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Abstract: Advanced radars and satellites, suitable for remote monitoring, inappropriately reach the
economical requirements of short-range detection. Compared with far-sightedness skills, common
visible-light sensors offer more ample features conducive to distinguishing the classes. Therefore,
ship detection based on visible-light cameras should cooperate with remote detection technologies.
However, compared with detectors applied in inland transportation, the lack of fast ship detectors,
detecting multiple ship classes, is non-negligible. To fill this gap, we propose a real-time ship detector
based on fast U-Net and remapping attention (FRSD) via a common camera. The fast U-Net offered
compresses features in the channel dimension to decrease the number of training parameters. The
remapping attention introduced boosts the performance in various rain–fog weather conditions while
maintaining the real-time speed. The ship dataset proposed contains more than 20,000 samples,
alleviating the lack of ship datasets containing various classes. Data augmentation of the cross-
background is especially proposed to further promote the diversity of the detecting background. In
addition, the rain–fog dataset proposed, containing more than 500 rain–fog images, simulates various
marine rain–fog scenarios and soaks the testing image to validate the robustness of ship detectors.
Experiments demonstrate that FRSD performs relatively robustly and detects 9 classes with an mAP
of more than 83%, reaching a state-of-the-art level.

Keywords: convolutional neural network; remapping attention; rain–fog dataset; fast U-Net; ship
dataset; ship detector; frames per second (FPS)

1. Introduction

Considering the marine environment and the detecting sphere, various radars or
optical satellites are the primary resources for ship detection. Regardless of the classification,
advanced radars and satellites detect ships by extraordinary resolution images containing
ample information, which is helpful to detect ships in a remote range. Nevertheless,
advanced military radars, suitable for far detection, hardly economically maintain real-
time performance in the middle-range or below detection, considering the suitability of
remote detection and material deformation [1,2] raised by long-term operations. Although
synthetic aperture radars (SAR) undertake all-day detection tasks and the locating accuracy
is practical, classifying the ship classes is in a weak position due to the relatively single
features offered [3,4]. Optic satellites can offer ample features to distinguish the classes,
while ultra long-distance detection is susceptible to cloud and fog. In addition, satellites
do not meet the requirement of real-time speed in an economical way [5,6] due to high
maintenance and replacement costs. For civilian radar and infrared imaging technology,
the limited detection capacity raised by unideal weather conditions is non-negligible [7,8].
The images offered from the civilian radars and infrared sensors have relatively single
features compared with the visible-light sensors. Therefore, it is challenging to meet the
real-time and appropriate requirements of ship detection with a single skill. Compared
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with the detection skills above, although ship detection utilising the standard camera of
visible-light sensors is susceptible to rain and fog, visible-light sensors economically meet
the the relatively close range detection requirement under ideal weather conditions. In
addition, the images obtained by visible-light sensors are far more abundant, which is
suitable to distinguish the ship classes [9]. Comprehensively, ship detection based on
visible-light sensors can cooperate with remote detection technologies via compensation.

The common target detectors contain conventional and modern detectors. Conven-
tional detectors tend to be dependent on manual interference and have relatively little
generalisation in various conditions or a large redundancy in window calculation [10].
Modern detectors, mainly consisting of CNNs, are increasingly mounting, owing to the
impressive performance in the computer version. Most modern target detectors are cat-
egorised into two kinds, two-stage and one-stage detectors. The main classic two-stage
detectors, whose workflow is divided into classifying and localizing regression, contain
the R-CNN series [11–13], RepPoints [14], etc. R-CNN series detectors are based on pre-
designed anchors, in contrast, RepPoints is the anchor-free detector. The representative
one-stage detectors, whose workflow unifies the classifying processing and localizing
regression into one regression, contain SSD [15], YOLO series [16–20], EfficientDet [21], etc.
The one-stage detectors tend to better balance inference and accuracy than two-stage detec-
tors. In particular, YOLOv5s [20] (the light model of YOLOv5) has fewer parameters and
relatively fast inference, which becomes one basement of potential ship detectors. However,
there is a relative lack of ship detectors that detect multiple ship classes with real-time
inference by visible cameras. Common target detectors are not directly applicable to ship
detection, owing to the uniqueness of marine transportation. There is a serious lack of
open datasets for intelligent maritime transport compared with KITTI [22], Torontocity [23],
and RobotCar [24], which are suitable for inland transportation. Although an enhanced
ship detector [9] based on YOLOv3 detects multi-class ships, the detecting background
lacks the consideration of aerial scenes, and the corresponding application is suitable for
shore-based detection. In addition, the testing datasets of COCO [25] and VOC [26] tend to
validate detectors in an ideal state, leading to the fact that the robustness of ship detectors
is rarely validated in actual application scenarios.

