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Abstract: In order to improve the hydraulic performance of a deep-sea mining pump, this re-
search proposed a multi-objective optimization strategy based on the computational fluid dynamics
(CFD) numerical simulation, genetic algorithm back propagation (GABP) neural network, and non-
dominated sorting genetic algorithm-III (NSGA-III). Significance analysis of the impeller and diffuser
parameters was conducted using the Plackett–Burman experiment to filter out the design variables.
The optimum Latin hypercube sampling method was used to produce sixty sample cases. The GABP
neural network was then utilized to establish an approximate model between the pump’s hydraulic
performance and design variables. Finally, the NSGA-III was utilized to solve the approximation
model to determine the optimum parameters for the impeller and diffuser. The results demonstrate
that the GABP neural network can accurately forecast the deep-sea mining pump’s hydraulic per-
formance, and the NSGA-III global optimization is effective. On the rated clear water conditions,
the optimized pump has a 14.65% decrease in shaft power and a 6.04% increase in efficiency while
still meeting the design requirements for the head. Under rated solid-liquid two-phase flow condi-
tions, the head still meets the design requirements, the shaft power is decreased by 15.64%, and the
efficiency is increased by 6.00%.

Keywords: multi-objective optimization; deep-sea mining pump; CFD numerical simulation; GABP
neural network; NSGA-III

1. Introduction

There are abundant mineral resources on the ocean floor [1]. Investigations into marine
mineral resources extraction technology began in the 1950s. So far, it has developed the
continuous line bucket system, free-shuttle mining system, vertical pipeline air-lifting
technology, and vertical pipeline pump-lifting technology. The vertical pipeline pump-
lifting system is the best lifting system for deep-sea minerals taking into account the
feasibility and efficiency of the system [2].

The deep-sea mining pump is the key component of the vertical pipeline pump-lifting
system and is a multi-stage, high-specific speed centrifugal slurry pump. Its main parts
are the centrifugal impeller and space diffuser [3,4]. Deep-sea mining pumps usually
use the enlarged flowrate design method to expand the flow path [5] to guarantee the
smooth passage of big mineral particles. Deep-sea mining pumps do not work at the
design conditions with the enlarged flowrate, which can lead to more vortices and more
significant hydraulic loss in the pump flow field, resulting in low head and efficiency [6].
Therefore, after completing the initial design of the pump, the necessary optimization
measures should be taken to enhance the head and efficiency.

There are various methods for optimizing pumps. In the early days, optimization
methods based on theoretical or empirical formulas were applied to pumps. Oh et al. [7,8]
enhanced the mixed-flow pump and the centrifugal pump by establishing mathematical
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models of the efficiency and net positive suction head (NPSH). Yang [9] modified a cen-
trifugal pump using a hydraulic loss mathematical model. The design of experiment (DOE)
methods could be utilized to comprehend the relationship between process and product
parameters and response characteristics. Many DOE methods have been applied to the
optimization of pumps. Pei [10] improved the required NPSH of the pump by 0.63 m based
on orthogonal DOE. Ayremlouzadeh [11] used Taguchi DOE to determine the optimum
impeller parameters for a low-speed centrifugal pump. Heo [12] enhanced a mixed-flow
pump’s efficiency by 1.36% using the response surface method (RSM). Hong [13] decreased
the impeller average wear intensity by 29.5% applying the RSM.

The above studies are mostly single-objective optimization studies of pumps. Single-
objective optimization can only enhance a single aspect of the pump’s performance and
cannot satisfy the design requirements. In recent years, with the development of multi-
objective optimization algorithms [14,15], various algorithms have been utilized to optimize
pumps. Multi-objective optimization algorithms include traditional and intelligent algo-
rithms [16]. By introducing weights, traditional multi-objective optimization algorithms
commonly turn a multi-objective optimization task into a single-objective optimization
task. The optimization effect of the algorithm is not good due to the problem of additional
weight idealization. Intelligent optimization algorithms mainly include the particle swarm
optimization (PSO) algorithm, ant colony algorithm (ACA), and genetic algorithm (GA).
These algorithms can perform global optimization in the range of all design variables,
which can better capture the spirit of multi-objective optimization. Nourbakhsh [17] and
Gan [18,19] performed multi-objective optimization of centrifugal pumps by the PSO
algorithm, demonstrating the feasibility of the PSO algorithm for pump optimization.
Zhang [20] combined a BP neural network with the NSGA-II to increase the pressure
rise of a helicon-axial multiphase pump by 10% and the efficiency by 3%. The inducer
of a centrifugal pump was optimized by Shojaeefard [21] using the neural network and
NSGA-II. The head coefficient, efficiency, and required NPSH of the modified pump rose by
14.3%, 0.3%, and 30.2%, respectively. Xu [22] modified a jet pump utilizing the NSGA-II and
radial basis function (RBF) neural network. The head of the modified pump is enhanced by
30.46%, and its efficiency is marginally improved.

