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Abstract: The present study aims to investigate the scale effects of the open water propeller perfor-
mance using computational fluid dynamics (CFD). The results are presented for the propeller which
was previously 3D scanned and digitized. The results obtained using two turbulence models within
the numerical simulations are compared. The verification study is conducted to assess the numerical
uncertainty and thus obtain the optimal grid size for the numerical simulations. A transition model
is used at the model scale to account for the partially laminar flow. The propeller is then scaled,
and numerical simulations are performed to assess the scale effects on the open water performance
of the considered propeller. The results demonstrate the significant scale effects on open water
characteristics however, scale effects are considerably lower when the transition model is applied
within the numerical simulations at the model scale.
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1. Introduction

The open water test (OWT) is carried out in towing tanks to assess the hydrodynamic
performance of propellers. These tests are always performed at a model scale since open
water tests at full-scale would be expensive and there are no testing sites where such
large-scale tests would be feasible. Nowadays, computational fluid dynamics (CFD) is
successfully used by many researchers for the assessment of ship propulsion performance.
Farkas et al. [1] used numerical simulations for the prediction of the nominal wake in
the case of a bulk carrier. The authors noticed significant scale effects in both integral
values of nominal wake and circumferential averaged non-dimensional axial velocity
distribution. Jang et al. [2] employed numerical simulations of OWT at model scale to assess
the influence of pitch motion on the propeller performance. The authors demonstrated
that the pitch motion of the ship has a dominant effect on the variation of the propeller
performance resulting in the sinusoidal pitch motion of the propeller. Sun et al. [3] used
CFD to investigate the vibration and noise reduction effects of an energy-saving device. The
obtained results showed that the considered energy-saving device can improve propulsion
efficiency and reduce the radiation noise intensity. Multiple different scaling methods have
been developed for the extrapolation of the model scale to full-scale results. Helma et al. [4]
presented an overview of the different scaling methods and assessed their influence on the
full-scale results. The authors divided the scaling methods into statistical, analytical, CFD
methods, and a combination of the listed methods. Helma [5] developed a scaling procedure
for unconventional propeller designs called the βi method utilizing the equivalent profile
concept. The author showed that the method works well with all propeller geometries
since it is independent of the blade loading distribution. It is also important to point out
that it needs the results from only one set of open water curves. Extrapolation performed
by any of the scaling methods provides accurate and reliable results [6], but experimental
OWT is cost-intensive and time-consuming. CFD is a reasonable alternative to towing tank
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tests since it is a versatile tool that can be used to predict ship hydrodynamic characteristics
in model and full-scale [7]. The authors showed in [7] that the numerical results of the ship
resistance in calm water varied from −10% to 4% compared to sea trials data. Mikkelsen
and Walther [8] validated the results from the self-propulsion numerical simulations against
the results obtained from the sea trials. They showed that the discrepancy between the
results can be further lowered using the modified wall functions for the simulation of the
surface roughness. The difference between the obtained delivered powers is largely affected
by propellers operating at higher Reynolds numbers in full-scale simulations [9]. Another
problem with extrapolation to full-scale is the fact that the scaling methods are not accurate
enough for unconventional propellers [10]. Multiple authors addressed this issue by
simulating the flow around the full-scale propellers with unconventional geometries such
as tip-modified propellers [5,11,12]. The hydrodynamic analysis of a tip-loaded propeller
was performed using the boundary element method to evaluate the propeller-induced hull
pressures in [13]. The predicted hull pressures are in good agreement with the ones obtained
in the cavitation tunnel and with unsteady RANS equations at the design and moderately
loaded conditions. Dong et al. [12] studied the influence of PPTC-II propeller’s tip rake on
the scale effects by conducting numerical simulations in full-scale and model scale as well
as modifying the propeller geometry with and without the tip rake. The authors compared
the results with the ones obtained using the ITTC-1978 method and concluded that the ITTC
method must be updated to predict the scale effects on the thrust and torque coefficients
more precisely. Li et al. The study by [10] also concluded that ITTC should develop new
scaling methods for unconventional propellers. Chen et al. [14] studied the open water
hydrodynamic performance of a high skew submarine propeller E1619 and concluded that
the difference between the predicted torque coefficient using the ITTC 1978 method and the
ones obtained by numerical simulations is not negligible. Furthermore, they concluded that
the law of scale effect cannot be analyzed using only two models and that several different
scales must be considered. Owen et al. [15] investigated the effect of biofouling on the
propeller open water performance using numerical simulations at the model scale where
multiple methods for propeller rotation modeling were used, i.e., the moving reference
frame (MRF) method and sliding mesh (SM) approach. Minor discrepancies between
the open water results obtained from the two methods were shown; thus, the authors
decided to retain the MRF method since it is computationally less expensive. The same
method was used in [16,17] since it lowers the computational time, and the convergence is
faster than using the overset mesh (OM) method. Mikkelsen et al. [18] also used the MRF
method for open water simulations; however, in the case of self-propulsion simulations,
the MRF method was used only to initialize the flow around the propeller followed by
the SM method for the rest of the simulation. A comparison of SM and OM methods was
given in [19] for the case of a rotating vertical axis turbine. The authors showed that by
increasing the number of cells the results converge faster using the OM method at the cost
of 10% higher computational time. Wang et al. [20] used a single-run procedure and OM
method to determine the open water curves. The results were compared to the experimental
results performed by IIHR (available at the Tokyo 2015 CFD Workshop [21]) and an overall
agreement between the results was shown. Bekhit and Lungu [22] performed numerical
simulations of resistance and self-propulsion tests with and without the rudder as well as
OWT. The obtained results were compared with experimental results, showing an average
error of about 3% for the thrust coefficient and 7% for the torque coefficient. Lungu [23]
in his later study performed numerical simulations of the resistance, open water, and self-
propulsion tests of a 3600 TEU containership, where he showed a 5% difference between the
measurements and numerical predictions of thrust and torque coefficients. Farkas et al. [24]
compared two methods for assessing the influence of biofouling on the open water propeller
characteristics. The verification and validation study were performed for three full-scale
propellers and satisfactory agreement was achieved. These results were compared with the
results obtained using a propeller performance prediction method for fouled surfaces. The
impact of hard fouling on the ship hydrodynamic performance was assessed in [25], where