This paper considers the common visible-light camera to establish the low–high
cooperation with radars or satellites suitable for far-sightedness. To pursue the ship
detector detecting various ship classes and validate algorithms quantitatively in several
rain–fog soaking degrees, our contributions are summarised as follows:

• We propose a real-time ship detector which is built on fast U-Net and remapping
attention proposed. The fast U-Net offered adopts pixel period insertion to prompt the
inference when multiple testing batches are set and decrease the number of training
parameters. Remapping attention is specifically introduced to remap global features
to local calculations, which is conducive to increasing the robustness in actual rain
and fog scenes;

• We offer a ship dataset containing more than 14,000 images and data augmentation
for the diversity of detecting backgrounds. The ship dataset provided alleviates
the dataset’s lack of multiple ship classes. The data augmentation of the crossing-
background randomly selects the targets copied to the new background, promoting
the value of ship datasets and background diversity;

• We develop a rain–fog dataset containing 500 samples of pure rain–fog backgrounds.
The pure images are collected from non-artificially synthesised scenes and the real
world. This dataset is suitable for quantitatively validating ship detectors and testing
the practical effects in marine environments.

2. Related Works

The ship detection of modern detectors has been introduced recently, while several
conventional approaches have also been proposed for ship detection. According to the
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networks of conventional or modern detectors, ship detectors consist of traditional and
modern ship detectors.

2.1. Traditional Ship Detectors

The traditional ship detectors, which focus on the background, mainly initialise the
specified remote sensing or ship-borne video to establish the background model and utilise
the difference to detect marine targets. Wang Mingfan et al. propose a Gaussian mixture
model [27] to combine the contrast between local and global backgrounds, constraining the
influence of phosphorescence under intense light. Xu Fang et al. establish a background
model [28] based on the feature of remote sensing on the sea surface, which combines
with the multiple modules to gain the target features according to the visual significance,
and then unifies the thick and fine segmentation to detect the ship targets. Borghgraef et al.
resort to the spatiotemporal correlation of dynamic background and introduce a surface
floating-object algorithm [29] based on ViBe [30] and Behaviour Subtraction [31], which
detects potentially dangerous objects by updating the background in a complex dynamic
scene. Hu et al. propose a robust background-iterative algorithm [32], eliminating the
influence of waves on the background to some extent, and a fast four-link module to
accelerate the detection speed.

The traditional ship detectors, which focus on the foreground, build the ship detection
model based on salient features or textures. According to the attention mechanism of
human psychology, Itti et al. simulate the bottom-up visual selection processing of human
beings and adopt Gaussian filtering and difference subtraction of feature expression [33]
to obtain the detection model. Arshad et al. consider ship boundaries to localise ships by
“thickening”, “expanding” and “bridging” operations [34], whose operations also combine
background features to establish a real-time ship detector by morphological operations and
differential framing methods. Fefilatyev et al. propose a sea-level monitoring algorithm [35]
that can be installed on a fast-moving ship-borne platform according to the texture of the
skyline, which effectively detects ships in a parallel perspective.

However, the target detectors designed on manual features have a large window
calculation redundancy and instability, especially for various surrounding changes [10].
Unavoidably, while inheriting the advantages of interpretability, traditional ship detec-
tors also gain the corresponding disadvantages of instability. Therefore, traditional ship
detectors based on conventional detectors meet the plateau effect.

