗ + γκ)
U10 = 2.5u∗ ln(H10/z0)

(9)
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where H10 = 10 m. And then the aerodynamic drag coefficient can be obtained from (7, 8):

CD =

(
u∗

U10

)2
=

κ2

(κUmax/u∗ − γκ + ln(H10/δ))2 , (10)

The surface wind speed obtained in this way is different from the surface wind speed
Us f c determined through the average wind speed in the 150-m atmospheric layer (see [19]).
Figure 4 shows the relationship between U10 and Us f c: Us f c = 0.83U10 + 6.79. The overall
bias, RMSE, and Cor are −0.3506, 4.8148, and 0.91, respectively. It can be seen that U10 and
Us f c are highly correlated. However, for speeds below 40 m/s, the values are somewhat
underestimated, and for speeds above 40 m/s, they are overestimated.
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RMSE = 4.8148, Cor = 0.91.
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Thus, the estimates of the surface wind speed obtained by the two different approaches
appear to be comparatively close. Calculations for individual statistical ensembles con-
structed from velocity profiles measured under approximately the same conditions were
made in order to obtain the values of u∗, CD, and U10, using Equations (9) and (10). The
dependencies of u∗ and CD on U10 are shown in Figure 5. The green values were obtained
using the procedure of binning, which means that the data was averaged inside the bins
for U10 with a size of 5 m/s.
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It can be seen from Figure 5 that the dependency of u∗ on U10 is linear, and the
aerodynamic drag coefficient does not change within the experimental error CD ≈ 0.0025
for U10 < 35 m/s. The obtained dependency is in accordance with the result obtained
in [31], where it was shown that within the rough flow regime, the neutral friction velocity
is linearly dependent on the 10 m wind speed for wind speeds less than 25 m/s. When U10
exceeds the threshold of 35 m/s, the dynamic wind speed becomes a constant u∗ ≈ 1.70 m/s
within the confidence interval. However, this result needs to be fully verified with a greater
amount of data for analysis, so a weak dependence u∗(U10) cannot be excluded. For
U10 > 35 m/s, the drag coefficient decreases proportionally to (U10)−2, and this dependence
of CD (U10) is in a good agreement with the data reported in [12,15,16,18,31] (see Figure 4b).
Presumably, the anomalous behavior of the dynamic wind speed and associated wind stress
at high wind speeds are concerned with the presence of spray in the marine atmospheric
boundary layer [30,32], foam at the water surface [33,34], the peculiarities of surface wave
form drag (e.g., [35]), etc. However, this problem needs more detailed study in future.

4. Comparison of the Atmospheric Boundary Layer Dynamic Parameters with Values
of the Emissivity of the Sea Surface According to SFMR Data

The values of U10, u∗, and CD obtained from the GPS-dropsondes data were compared
with measurements made by the Stepped Frequency Microwave Radiometer (SFMR), which
were synchronized with the launch of the GPS-dropsondes.

The principle of the wind speed retrieval method of a tropical cyclone is to use a
geophysical model function (GMF) representing the dependency of the ocean surface
emissivity Ew on the surface wind speed (see [19]):



J. Mar. Sci. Eng. 2022, 10, 1136 9 of 14

Ew =


a1Us f c, Us f c ≤ 7 m/s,

a2 + a3Us f c + a4U2
s f c, 7 m/s < Us f c ≤ 31.9 m/s,

a5 + a6Us f c, Us f c > 31.9 m/s
, (11)

where the coefficients have the following values:

(a1, a2, a3, a4, a5, a6) = (0.0401, 0.2866, −0.0418, 0.0058, −5.6658, 0.3314)× 10−2, (12)

The time series of the Usfc value retrieved using this algorithm can be found at the web-
site (https://www.aoml.noaa.gov/hurricane-research-division (accessed on 14 July 2022)).
In the current study, the Formulas (11) and (12) were used to determine the emissivity Ew.
It was calculated at the points corresponding to the coordinates of the GPS-dropsondes and
then averaged over the GPS-dropsonde groups defined earlier. The obtained Ew values
were compared to the U10, u∗, and CD calculated on the basis of the method proposed
in Section 2. To obtain the dependences of the average values of u∗, CD, and U10, on the
mean Ew, the data were grouped (binned) by the Ew value and averaged. The results
of such processing are shown in Figure 6. It can be seen (Figure 6a) that, within the er-
ror limits, Formula (11) (dashed curve on Figure 6a) describes the experimental data for
U10(Ew). In this article, we propose another empirical function U10(Ew) representing two
power approximations:

U10 =

{
85E1/3

w , Ew ≤ 0.06,
215E2/3

w , Ew > 0.06
, (13)
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Figure 6. Comparison of the surface wind speed (a), the wind friction velocity (b), and drag coefficient
of the ocean surface (c), retrieved from the data of falling GPS-dropsondes. Small symbols are the
results of calculations for individual statistical ensembles composed of velocity profiles measured
under approximately the same conditions, large symbols are averaged values, lines of approximation
by (13)–(15) are on the right, middle and left panels, respectively. The dotted line on the left panel is
the GMF from [19].

It allows a uniform description of the empirical relationships between Ew and two
other dynamic characteristics of the atmospheric boundary layer that can be obtained inde-
pendently on the basis of processing data from the falling GPS dropsondes, u∗ (Figure 6b),
and CD (Figure 6c). Similar to Formula (13), the approximations of the dependences u∗(Ew)
and CD(Ew) using two power functions have the form:

u∗ =

{
4.3E1/3

w , Ew ≤ 0.06,
1.7, Ew > 0.06

, (14)

CD =

{
0.0026, Ew ≤ 0.06,
6.25 · 10−5E−4/3

w , Ew > 0.06
, (15)

https://www.aoml.noaa.gov/hurricane-research-division
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Formulas (13)–(15) are consistent with each other and are in agreement with the data
in Figure 6.

Figure 7 illustrates the retrieval of the atmospheric boundary layer dynamic parame-
ters using the expressions (13)–(15), and the ocean surface emissivity is measured using
SFMR. The values retrieved are for the surface wind speed U10, the dynamic wind speed
u∗, and the drag coefficient CD along the flight path crossing the eye of hurricane Irma
on 2017/09/07. A small difference in the values of the surface wind speed, obtained by
formula (13) and the method reported in [6], can be observed in Figure 7. This is the result
of the fact that the data set for the analysis used in obtaining expressions (13)–(15) did
not include data for the region of low and moderate wind speeds with values of less than
15 m/s, so the obtained expressions are not applicable for the eye of the tropical cyclone,
where low wind speeds are observed.
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Figure 7. Emissivity of the ocean surface Ew, measured along the track of an aircraft over hurricane
Irma 2017/09/07 (1st graph). Blue lines—retrieved values of the surface wind speed (Equation (13),
graph 2), the wind friction velocity (Equation (14), graph 3), drag coefficient (Equation (15), graph 4).
The black line on the 2nd graph is the surface wind speed retrieved by the algorithm, reported in [19].

Some differences between the surface wind speed obtained by expression (13) and by
the algorithm reported in [19] for high wind speeds are also observed. These have probably
been introduced by a lack of data and the resulting statistical errors.

It is seen from Equation (14) that the friction wind speed is constant when the emis-
sivity is high (it corresponds to the wall of the tropical cyclone); this is the result of the
saturation effect observed in the dependency of u∗(U10) at U10 > 35 m/s (see Figure 5).
It should be noted that if additional data are analyzed in the future, a weak dependence
u∗(Ew) may be observed. A feature of the drag coefficient is the significant decrease in its
values in the area of the wall of the hurricane, where the highest wind speeds are observed.
Moreover, in the region of relatively weak winds, it is constant. This is also a consequence
of using a limited dataset and will likely be overcome when expanded.