J. Mar. Sci. Eng. 2022, 10, 1132 3 of 17

the authors conducted full-scale CFD simulations of OWT for three propellers and validated
the results using the towing tank results. Farkas et al. [26] investigated the effects of biofilm
on ship propulsion characteristics. The authors demonstrated the significant impact of
biofilm on the ship hydrodynamic performance highlighting the importance of keeping
the hull clean. Dogrul [27] investigated the scale effects of a self-propelled submarine
where he compared the extrapolated numerical results with the results from full-scale
simulations. Gonzalez-Adalid et al. [28] conducted model scale and full-scale numerical
simulations for the determination of the performance of two unconventional propellers
with the transition model. Good agreement was shown between the results obtained from
the fully turbulent, full-scale simulations and the sea trial data. Baltazar et al. [29] also
performed the numerical simulations with the transition model at the model scale, but in
addition, the paint test results were used for the validation study. The authors showed an
increase in thrust of 2–4% when using the transition model. Moran-Guerrero et al. [30] used
an improved Gamma Reynolds Theta (γ− Reθ) correlation-based model for transition
prediction, which considers the crossflow effects. Pawar and Brizzolara [31] used the
same transition model to simulate the OWT of an open and ducted propeller to assess the
discrepancies between experimental and numerical results.

The focus of this study is the investigation of the scale effects of the open water
propeller performance. The numerical simulations are conducted for multiple scales
ranging from model scale to full-scale. First, the verification study is conducted using
the grid convergence index (GCI) method, and the results of the numerical simulations
are presented. The rest of the paper is organized as follows: the numerical model and
the grid generation are described within Methods section. The results are presented and
briefly discussed in the Results section and discussion followed by the conclusions from
the present study in the last section.