2.2. Modern Ship Detectors

Representative one-stage detectors, whose workflow unifies classifying processes
and localizing regression into one regression, contain SSD [15], EfficientDet [21], YOLO
series [16–20], etc. In particular, the YOLO series make non-negligible efforts to improve the
better balance between inference and performance. YOLOv1 is an initial version and has a
real-time speed, while the set anchors are initially fixed, leading to an unpractical and low
accuracy [16]. To some extent, YOLOv2 improves the detection effects based on the Batch
Normalization (BN) and adjustable anchors [17]. YOLOv3 adopts multiple output layers
and DarkNet53 to unify the classification and location regression [18], achieving impres-
sive improvement results. Recently, YOLOv4 and YOLOv5 are proposed and maintained
based on the pre-version of the YOLO series [19,20]. YOLOv4 takes the “Bag of freebies”
and “Bag of specials” to ensure a further impressive balance between inference and ac-
curacy. Although YOLOv4 has a parallel performance or even outperforms the YOLOv5,
YOLOv5s(the light model of YOLOv5) has fewer parameters and faster inference, which
leaves more optimisation space for the post-adjustments, which becomes one basement of
potential ship detectors.

Along with the mounting development of CNNs, modern ship detectors are gradually
appearing, which utilise CNNs to automatically extract the target features and calculate the
classification and position of the ship. Modern ship detectors are mainly built on two-stage
and one-stage common detectors [16–19,36].
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Modern ship detectors, built on two-stage common detectors, tend to achieve impres-
sive performance without consideration of computational costs. R-DFPN [36] is proposed
to improve the recall of ships in complex port scenarios by adding the rotation dimension
based on the feature pyramid network. However, R-DFPN, belonging to two-stage net-
works with a complex network structure, and speeds less than 15 fps, makes it challenging
to meet the real-time requirements. An autonomous ship-oriented method [37] is intro-
duced by a novel hybrid algorithm that combines GAN and CNN. Nonetheless, the ship
classes classified and inference are limited.

Modern ship detectors, constructed on one-stage common detectors, tend to better
balance inference and accuracy compared with two-stage modern ship detectors. An
enhanced ship detector [9] based on YOLOv3 detects multi-class ships with real-time
inference speed, while the background and target collected are single to some extent.
Although meeting the basic real-time speed(more than 25 fps), the inference speed hovers
at approximately 30 fps, leaving less room for subsequent enhancements. Compared with
the application of YOLOv3 in ship detection, YOLOv4 and YOLOv5 are platforms of
potential ship detectors, owing to improved performance and relatively fast inference.
Although YOLOv4 has a parallel performance or even outperforms the YOLOv5, YOLOv5s
(the light model of YOLOv5) has fewer parameters and faster inference [20], which leaves
more optimisation space for the post-adjustments. However, YOLOv5s lacks application
and improvements corresponding to the marine surroundings. In addition, the lack of a
ship dataset containing various scenes and a rain–fog dataset suitable for validating ship
detectors is a non-negligible barrier.

2.3. Ship Datasets

In terms of the datasets used for ship detection, there is a serious lack of open datasets
for intelligent maritime transport, compared with KITTI [22], Torontocity [23], and Robot-
Car [24] properly used for inland transportation. Public datasets, such as COCO [25] and
VOC [26], have nearly 9000 ship samples, but the types of targets and ratios are single,
and the scenes are simple. In addition, the corresponding public datasets tend to validate
detectors in an ideal state, leading to the fact that the practical effects of ship detectors are
rarely validated in actual application scenarios. The ship dataset [9] proposed by R.W Liu
has relatively considerable targets compared with public datasets, while the most frequently
detected backgrounds are the horizontal field of vision, lacking various angles, multi-dense
states, multiple classes or target scenes, etc. In the absence of sufficient datasets related, it is
difficult to give full play to the advantages of CNNs or the algorithms involved. Therefore,
the establishment of ship and rain–fog datasets is essential in the field of ship detection.

3. Methodologies

Although YOLOv4-tiny (the tiny version of YOLOv4) decreases the training parame-
ters, the average precision of YOLOV4-tiny is just 21.7% [20], far less than the YOLOv5s.
YOLOv4 and YOLOv5 belong to the YOLO series and have fewer differences compared
with the gap between YOLOv2 and YOLOv3. Furthermore, YOLOv5s better balance the
performance and inference. Therefore, we decide to choose YOLOv5s as the optimization
platform and construct our ship detector. This chapter proposes fast U-Net and remapping
attention to improve the accuracy and robustness of the real-time ship detector under
marine meteorological weather. The ship dataset is developed to increase the diversity of
ship targets, and data augmentation of cross-background is mainly proposed for producing
new detection backgrounds. The rain–fog dataset is introduced to validate the practical
effects of detectors comprehensively.