5. The Algorithm for Retrieving Atmospheric Boundary Layer Dynamic Parameters in
a Hurricane Based on Collocated Sentinel-1 and SFMR Data

The measurements from the SFMR described in the previous section have been used
for the qualitative and quantitative refinement of the obtained dependences of the cross-
pol NRCS from Sentinel-1 SAR images on the wind speed and turbulent stress [24]. The
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NRCS was determined by averaging in cells of 2 × 2 km at each point of the aircraft track
(Figure 8). The resulting dependences of the NRCS (overall dataset contains 2642 values)
on the binned and averaged ocean surface emissivity Ew (binning was made for every
100 values of Ew) are illustrated in Figure 9a.
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Figure 9. NRCS dependency on Ew (a); U10 (b); and u∗ (c) for hurricanes Maria (2017/09/18–
2017/09/27, Category 5 (SSHS)) and Irma (2017/09/03–2017/09/10), obtained using collocated
satellite data and analysis of measurement results from SFMR and NOAA GPS-dropsondes. Solid
lines—logarithmic approximation.

The dependences of the NRCS on the wind speed and on the wind friction speed were
obtained using the relations between the SFMR data and the atmospheric boundary layer
dynamic parameters (13) (14) from the previous section (see Figure 9b,c).

Similar dependences of the NRCS on the surface wind speed and friction velocity based
on a comparison of remote sensing data from the Sentinel-1 satellite with the measurements
from GPS-dropsondes were previously obtained by the authors in [24]. The main problem
of the approach proposed in [24] was the lack of data acquired by the GPS-dropsondes
exactly at the time of the satellite image. Therefore, in order to form a statistical ensemble
for averaging, the data from GPS-dropsondes for one day earlier and one day later than
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the image were used, with the assumption being made that the hurricane remained quasi-
stationary during this period of time. This assumption is only valid for powerful Category
5 hurricanes, while it may not be true for Category 4 or 3 hurricanes in most cases. The
main advantage of the proposed approach in comparison with the previously obtained
dependences [24] is that the large array of data from the SFMR allows us to obtain more
statistics, as the data for processing is acquired exactly on the day of the image, and the
hurricane does not change significantly during the measurement period.

6. Discussion

The retrieval of dynamic atmospheric boundary layer parameters, i.e., the surface
wind speed, the wind friction velocity, and the aerodynamic drag coefficient, on the
basis of collocated measurements from NOAA GPS-dropsondes and SFMR for hurricane
conditions has been considered. The analysis was made for 20 Category 4 and 5 tropical
cyclones observed during the hurricane seasons 2001–2017 in the Atlantic basin. To obtain
the dynamic parameters of the atmospheric boundary layer from the GPS-dropsonde
measurements, an algorithm based on the self-similarity of the velocity profile in the
boundary layer was used. This algorithm had previously been applied by the authors
to determine the wind parameters from the measurements made in the wake part of the
boundary layer in a wind wave flume [26].

Based on a comparison of the data obtained from the GPS-dropsondes and measure-
ments with the SFMR, a method has been proposed for retrieval of the parameters of
the atmospheric boundary layer from the data on ocean surface emissivity. This method
differs from the traditional approach, in which first the wind speed is retrieved from the
radiometric data and then the value of the dynamic wind speed is estimated with the
“bulk formulas”. This method has a significant drawback, since the CD(U10) dependence is
non-linear, and in addition, the CD and U10 values were obtained for averaged wind speed
profiles under different conditions. The approach proposed in this paper is based on the
reconstruction of all the wind parameters based on the Ew measured “here and now”.

We should note that the empirical dependences that relate the emissivity of the ocean
surface with the dynamic parameters of the atmospheric boundary layer proposed in this
paper are preliminary. In order to refine them (in particular, in the region of wind speeds
above 35 m/s), an extended data set will be considered in the future.

At the final stage of research, we considered the measurements from the SFMR
collocated with SAR images obtained from the Sentinel-1 satellite for hurricane Maria
(2017/09/18–2017/09/27, Category 5 (SSHS)) and Irma (2017/09/03–2017/09/10, Cate-
gory 5 (SSHS)). A relationship was obtained between the emissivity of the ocean surface
and the NRCS, and then, based on the proposed method for reconstructing the atmospheric
boundary layer data from radiometric measurements, the dependencies of the NRCS on
wind speed and turbulent stress (friction velocity) were proposed. These relationships
could be used as the basis for further qualitative and quantitative improvement of the
methods for the retrieval of atmospheric boundary layer parameters from satellite remote
sensing data previously proposed by the authors [24].
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