2. Methods
2.1. Numerical Modeling

The numerical simulations in this study are based on the Reynolds-averaged Navier–
Stokes (RANS) equations. For the case of an incompressible fluid, continuity and momen-
tum transport equations for unsteady flow are written as:

∂ui
∂xi

= 0 (1)

ρ
∂ui
∂t

+ ρ
∂

∂xj

(
uiuj + u′ iu′ j

)
= − ∂p

∂xi
+

τij

∂xj
(2)

where ui is the averaged Cartesian components of the velocity vector, ρu′ iu′ j is the Reynolds
stress tensor (RST), p is the mean pressure, and τij is the mean viscous stress tensor defined as:

τij = µ

(
∂ui
∂xj

+
∂uj

∂xi

)
(3)

where µ is the dynamic viscosity of the fluid.
To discretize the governing equations, the finite volume method (FVM) is used in the

simulations. Within the numerical simulations, the shear stress transport k−ω (SSTKO)
turbulence model is used to close the system of discretized differential equations since it is
accurate enough in the near wall and far-field region [32]. The SSTKO is compared with
the realizable k− ε (RKE) turbulence model.

The rotation of the propeller can be modeled using three approaches, i.e., SM, OM,
and steady-state simulation using the MRF. In this study, the MRF method [33] is used
since it is computationally more efficient compared to the other two approaches [15]. The
MRF is a steady-state method that consists of a rotating flow around a stationary mesh.
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2.2. Turbulence Models

RANS turbulence models are based on the modeling of RST which is expressed as a
function of the mean flow quantities. The turbulence models applied in this study use the
concept of turbulent eddy viscosity µt to model RST.

2.2.1. Realizable k− ε(RKE) Turbulence Model

This is a two-equation model that solves transport equations for the turbulent kinetic
energy k and the turbulent dissipation rate ε. The eddy viscosity in this model is described
with the following equation:

µt = ρ Cµ
k2

ε
(4)

where Cµ is the model coefficient.
The transport equations for k and ε within the RKE model are defined as:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂2k
∂x2

i

(
µ +

µt

σk

)
+ fcGk + Gb −ΥM − ρ(ε− ε0) + Sk (5)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂2ε

∂x2
i

(
µ +

µt
σε

)
+

1
Te

Cε1( fcSk + Cε3Gb)− Cε2 f2 ρ

(
ε

Te
− ε0

T0

)
+ Sε (6)

where ui is the averaged velocity vector, fc is the curvature correction factor, Gk is the
turbulent production term, σk and σε are turbulent Schmidt numbers, GB is the buoyancy
production term, ε0 is the ambient turbulence value that counteracts turbulence decay, Υ is
the dilatation dissipation, Cε1, Cε2 and Cε3 are the model depending coefficients, S is the
modulus of the mean strain tensor, and finally Sk and Sε are the user-defined source terms.

2.2.2. Shear Stress Transport k−ω (SSTKO) Turbulence Model

The modified standard k− ω model blends k− ε model in the far field with the k− ω
model near the walls. Turbulent eddy viscosity in this model is given by the following equation:

µt = ρkT (7)

where T is the turbulent time scale.
The k−ω turbulence model solves two transport equations for the turbulent kinetic

energy k and the specific dissipation ω:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂2k
∂x2

i
(µ + σkµt) + Gk + Gnl + Gb − ρβ∗ fβ∗(ωk−ω0k0) + Sk (8)

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂2ω

∂x2
i
(µ + σωµt) + Gω + Dω − ρβ fβ

(
ω2 −ω2

0

)
+ Sω (9)

where σk, σω, β, β∗ are the model depending coefficients, Gnl is the non-linear production
term, fβ∗ is the free–shear modification factor, fβ is the vortex–stretching modification
factor, and finally k0 and ω0 are the ambient values that counteract turbulence decay.

2.3. Transition Model

The turbulence model assumes that the flow is turbulent in the whole flow region.
Within the numerical simulations at the model scale, the flow is expected to be partly
laminar. To model the transition from laminar to turbulent flow, a transition model should
be applied. The correlation-based γ− Reθ transition model is used within the numerical
simulations because it is coupled with the SSTKO turbulence model. The transition model
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solves two additional transport equations, i.e., intermittency γ and transition momentum
thickness Reynolds number Reθt which read as follows:

∂(ργ)

∂t
+

∂(ρUjγ)

∂xj
= Pγ − Eγ +

∂

∂xj

[(
µ +

µt

σf

)
∂γ

∂xj

]
(10)

∂(ρReθt)

∂t
+

∂(ρUjReθt)

∂xj
= Pθt +

∂

∂xj

[
σθt(µ + µt)

∂Reθt
∂xj

]
(11)

where Uj is the mean velocity vector, Pγ and Pθt are the production terms, Eγ is the
destruction term, σf and σθt are the model coefficients. More information on the production,
destruction terms and model coefficients can be found in [34]. To accurately solve the
laminar and transitional boundary layers, the first cell near the wall must have y+ ≤ 1 [29].
Because of this constraint, it is decided to disable the transition model at other scales.