In summary, multi-objective optimization algorithms are primarily applied to single-
stage radial-flow centrifugal pumps for single-phase flow. However, there is almost no
multi-objective optimization investigation for multi-stage axial-flow deep-sea mining slurry
pumps. The subject of this investigation is the six-stage deep-sea mining slurry pump
designed by Central South University. Based on the numerical simulation, the NSGA-III
is utilized to solve the approximation model of the hydraulic performance established
through the GABP neural network. In this way, the pump’s impeller and diffuser are
optimized to decrease the shaft power and increase the efficiency while the head meets the
design requirements.

2. Structure and Key Parameters of Deep-Sea Mining Pump

The structure of the six-stage deep-sea mining pump is displayed in Figure 1. The
deep-sea mining pump is manufactured as a vertical multistage pump with centrifugal
impellers and space diffusers to guarantee the features of high head and axial flow. Table 1
displays the pump’s design parameters under the rated operating circumstances. At the
pump’s rated operating conditions, the rotational speed n is 1450 rpm, the specific speed
ns is 150, the flowrate Q is 420 m3/h, the shaft power P is 680 kW, the head H is 270 m,
the efficiency η is 52%, the volume concentration of conveyed particles Cv is 5%, and the
average diameter of conveyed particles Φ is 10 mm.
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Figure 1. Structure of the deep-sea mining pump.

Table 1. The main parameters of the impeller and diffuser.

Structure of Impeller Parameter Structure of Diffuser Parameter

Number of blades Z1 4 Number of blades Z2 5
Blade outlet width b2 60 mm Blade inlet width b3 62 mm

Inlet diameter D1 235 mm Maximum diameter of the internal streamline D3 395 mm
Average outlet diameter D2m 410 mm Maximum diameter of the external streamline D4 516 mm

Outlet blade thickness δ2 15 mm Outlet diameter D5 235 mm
Blade wrap angle φ1 110◦ Inlet blade thickness δ3 7 mm
Inlet blade angle β1 35◦ Blade wrap angle φ2 95.5◦

Outlet blade angle β2 32.5◦ Inlet blade angle α3 12◦

Shaft diameter d 95 mm Outlet blade angle α4 85◦

The centrifugal impeller and space diffuser are the critical components of the deep-
sea mining pump. The impeller converts mechanical energy into kinetic, pressure, and
potential energy of the slurry by its rotation. The diffuser collects the slurry at the impeller
outlet and converts the kinetic energy into pressure energy. Therefore, the impeller and
diffuser decide the pump’s hydraulic performance and are the subject of optimization in
this study. Figure 2 shows the meridional contour and blade profile of the impeller and
diffuser. The key parameters of the impeller and diffuser are displayed in Table 1.

Figure 2. Meridional contour and blade profile of the impeller and diffuser.

3. Numerical Simulation and Experimental Validation
3.1. Basic Assumptions

When the volume concentration of particles conveyed by centrifugal pumps is less
than 20%, the external characteristics of pumps are similar under clear water and solid-
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liquid two-phase flow conditions [23]. As a result, deep-sea mining pumps are usually
designed in clear water conditions, and then particle conveying experiments are conducted
to evaluate the performance of the pump in transporting mineral particles. Following the
design principle, the optimization task of the deep-sea mining pump in this investigation
is also conducted under clear water conditions. The pump’s hydraulic performance for
conveying mineral particles is also tested after optimization.

Numerical simulations of the pump under both conditions were completed in ANSYS
Fluent 2021R1 software. During the simulations, the following assumptions were made:

(1) The physical characteristics of solids and liquids are steady, and there are no phase
changes.

(2) Fluids are incompressible
(3) The conveyed particles are spherical, uniformly sized particles.