3.1. Remapping Attention and Fast U-Net

Attention modules have been utilised to recommend CNN models “what” or “where”
solutions, which are non-negligible methods to further prompt the accuracy of detec-
tors. The popular attention modules, utilizing both space and channel features, contain
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CBAM [38] and Coordattention [39]. In particular Coordattention has been validated
and approved recently by comparing various attention methods, such as SE attention [40],
CBAM [38], and “X-Y” Attention [39]. However, the generalization ability is limited to some
extent when validating situations are changing. Considering, especially, the improving of
the robustness of YOLOv5s and retaining the balance of inference and accuracy in various
marine weather conditions, remapping attention is proposed as shown in Figure 1. Remap-
ping attention of space exploits the positional information by “Maxpool” and “AVGpool”,
and then remaps the global space information to the local features by “softplus” activation.
Remapping attention of the channel exploits the similar information remapped. Compared
with the CBAM [38] and Coordattention [39], which both utilise the space and interchannel
information, remapping attentions maintain local and global features of YOLOv5s (the light-
version model of YOLOv5 [20]) by mapping the attention parameters to the probability
adjustment. The probability adjustment based on local and global features is a reasonable
assumption to boost the robustness in adverse weather conditions. Considering the cost of
computation and GPU memory, the insertion position of remapping attention models is
shown with CBL+ in Figure 2. The following experiments demonstrate that remapping
attention obtains a relative peak compared to the CBAM [38] and Coordattention [39] and
promotes robustness in fog–rain soaking conditions. The detailed workflow of remapping
attention can be calculated as:

Catten = F(
K(APavg2d(1)(( f ))+APmax2d(1)(( f )))

Sumdim=1(K(( f ))) )

Satten = F(K(MAXdim=1(( f )) ∪ AVGdim=1(( f )))
APavg2d(1)(( f )) )

Featurepro = Satten × Catten × ( f )

(1)

where Catten and Satten are the remapping attention of space and interchannel, respectively. F
is the activation function of “softplus”. K denotes the processing of kernels. APavg2d(1) and
APmax2d(1) are the operations of “nn.AdaptiveAvgPool2d” and “nn.AdaptiveMaxPool2d”
in the channel dimension. f and Featurepro are the original features and enhanced features
after the processing of Satten and Catten. MAXdim=1 and AVGdim=1 are the “torch.mean”
and “torch.max” functions in the dimension of the channel. “nn” and “torch”, imported
from PyTorch, provide module tools for creating and training neural networks. During the
utilisation of “nn.” and “torch.”, “Module” is an abstract concept representing either a
layer in a neural network or a neural network with multiple layers.

The head of YOLOv5s is the “U” tube network, constructed to upsample the features
by the two upsampling layers of “nn.Upsampling” operation, which is conducive to
merging the semantic and detailed features. However, the “nn.Upsampling” operation
is inefficient compared with indexing operations of tensors. The inference comparison of
popular upsampling methods is shown in Figure 3. We utilise a laptop with RTX 2060 as the
inference testing platform and collect the logs of inference speeds based on various testing
batch sizes. The deconvolution spends the most time in the upsampling processing, which
is the primary reason to abandon “Deconv” in the following experiments. “Pixelshuffle” is
an efficient upsampling method, while the requirement of four times between channels of
adjacent layers is incompatible with the heads of the network that is built. “nn.Upsampling”
is a common upsampling method with the attribute of the broadest utilisation, which is
the major reason to add “nn.Upsampling” to the following experiments. The fast U-Net
is introduced by the indexing operations to further prompt the inference and robustness
because of the appropriate decrease of parameters, whose structure is shown in the head
of Figure 2. The reversing “Up” represents a fast U-Net which is most efficient compared
with the others in Figure 2. The fast U-Net offered is shown in Figure 4. The tensors are
indexed and sliced to double the resolutions by period distribution, while the channels are
decreased which is conducive to indirectly compressing features and saving computing
costs. Compared with the “nn.Pixelshuffle”, the RandomCopy of Figure 5 ensures avoidance
of not being divisible [41] and feature loss.
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(a) Remapping attention of the space. (b) Remapping attention of the channel.