2.4. Open Water Propeller Characteristics

The open water characteristics of a propeller consist of determining the forces and
moments acting on the propeller which is operating in a uniform stream without the
influence of the hull. To obtain the open water curves, thrust KT and torque KQ coefficients
need to be determined as functions of the advance coefficient J. The thrust and torque
coefficients are defined using the following equations:

KT =
T

ρn2D4 (12)

KQ =
Q

ρn2D5 (13)

where T and Q are the thrust and torque, respectively, ρ is the fluid density, n the propeller
rate of revolution, and D the propeller diameter. The advance coefficient is defined as follows:

J =
vA
nD

(14)

where vA is the speed of advance.
Finally, propeller open water efficiency ηo is defined by:

ηo =
J

2π
KT
KQ

(15)

2.5. Grid Generation

The computational domain is defined as a cylinder that encloses the propeller with
the hub and shaft. The domain boundaries are placed sufficiently far from the propeller to
avoid their influence on the obtained results. Figure 1 shows the computational domain
with the respective dimensions.

For the discretization of the computational domain, the unstructured hexahedral mesh
is used. The numerical simulations with the transition model are performed with a grid
that has y+ ≤ 1, while the remaining simulations are performed with a grid that has
y+ > 30 [35]. To obtain the required y+ values, the distance from the wall to the center of
the first prism layer is determined using the following equation:

y =
y+ν

uτ
(16)
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The frictional velocity uτ is calculated as follows:

uτ =

√
τw

ρ
(17)

where the wall shear stress τw is calculated using the skin friction coefficient C f :

τw =
1
2

C f ρU2
∞ (18)

In this study, the skin friction coefficient is determined for a flat plate using the
following equation:

C f = 0.0576Re−
1
5

d (19)

where Reynolds number depends on the scale. While this is not an exact method for
the determination of the height of the first prism layer, it yields satisfactory results. The
obtained y+ values are checked, and it is ensured that y+ > 30 in numerical simulations
where wall functions are applied and that y+ < 1 in numerical simulations with the
transition model. Special attention is given to the refinement around the propeller and in
the MRF zone. The transition from the prism layer to the core mesh is carefully discretized
to avoid possible numerical diffusion. A more detailed discussion regarding the influence
of y+ values on the obtained numerical results regarding the open water test can be found
in Owen et al. [15].

2.6. Verification Study

The GCI method, based on the Richardson extrapolation is used for the verification
study. The GCI method is used to determine the appropriate grid size by determining the
grid uncertainty. If the iterative uncertainty is neglected, then the numerical uncertainty
consists only of the grid uncertainty. The interested reader can find more details about the
method in [24].

2.7. Case Study

In this study, a propeller is modeled using computer-aided design (CAD) software.
The modeled propeller has geometric properties that resemble the one used for the Japan
CFD Workshop 2015 for the Japan Bulk Carrier (JBC). The propeller is then scaled and
the numerical simulations of OWT are conducted. Figure 2 shows the 3D scan of the
propeller model and the CAD model used in the numerical simulations. Table 1 contains
the propeller main particulars, and the scales used in the CFD simulations are listed within
the same table. The advance coefficients are obtained by changing the speed of advance
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with a constant rate of revolution of the propeller. The rate of revolution for different scales
is defined using the following equation:

ns =
nm√

λ
(20)

where ns is the rate of revolution at the specific scale and nm is the rate of revolution at the
model scale.
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Table 1. The main particulars of the considered propeller in the different scales.