3.2. Boundary Conditions and Computational Settings

The numerical simulation under clear water conditions is based on a pressure-based
steady-state solution. The clear water has a density of 998.2 kg/m3 and a viscosity of
0.001003 kg/(m·s). The impeller spinning fluid domain is represented by the multiple
reference frame (MRF) model. The renormalization group k-ε (RNG k-ε) turbulence model
is chosen to simulate the complex rotating fluid. Standard wall functions handle industrial
fluids with a y+ of 15–100. Velocity inlet and pressure outlet are the boundary conditions.
The solution methods of the SIMPLEC and second order upwind scheme are selected to
improve calculation accuracy. The absolute criteria of residual monitors are set to 1 × 10−4.
The number of iteration steps is 3000. Take the simulation results from the last calculation
cycle to calculate the pump’s hydraulic performance.

Given the conditions of marine mineral particles conveying at low volume concen-
trations (5–10%), the computational fluid dynamics and discrete phase model (CFD-DPM)
model based on the Euler–Lagrange theory is utilized to simulate the solid-liquid two-
phase flow. The DPM model is commonly used to deal with the problem of particles with
volume concentrations less than 10%. The above method is implemented through the
discrete phase model in the FLUENT software. The particles are spherical with a diameter
of 10 mm and a density of 1910 kg/m3, considering the Saffman force, fluid drag force,
pressure gradient force, and virtual mass force of particles.

The head H, shaft power P, and efficiency η of the deep-sea mining pump are calculated
as follows:

H =
p2 − p1

ρg
+ (z2 − z1) (1)

where p1 and p2 are the total pressure of the inlet and outlet, z1 and z2 are the height of the
inlet and outlet, ρ is the fluid density, and g is the gravitational acceleration.

P = ωM (2)

where ω is the angular velocity of the pump, and M is the moment of the impeller.

η =
ρgQH

P
(3)

where Q is the volume flowrate of fluid.

3.3. Modeling and Meshing of Flow Domain

In addition to the primary impeller and diffuser fluid domain, the computational
model for the pump also adds the fluid domain of the inlet and outlet pipe. These pipes’
length is five times the hydraulic diameter of the inlet or outlet, which allows turbulence at
the pump inlet and outlet to develop fully. All fluid domains are divided into unstructured
meshes using ANSYS ICEM CFD 2021R1 software, and the divided meshes are shown in
Figure 3.
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Figure 3. Meshes of the deep-sea mining pump.

A grid independence analysis of meshes was performed to increase computation
precision, as indicated in Table 2. In order to evaluate the discretization error of the CFD
method, the grid convergence index (GCI) is calculated using Celik’s method [24]. Three
meshes with N1 = 10,924,128, N2 = 4,673,330, and N3 = 1,911,196 were selected to calculate
GCI values. The grid refinement factor r21 is 1.327, and r32 is 1.347. The head is set as
the variable φ. The final calculated GCI21 is 2.19%, and GCI32 is 0.87%, which meets the
convergence requirements. The computed hydraulic performance parameters of the pump
almost stop varying when the number of meshes approaches 10.92 million. Given the
calculation speed, the number of meshes for all calculation models was estimated to be
about 11 million. The minimum orthogonal quality value of meshes is 0.4. The maximum
skewness value of meshes is 0.84. The value of y+ is approximately 50 for the RNG k-ε
turbulence model and standard wall functions.

Table 2. Grid independency analysis.

Number of Meshes Head (m) Shaft Power (W) Efficiency (%)

1,911,196 308.72 798,476 44.17
4,673,330 305.36 756,628 45.99
8,042,426 300.47 738,391 46.49

10,924,128 297.70 687,891 49.44
13,808,964 297.87 691,724 49.20

3.4. Experimental Verification in Clean Water Conditions

To verify the accuracy of the numerical simulations under clear water conditions,
the pump’s hydraulic performance was tested in the laboratory of Premier Electric Pump
Co., Ltd. in Tianjin, China. Figure 4 depicts the layout of the clear water experimental
system. The experimental system consists of the pump, pipe system, temperature sensor,
pressure sensor, electromagnetic flowmeter, and electromagnetic valve. The design of
the experimental system conforms to Chinese national standards, and the measurement
methods and accuracy of the test parameters conform to the relevant regulations.
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Figure 4. Layout of the clear water experimental system.

The hydraulic performance of the deep-sea mining pump in the flow range of 50–700 m3/h
at rated speed (n = 1450 rpm) was measured. Figure 5 illustrates the comparison of the
CFD simulated and experimental results. The trend of the simulation results and the
experimental results are the same on the whole, and the values basically match. The
maximum relative error of the simulated shaft power was 4.87%. The relative errors of the
simulated head and efficiency are only significant in the lower flow rate (Q < 200 m3/h)
conditions, 4.46–7.43%, and 6.59–9.74%, respectively. In comparison, the relative errors in
the other conditions are all controlled by 4.42%.

Figure 5. Comparison of the CFD simulated and experimental results.

The significant errors of numerical simulations at the extreme conditions do not affect
the optimization work in this research, as the optimization work was carried out at the
rated flowrate (420 m3/h). The comparison of the simulated and experimental results at
rated conditions is shown in Table 3. It can be concluded that the numerical simulations at
rated clear water conditions are very reliable.
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Table 3. Comparison of the experimental and CFD simulated results at rated conditions.

Head (m) Shaft Power (W) Efficiency (%)

Experimental Results 292.50 656,672 50.89
CFD Simulated Results 297.85 686,866 49.54

Relative Errors 1.83% 4.60% 2.65%

3.5. Experimental Verification in Solid-Liquid Two-Phase Flow Conditions

The slurry conveying experiment of the deep-sea mining pump was completed at
the State Key Laboratory of Deep-sea Mineral Resources Development and Utilization
Technology in Changsha, China. Figure 6 depicts the layout of the slurry conveying
experimental system. The system consists of the pump being tested, the pipe system, the
hydraulic feeder, the pressure sensor, the electromagnetic flowmeter, and the electronical
ball valve.

Figure 6. Layout of the slurry conveying experimental system.

Due to the limited pressure loading capacity of the experimental system, all slurry
conveying tests were carried out at 900 r/min operating conditions. Four sets of test
data with different particle volume concentrations were obtained. Table 4 illustrates the
comparison of the experimental and CFD-DPM simulated results. When the volume
concentration of the conveyed particles is low, the simulation results have a slight error of
around 1%. Since the volume concentration of particles under the deep-sea mining pump’s
rated conditions is 5%, the DPM model is a good fit for the numerical simulation.

Table 4. Comparison of the experimental and CFD-DPM simulated results.

Volume Flow (m3/h)
Volume Concentration

of Particles (%)
Head of Experiment

Results (m)
Head of CFD-DPM

Simulated Results (m) Relative Errors (%)

429.41 3.56 99.08 100.05 0.98
452.90 4.69 98.8 97.68 1.13
468.31 5.52 97.14 97.17 0.03
425.42 9.01 99.42 96.11 3.33
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4. Approximate Model of Hydraulic Performance Using GABP Neural Network
4.1. Design Variables Selection

Studies [25,26] have shown that there is a rotor–stator interaction between the impeller
outlet and the diffuser inlet of a centrifugal pump, which makes the turbulent kinetic
energy locally high and the vortex loss serious. Therefore, it is vital to concentrate on
optimizing the impeller outlet and diffuser inlet.

There are plenty of parameters at the impeller outlet and diffuser inlet, but they
have different significances of effect on the hydraulic performance. The Plackett–Burman
experimental design and analysis were performed using Minitab software to screen out
the parameters that significantly affect the optimization objectives. The Plackett–Burman
experiment requires only N + 1 trials of the N test factors to determine the significance
of the effect of each factor on the test results. The optimization objectives are the head,
shaft power, and efficiency of the deep-sea mining pump under the rated conditions. The
impeller parameters screened are the D2m, b2, δ2, and β2. The diffuser parameters screened
are the b3, δ3, and α3. In addition, four dummy factors, X1, X2, X3, and X4, are added for
error analysis. Twelve trials were performed with each of the eleven parameters at both
high and low levels. Table 5 displays the experimental design scheme. Table 6 displays the
simulated results for each set of experiments.

Table 5. Plackett–Burman experimental design scheme.

Number D2m (mm) b2 (mm) δ2 (mm) β2 (◦) b3 (mm) δ3 (mm) α3(◦) X1 X2 X3 X4

1 420 72 10 40 72 10 8 −1 −1 1 −1
2 400 72 20 20 72 10 20 −1 −1 −1 1
3 420 60 20 40 60 10 20 1 −1 −1 −1
4 400 72 10 40 72 5 20 1 1 −1 −1
5 400 60 20 20 72 10 8 1 1 1 −1
6 400 60 10 40 60 10 20 −1 1 1 1
7 420 60 10 20 72 5 20 1 −1 1 1
8 420 72 10 20 60 10 8 1 1 −1 1
9 420 72 20 20 60 5 20 −1 1 1 −1

10 400 72 20 40 60 5 8 1 −1 1 1
11 420 60 20 40 72 5 8 −1 1 −1 1
12 400 60 10 20 60 5 8 −1 −1 −1 −1

Table 6. CFD simulated results of the Plackett–Burman experiment.