Scale, λ 40.264 4 2 1.333 1

Index M M1 M2 M3 F
Diameter, D (m) 0.203 2.040 4.079 6.119 8.158

Rate of revolution, n (rps) 26.03 8.204 5.801 4.737 4.102
Reynolds number, (Re) (−) 1.298× 106 4.111× 107 1.162× 108 2.136× 108 3.309× 108

Pitch ratio, (P/D) (−) 0.736
Expanded area ratio, Ae/A0(−) 0.644

Hub ratio, d/D (−) 0.193
Number of blades, Z (−) 5

3. Results and Discussion
3.1. Verification Study

Firstly, the verification study is performed using the numerical simulations at the
model scale with the transition model. Since the numerical simulations are steady state,
only the GCI for the spatial discretization is calculated. Table 2 shows the data of the used
grids where the grid spacing h is calculated using the following equation:

h = 3

√√√√ 1
N

N

∑
i=1

(∆Vi) (21)

where N is the total number of finite volume cells and Vi is the volume of the i-th cell. The
grid refinement ratio is calculated as follows:

rij =
hi
hj

(22)

The GCI is calculated for the open water efficiency ηo in the range of advance coefficient
from 0.1 to 0.6. Table 3 presents the obtained GCIs with the calculated averages as well.
Both the average coarse and fine GCIs are low, and the coarse GCI is under 4 %; thus, the
medium grid size is used for the rest of the numerical simulations.
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Table 2. Number of cells, grid spacing, and grid refinement ratio for model scale numerical simula-
tions with the transition model.

Index Number of Finite Volume
Cells, N Grid Spacing, h (m) Grid Refinement Ratio, r

1 8.8M 0.0098
1.164

2 5.2M 0.0114
1.0403 3.0M 0.0119

Table 3. Fine and coarse GCIs for the range of advance coefficients and their average for model scale.

J GCIfine, % GCIcoarse, %

0.1 1.258 1.71
0.2 1.878 3.14
0.3 5.239 15.25
0.4 0.116 2.21
0.5 0.002 0.55
0.6 0.017 0.65

Average 1.42 3.92

Another verification study is conducted for three full-scale grids with non-dimensional
wall distance y+ > 30. The coarse and fine GCIs are calculated for open water efficiency in
the considered range of advance coefficients. Table 4 presents the details about the grids,
while Table 5 shows the calculated grid convergence indices for the open water efficiency.

Table 4. Number of cells, grid spacing, and grid refinement ratio for full-scale numerical simulations.

Index Number of Finite Volume
Cells, N Grid Spacing, h (m) Grid Refinement Ratio, r

1 10.2M 0.3758
1.090

2 8M 0.4075
1.2073 4.5M 0.0119

Table 5. Fine and coarse GCI for the range of advance coefficients and their average for full-scale.

J GCIfine, % GCIcoarse, %

0.1 0.42 0.19
0.2 1.70 1.34
0.3 7.65 8.06
0.4 1.82 2.19
0.5 1.48 1.90
0.6 1.55 2.15

Average 2.44 2.64

This study shows that the average GCIs in the range of advance coefficient from 0.1 to
0.6 are less than 4% and the difference between the coarse and fine GCIs is negligible. Thus,
a medium grid size can be used for the full-scale simulations. The grids for the other scales
use the same grid setup with varying prism layers to maintain y+ > 30, so it is expected
that the GCI will not differ significantly from the two studies presented.

3.2. Turbulence Models

The influence of the turbulence model on the obtained results is investigated using
the model scale and full-scale numerical simulations with the medium grid size and the
non-dimensional wall distance y+ > 30. Figures 3 and 4 show the open water curves
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obtained from the model and full-scale numerical simulations, respectively. The influence
of the turbulence model on the results is barely visible for the full-scale case. The relative
difference in the open water efficiency for the SSTKO turbulence model is equal to 2.83%
for model scale and 0.65% for full-scale. The transition model is disabled for both cases
shown in the figures.
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Figure 4. The open water curves of full-scale propeller obtained using RKE and SSTKO turbulence models.

3.3. Model Scale

The numerical simulations at the model scale are performed for non-dimensional
wall distance y+ > 30 and y+ ≤ 1. The open water curves for the first case are already
presented in the previous subsection. Figure 5 shows the open water curves for the
numerical simulations at the model scale with and without the transition model for the
case with y+ ≤ 1. Table 6 shows the numerical values of the relative errors, with respect to
the case with the transition model, at different advance coefficients and the average values
as well.
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Figure 5. Open water curves for model scale with and without the transition model.

Table 6. Relative differences between the thrust and torque coefficients and open water efficiencies in
the range of advance coefficients.

J KT, % 10KQ, % ηo, %

0.2 0.38 2.14 −1.72
0.4 −0.65 4.30 −4.74
0.6 −2.83 8.40 −10.36
0.7 −10.30 17.38 −23.58

Average 3.54 8.06 10.10

The data shows lower values of the torque coefficient for the case with the transition
model enabled, which in turn leads to higher values of the open water efficiency. It can be
seen that the transition model influences the torque coefficient more in comparison to the
thrust coefficient.

Figures 6 and 7 show the distribution of the skin friction coefficient obtained from the
model scale numerical simulations. Significant differences between the two cases can be
noticed. The skin friction coefficient is lower in the case with the transition model, which
is expected considering the partially laminar flow. The lower skin friction leads to lower
values of the torque coefficient which results in higher open water efficiencies.
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3.4. Scale Effects

The open water curves obtained from numerical simulations at different scales are
compared in this subsection. Figure 8 shows the open water efficiency as a function of the
advance coefficient obtained from the simulations at different scales. Figures 9 and 10 show
the thrust and torque coefficients, respectively. In Figures 8–10, the numerical results at
the model scale are extrapolated to full-scale using the ITTC 1978 Performance Prediction
Method (PPM). It can be noticed that the differences between the open water efficiencies
are more apparent at higher advanced coefficients. The open water efficiency at the full-scale
obtained using ITTC 1978 PPM is higher than at the model scale. However, the extrapolated
values of open water efficiency are lower than the ones obtained using numerical simulations
in full-scale. This can be attributed to the fact that ITTC 1978 PPM considers a rough full-scale
propeller, while in this study smooth full-scale propeller is analyzed.
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Figure 8. Open water efficiency as a function of advance coefficient for different scales.

Figure 8 shows that the open water efficiency increases with the decrease in scale.
Minor discrepancies between the open water efficiencies are visible in the range of lower
advance coefficients. The thrust coefficients decrease with the increase in scale, while the
torque coefficients decrease with the decrease in scale. This tendency can be seen over the
entire range of advance coefficients. It should be noted that the scale effects on the frictional
component of the thrust and torque are significant, while the scale effects on the pressure
component of the thrust and torque are relatively low [36]. Bhattacharyya et al. [36] noticed
that the pressure component has a positive contribution, and the friction component has
a negative contribution to the value of propeller thrust at any scale. On the other hand,



J. Mar. Sci. Eng. 2022, 10, 1132 12 of 17

the absolute contributions from the pressure and friction components to the total torque
are positive at any scale. At higher Re numbers, the portion of frictional components in
the total torque and thrust values are lower in comparison to the portion of the frictional
components in the total torque and thrust values at lower Re numbers, since the scale effects of
the frictional component of the thrust and torque are significant. Since the frictional component
has a positive contribution to the total torque, the torque coefficients will be lower at higher
Re numbers. On the other hand, since the frictional component has a negative contribution to
the total thrust, the thrust coefficients will be higher at higher Re numbers.
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Additionally, it is worth noting that the results of model scale numerical simulations
have the same non-dimensional wall distance y+ > 30 without the transition model. Large
differences can be seen between the results obtained from the model scale simulations and
the remaining simulations. This may be attributed to the fact that the scales for model
and M1 are significantly different, i.e., λM/λM1 ≈ 10, and between the other scales the
difference is significantly lower.

Table 7 presents the differences between the numerical values obtained for all scales at
several advanced coefficients as well as the average values. These differences are calculated
using the equation:

∆φ =
φx − φM

φM
· 100% (23)

where φ stands for either KT , KQ, or ηo, index x denotes either M1, M2, M3, or F, and index
M stands for model scale.
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Table 7. The change in open water characteristics between the model scale and other scales.