Number 1 2 3 4 5 6 7 8 9 10 11 12

Head (m) 325.46 275.29 308.87 293.66 262.79 279.34 290.55 309.9 301.02 304.76 299.5 271.25
Shaft Power (W) 786,792 618,388 698,590 780,995 498,929 617,009 604,301 676,644 675,001 662,310 669,510 516,380

Efficiency (%) 47.26 50.86 50.51 42.96 60.17 51.72 54.93 52.32 50.95 52.57 51.11 60.01

The regression equations in terms of coded factors for the head, shaft power, and
efficiency can be established from the experimental results in Tables 5 and 6. The regression
coefficients and significance test results (one-tailed probability p-values) for every factor
are displayed in Table 7.
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Table 7. Regression coefficients and significance test results.

Factors Regression
Coefficients of Head

p-Values of
Head

Regression
Coefficients of

Shaft Power

p-Values of
Shaft Power

Regression
Coefficients of

Efficiency

p-Values of
Efficiency

D2m 12.35 0.0012 34,735.58 0.0075 −0.9342 0.1406
b2 8.15 0.0055 49,617.58 0.0020 −2.63 0.0067
δ2 −1.49 0.3746 −13,282.75 0.1282 0.5808 0.3179
β2 8.40 0.0050 52,130.25 0.0017 −2.76 0.0056
b3 −2.32 0.1954 9415.08 0.2465 −0.8992 0.1523
δ3 0.0758 0.9620 −1012.08 0.8911 0.0258 0.9620
α3 −2.08 0.2374 15,309.92 0.0921 −1.79 0.0245

A positive regression coefficient value may indicate a positive correlation between the
optimization objective and the factor. A negative value may mean that the optimization
objective and the factor are negatively correlated. The bigger the absolute value of the
regression coefficient, the more significant the effect of the factor on the optimization target.
The p-value can quantitatively evaluate the significance of a factor’s influence. When a
factor’s p-value is less than 0.05, the factor is regarded as a significant influence; when the
p-value is greater than 0.1, the factor is regarded as a non-significant influence, indicating
that it does not influence the optimization target; when the p-value is between 0.05 and 0.1,
the factor is regarded as a sub-significant influence.

The results of the significance analysis show that the significant influencing factors
of head and shaft power are the D2m, b2, and β2. The significant influencing factors of
efficiency are the b2, β2, and α3. Taking all factors into account, the optimized design
variables are the D2m, b2, β2, and α3. According to the design requirements and experience
of deep-sea mining pumps, the optimized design variables are determined in the range of
values, as shown in Table 8.

Table 8. Range of values for design variables.

Design Variables Range of Value Original Value

Average outlet diameter of the impeller D2m [395 mm, 425 mm] 410 mm
Impeller outlet width b2 [60 mm, 75 mm] 60 mm

Outlet blade angle of the impeller β2 [20◦, 40◦] 32.5◦

Inlet blade angle of the diffuser α3 [8◦, 20◦] 12◦

4.2. Establishing Sample Database

The amount of training samples for a neural network is at least ten times the amount
of variables in the input layer [27], and the sample points should be evenly distributed
within the variable interval. The optimum Latin hypercube sampling (OLHS) approach
is a modified approach of Latin hypercube sampling (LHS) that considers the uniformity
of the distribution of sample points. The sample space obtained by the OLHS will have
very good space-filling ability. A comparison of the effects of the two sampling methods is
shown in Figure 7. Sixty sets of design variable samples generated by the OLHS method
are presented in Table A1.
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Figure 7. Comparison of the sampling effects of LHS and OLHS: (a) LHS; (b) OLH.

4.3. Fitting and Prediction of GABP Neural Network

Figure 8 reveals the basic structure of the back propagation (BP) neural network [28].
In Figure 8, Xi is the input of the neuron, wij and wjk are the connection weights, and bj and
bk are the thresholds of the neuron in the input layer and output layer. If the activation
functions of the neurons in the hidden layer and output layer are f 1 and f 2, respectively,
the output Yi of the BP neural network is:

Yi = f2[wjk f1
(
wijXi − bj

)
− bk] (4)

Figure 8. Basic structure of the BP neural network.

The BP neural network’s basic principle allows the weights and thresholds to converge
to a specific value, but this does not ensure that it is a global minimum in the error plane,
which may get into the problem of local minima and lead to poor performance of the BP
neural network.

The genetic algorithm (GA) [29,30] can search for the optimum solution globally. It
can continuously select individuals of the population through selection, crossover, and
mutation. Individuals with a better fitness value are ultimately preserved to achieve the
globally optimum solution. Therefore, the weights and thresholds can be modified by
the GA to make it less likely to fall into local minima so that the performance of the BP
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neural network can be improved. The flowchart of the GABP neural network is displayed
in Figure 9.

Figure 9. Flowchart of the GABP neural network.

The fitting of the BP and GABP neural network was carried out by randomly selecting
50 out of 60 samples as the training samples. The remaining ten samples were utilized
as the test samples to evaluate the prediction work. The neural network’s performance is
assessed by the coefficient of determination (R2) and mean relative error (MRE). The R2

can evaluate the approximate degree of the neural network approximation model, and the
closer its value is to 1, the higher the approximate degree. The R2 and MRE are defined as
follows:

R2 = 1−

N
∑

i=1
(yo − yi)

2

N
∑

i=1
(yi − yi)

2
(5)

MRE =
1
N

N

∑
i=1

|yo − yi|
yi

(6)

where yo is the output value of the neural network,yi is the CFD simulated value,yi is the
average of the CFD simulated values, and N is the amount of data.

The results of fitting and prediction for the head, shaft power, and efficiency are shown
in Figure 10. The MRE and R2 of the fitting are shown in Table 9. It is evident that the
fitting performance of the GABP neural network is much better than that of the BP neural
network. The MRE of the GABP neural network is 0.65% at most, and the R2 is all greater
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than 0.98, which indicates that the prediction accuracy of the GABP neural network will be
very high.

Table 9. Comparison of the MRE and R2 of fitting.

Neural
Network MRE of Head R2 of Head

MRE of Shaft
Power

R2 of Shaft
Power

MRE of
Efficiency

R2 of
Efficiency

BP 0.75% 0.9465 1.15% 0.9661 0.66% 0.9514
GABP 0.43% 0.9827 0.65% 0.9881 0.29% 0.9863

Figure 10. Cont.
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Figure 10. Comparison of the performance of the BP and GABP neural network: (a) Head; (b) Shaft
Power; (c) Efficiency.

The MRE of the prediction is shown in Table 10. The results show that the prediction
effect of the GABP neural network is also improved, with a maximum MRE of 0.73%.
Therefore, the approximate model between the hydraulic performance and design variables
of the deep-sea mining pump is constructed by GABP neural network.

Table 10. Comparison of the MRE of the prediction.

Neural Network MRE of Head MRE of Shaft Power MRE of Efficiency

BP 1.44% 2.41% 1.29%
GABP 0.31% 0.73% 0.34%

5. Multi-Objective Optimization Based on NSGA-III

The objectives of the multi-objective optimization of the deep-sea mining pump are to
achieve the maximum head, minimum shaft power, and maximum efficiency within the
range of values of the design variables. The mathematical expression of the multi-objective
optimization problem is as follows:

MaximizeH = f1(D2m, b2, β2, α3)
MinimizeP = f2(D2m, b2, β2, α3)
Maximizeη = f3(D2m, b2, β2, α3)

(7)

where D2m ∈ [395, 425 mm], b2 ∈ [60, 75 mm], β2 ∈ [20◦, 40◦], and α3 ∈ [8◦, 20◦].
Deb [31] proposed the NSGA-II in 2000. The NSGA-II can maintain the diversity of

populations by introducing the elitist preserving approach and the crowding distance as-
signment approach. However, the amount of non-dominated individuals in the population
grows exponentially when the number of optimization objectives increases. The crowding
distance approach is inefficient as a diversity-preserving operator and even returns an
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ambiguous value. Therefore, the NSGA-II is mainly used for two-objective optimization
problems. To address these problems, Deb et al. [32,33] also proposed the NSGA-III algo-
rithm based on the selection mechanism of reference points in 2014. Figure 11 displays the
flowchart for the NSGA-III.

Figure 11. Flowchart of the NSGA-III.

The framework of NSGA-III is similar to that of NSGA-II, except that the critical layer
selection method of NSGA-III uses the reference point approach. As a result, the population
obtained by NSGA-III has better distributivity. The time complexity and convergence of
the NSGA-III are also enhanced, making it perfect for handling optimization problems with
three or more objectives. In this research, the NSGA-III is chosen to solve the approximate
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model of the deep-sea mining pump. The basic parameters of the NSGA-III are displayed
in Table 11.

Table 11. Basic parameters of the NSGA-III.