M1 M2
J KT, % 10KQ, % ηo, % KT, % 10KQ, % ηo, %

0.1 4.37 −3.84 8.54 5.35 −4.03 9.77
0.2 4.70 −3.76 8.79 5.72 −4.09 10.22
0.3 5.61 −3.71 9.69 6.76 −4.08 11.30
0.4 7.23 −3.94 11.63 8.68 −4.40 13.68
0.5 10.12 −4.80 15.67 11.80 −5.71 18.57
0.6 17.76 −6.85 26.41 20.49 −8.24 31.31

Average 8.30 4.48 13.46 9.80 5.09 15.81

M3 F
J KT, % 10KQ, % ηo, % KT, % 10KQ, % ηo, %

0.1 5.79 −3.95 10.14 6.62 −3.42 10.39
0.2 5.94 −4.04 10.40 7.12 −3.59 11.10
0.3 6.81 −4.13 11.41 8.39 −3.68 12.53
0.4 8.68 −4.53 13.84 10.62 −4.18 15.45
0.5 11.83 −6.16 19.17 14.09 −5.95 21.30
0.6 21.65 −8.87 33.49 24.46 −8.74 36.38

Average 10.12 5.28 16.41 11.88 4.92 17.86

The highest average change in open water efficiencies is obtained for full-scale and it
is equal to 17.86%.

Figures 11 and 12 show the obtained distribution of the skin friction coefficient at the
advance coefficient J = 0.7 on the pressure and suction side of the propeller. The coefficient
is calculated using the same density of the fluid, but with different speeds of advance for
each case. It is visible that with the decrease in the scale of the propeller, the skin friction
coefficient decreases, which is expected since the Reynolds number increases with the
decrease in scale. The values of skin friction coefficient near the propeller hub are low with
the tendency to in-crease at higher radii. This can be attributed to the fact that the friction
velocity at higher radii is significantly higher. It is worth mentioning that the differences in
skin friction co-efficients for M3 and F are insignificant.
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Figure 11. Distribution of the skin friction coefficient obtained from the numerical simulations at
different scales on the suction side (J = 0.7)—M1 (first), M2 (second), M3 (third), F (fourth).

The distributions of the turbulent viscosity ratio (TVR) at 0.75R are presented in
Figure 13. TVR is defined as the ratio between turbulent viscosity µt and dynamic viscosity
µ. It is shown that the turbulent viscosity for the model scale is equal to zero, which suggests
that the flow is laminar. For other scales, TVR around the blade profile increases with the
decrease in scale. It is shown that the flow around the blade is turbulent and that the Reynolds
stress increases with the decrease in scale in comparison to viscous shear stress.
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Figure 14 shows the open water efficiency for M1, M2, M3, and F propellers as well
as for the model scale obtained with the transition model. It can be seen that the open
water efficiency increases once the transition model is applied. From this figure, it can be
seen that the impact of the scale effect on open water efficiency is significantly lower if the
tran-sition model is applied for the model scale simulations.
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4. Conclusions

Numerical simulations of the open water test (OWT) are performed at different scales.
The simulation setup is described in detail as well as the meshing process. The numerical
simulations of the flow around the propeller are carried out using the steady-state moving
reference frame (MRF) method. Special attention is given to the grid refinements around the
MRF zone and the area around the propeller to predict the flow more accurately. The shear
stress transport k−ω (SSTKO) turbulence model is used to close the system of equations
since it can be coupled with the Gamma Reynolds Theta (γ− Reθ) transition model and it is
the best compromise between the accuracy and the required computational time. The non-
dimensional wall distance y+ is kept below 1 for the numerical simulations at the model
scale, including the transition model, to obtain more accurate results since the laminar
flow is present. Within the numerical simulations for other scales, the non-dimensional
wall distance is above 30 and the transition model is disabled. The verification study is
performed for spatial discretization using the grid convergence index (GCI) method, which
shows that the medium size grid is appropriate in terms of computational time and the
accuracy of the results. The open water curves are presented for the numerical simulations
at the model scale with the transition model, which is compared to the case without the
transition model. The results show that when the transition model is applied, the torque
coefficient decreases, and thus the open water efficiency increases, which is also confirmed
by the distribution of the skin friction coefficient. The scale effects can be noticed from the
obtained open water curves, the distribution of the skin friction, as well as the turbulence
viscosity ratio (TVR) field. It can be concluded that the open water efficiency increases with
the decrease in scale. Finally, a comparison between the numerical simulations at the model
scale with the transition model with the numerical simulations at other scales is given. It
should be noted that when the transition model is applied, the scale effects on open water
characteristics are significantly lower.
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