Parameter Value

Number of reference points 200
Number of generations 1000

Population size 200
Crossover probability 0.09
Mutation probability 0.05

6. Results and Discussion
6.1. Pareto Optimal Frontiers Analysis

After 1000 genetic iterations of NSGA-III, the Pareto optimal frontiers containing
200 populations were obtained, as shown in Figure 12. All the Pareto optimal solutions
are distributed on a banded spatial surface, which covers each head point, shaft power
point, and efficiency point. These points are rarely distributed in spatial regions with
lower efficiency and higher shaft power. They are more evenly distributed in the regions
with superior overall performance, reflecting the good multi-objective global optimization
capability of NSGA-III.

Figure 12. Pareto optimal frontiers.

From the 200 non-dominated optimal solutions, 25 initial optimization schemes were
obtained by initial screening with head H ≥ 1.05 × 270 mm, shaft power P ≤ 640 kW, and
efficiency η ≥ 55%. From these 25 initial optimization schemes, the one with the highest
efficiency was selected as the final optimization scheme. A comparison of the design
variables of the final optimized pump with the original pump is displayed in Table 12.
Compared to the original pump, the final optimized pump has an increased impeller outlet
width and inlet blade angle of the diffuser, and a reduced average outlet diameter of the
impeller and outlet blade angle of the impeller.
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Table 12. Comparison of the impeller and diffuser parameters of the optimized pump with the
original pump.

Design Variables The Original Pump The Final Optimized
Pump

Average outlet diameter of the impeller D2m 410 mm 408.73 mm
Impeller outlet width b2 60 mm 61.47 mm

Outlet blade angle of the impeller β2 32.5◦ 20.00◦

Inlet blade angle of the diffuser α3 12◦ 13.68◦

6.2. Comparative Analysis in Clear Water Conditions

Numerical simulations were completed for the final optimized pump under rated
clear water conditions. Table 13 illustrates the comparison of the hydraulic performance
of the original and final optimized pump. The results show that the relative errors in the
prediction of the head, shaft power, and efficiency of the final optimized pump by the
GABP neural network are 0.55%, 1.65%, and 0.19%, respectively. The optimized deep-sea
mining pump has a reduction in shaft power of 100,607 W (14.65%) and an increase in
efficiency of 6.04% while meeting the design requirements for the head.

Table 13. Comparison of the hydraulic performance of the original and final optimized pump.

Head of
GABP

Shaft Power
of GABP

Efficiency of
GABP Head of CFD Shaft Power

of CFD
Efficiency of

CFD

The original pump - - - 297.85 m 686,866 W 49.54%
The final optimized pump 283.68 m 576,750 W 55.69% 285.23 m 586,259 W 55.58%

Figure 13 shows the streamlines on the shaft cross-section of the original and optimized
pumps. It is clear that the direction of the flow field is generally stable in both pumps.
However, there are many vortices at the impeller outlet and diffuser inlet. Figure 14
shows the streamlines on the cross-section at the transition between the impeller outlet and
the diffuser inlet. The results reveal that the optimized pump’s flow field has improved
significantly, with a more stable flow direction and a reduction in vortices.

Figure 13. The streamlines on the shaft cross-section of the original and optimized pumps.
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Figure 14. The streamlines on the cross-section at the transition between the impeller outlet and the
diffuser inlet.

On the one hand, vortices can affect the main flow and block the flow path; on the other
hand, vortices can cause significant hydraulic loss. This hydraulic loss can be measured in
terms of turbulence kinetic energy loss. Figure 15 shows the turbulence kinetic energy on
the cross-section at the transition between the impeller outlet and the diffuser inlet. The
results show that the turbulence kinetic energy loss is significantly lower at each stage of
the optimized pump.
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Figure 15. The turbulence kinetic energy on the cross-section at the transition between the impeller
outlet and the diffuser inlet.

6.3. Comparative Analysis in Solid-Liquid Two-Phase Flow Conditions

The comparison of the hydraulic performance of the original and final optimized
pump in the rated solid-liquid two-phase flow conditions (Cv = 5%,Φ= 10 mm) is shown in
Table 14. Due to the increased hydraulic loss produced by the addition of solid particles,
both the original pump and final optimized pump have a lower head, a greater shaft
power, and a worse efficiency than under clear water conditions. However, the head of the
final optimized pump still meets the design requirements, the shaft power is reduced by
113,730 W (15.64%), and the efficiency is increased by 6.00%.

Table 14. Comparison of the hydraulic performance of the original and final optimized pump in the
rated solid-liquid two-phase condition.

Head (m) Shaft Power (W) Efficiency (%)

The original pump 290.97 727,158 47.80
The final optimized pump 276.27 613,428 53.80

7. Conclusions

In this study, a multi-objective optimization strategy for deep-sea mining pumps based
on the CFD, GABP neural network, and NSGA-III is proposed, which can significantly
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enhance the hydraulic performance of deep-sea mining pumps. Summarizing all the
experimental and simulated results, the following are the primary conclusions:

(1) The relative errors of the head, shaft power, and efficiency of the CFD numerical
simulation under clear water conditions are within 4.87%. The relative error of the
head of the CFD-DPM simulation under solid-liquid two-phase flow conditions is
3.33% at most. The numerical simulation approach is regarded as credible and can be
utilized to guide the optimization of deep-sea mining pumps.

(2) The mean relative errors of the GABP neural network for the head, shaft power,
and efficiency prediction were 0.31%, 0.73%, and 0.34%, respectively, which were
significantly reduced compared with the BP neural network. Therefore, it is effective
to enhance the prediction performance of the BP neural network by optimizing the
weights and thresholds through the GA.

(3) The results of the NSGA-III multi-objective search are evenly distributed in the region
of the superior overall performance of the pump. The impeller outlet width and
inlet blade angle of the diffuser of the final optimized deep-sea mining pump were
increased, and the average outlet diameter of the impeller and outlet blade angle of the
impeller were reduced. Under rated clear water conditions, the final optimized pump
has a reduction in shaft power of 100,607 W (14.65%) and an increase in efficiency of
6.04% while meeting the design requirements for the head. The flow field in the pump
is significantly improved, with fewer vortices and lower turbulent kinetic energy loss.
Under rated solid-liquid two-phase flow conditions, the head still meets the design
requirements, the shaft power is reduced by 113,730 W (15.64%), and the efficiency is
increased by 6.00%.
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Appendix A

Table A1. Design variable samples generated by the OLHS method.

D2m(mm) b2(mm) β2(◦) α3(◦)

395.28 66.87 22.85 13.35
395.81 71.13 26.74 12.05
396.01 65.97 37.95 15.95
396.58 69.30 29.64 18.40
397.33 62.16 35.24 9.76
397.81 62.62 17.09 16.25
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Table A1. Cont.

D2m(mm) b2(mm) β2(◦) α3(◦)

398.42 62.43 30.74 16.69
398.89 64.12 16.19 18.22
399.12 67.58 20.68 15.64
399.73 73.97 33.36 17.36
400.25 69.07 22.94 12.72
400.63 70.06 17.79 9.60
401.36 63.16 17.99 19.82
401.86 71.00 32.80 8.66
402.23 69.80 25.90 15.28
402.56 68.50 22.20 14.51
403.08 73.02 27.46 10.16
403.86 65.69 15.74 10.84
404.44 70.63 23.34 8.44
404.62 66.71 16.74 16.47
405.36 60.47 18.34 9.31
405.53 67.45 36.71 17.88
406.29 68.42 25.12 11.23
406.95 61.49 27.74 14.28
407.28 64.76 31.18 16.01
407.75 74.12 25.72 13.65
408.05 64.46 19.45 19.23
408.69 70.39 35.57 10.36
409.08 72.95 39.92 17.56
409.84 66.12 39.40 11.11
410.05 61.79 24.82 12.82
410.85 60.89 19.62 14.18
411.31 65.09 27.92 11.80
411.63 74.37 34.77 13.53
412.12 66.29 26.27 14.94
412.70 68.76 28.89 12.47
413.15 73.72 38.36 18.89
413.53 60.15 36.08 13.85
414.41 63.80 31.70 11.58
414.72 74.74 34.32 9.07
415.36 61.22 20.98 16.86
415.75 60.73 32.95 9.86
416.11 74.93 39.08 10.55
416.76 72.07 28.47 18.05
417.24 65.28 18.82 19.42
417.80 67.80 32.32 15.16
418.35 72.49 30.21 8.20
418.83 61.66 37.32 17.04
419.05 63.70 15.08 8.85
419.53 63.43 29.23 19.16
420.22 71.72 24.41 17.73
420.74 67.09 16.28 18.75
421.03 73.45 37.80 12.28
421.52 64.67 23.98 11.63
422.22 62.94 36.66 19.71
422.74 72.00 21.40 15.42
423.36 72.72 20.26 13.11
423.56 68.10 22.08 14.77
424.17 69.61 31.43 10.75
424.83 71.42 34.05 8.26
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