Figure 1. Remapping attention. The remapping attention of space and channel is a unified oper-
ation of probability adjustment, which exploits the local features by “Maxpool” and “AVGpool”,
and remaps the global information to the local features by “softplus” activation. The probability
adjustment based on local and global features is a reasonable assumption to boost the robustness in
adverse weather.

Figure 2. The structure of FRSD. CBL, CBL+, and CSPi are the CNN modules, and Conv is the
convolution operation. The head of FRSD is the fast U-Net, mainly constructed by reversing “Up”,
denoting the novel upsampling by indexing and slicing operations. "×" represents the number of
consecutive accumulations of CBL. *CSP means that the light version of CSP, eliminating the shoutout.
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Figure 3. The inference comparison of the upsampling method in the same experimental platform
(Laptop NVIDIA GeForce RTX 2060). “Batch Size” represents the testing batch size set, and “Time”
denotes the total processing time of the upsampling methods. “Indexing” represents the upsampling
utilised in “Up” of Figures 2 and 4, “Deconv” denotes the deconvolution with a 3 × 3 kernel,
and “Pixelshuffle” means “nn.PixelSshuffle” operation of PyTorch, “Interpolate” is the common
upsampling method using “nn.interpolate” operation of PyTorch. The curve goes directly to “0”,
indicating that the maximum memory of the GPU is exceeded.

Figure 4. The upsampling method of FRSD. "Random Copy" denotes a random copy from
the original features, ensuring a fourfold relation between features which is more compatible
than “nn.PixelShuffle”.

Figure 5. The number and classes of targets in VOC [26]. All ship targets are labelled as “boat”,
and the number of “boat” is impressively small.
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3.2. The Ship Dataset and Data Augmentation

VOC [26] and COCO [25] are public datasets for detection or segmentation. VOC
contains about 20 classes of daily life, however all ships are labelled as “boat”. COCO is
relatively more challenging. However, by converting and visualising COCO, we found that
labels have more than one human error, a box which carelessly contains multiple targets
and is resistant against training and testing to some extent when the number of samples is
insufficient. The number of categories and labels of VOC used only for training are shown
in Figure 5. The targets of the top three largest numbers are “person”, “chair”, and “car”,
respectively. There are more than 20,000 samples of “person”, while the amount of “boat”
is just 1457. The size distribution of the “boat” in VOC is shown in Figure 6. The absolute
values of the horizontal and vertical axes are the width and height of the images and
targets. Red and blue dots represent an image and a target, respectively. The distribution
in the upper right corner shows the size distribution of images, those in the lower-left
corner show the size distribution of the “boat”, and the colour depth indicates the degree
of concentration. The length or width of the images is mainly constrained to 500, which is
evenly distributed in a line, while the corresponding “boat” is excessively concentrated
in the area of “200 × 200”. Although VOC meets the requirements of ship detection to
some extent, the distribution is single with only 1457 targets. The target distribution is too
concentrated in one location, lacking diversity distribution. If 1457 targets and labels are
used as the training dataset of ship detectors, the training process is prone to overfitting.
Therefore, it is necessary to establish a dataset containing substantial ship targets and ample
classes, which brings into full play the advantages of CNN.

Figure 6. The boat distribution of VOC [26]. Each light-red and light-blue dot denotes one image and
one objective, respectively. VOC is a public dataset for the detection and segmentation of common
targets, while all ships are labelled as “boat” and the number of boats hardly meets the requirement
of ship detection.

Due to the requirement to visualise producing the ship dataset, this paper further
develops the datasets [42] based on the format of VOC [26]. The ship dataset proposed
contains 21,000 samples, subdivided into eight classes and one unidentified class. Eight
ship classes are eight specific categories which can be distinguished when we label the
targets, while unidentified ships are categorised into a class in which the specific class
is indistinguishable and we label unidentified ships with “ship”. Our ship dataset has
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two components, “VOC-ship” and “VOC-ship-test”, utilised for the training and testing,
respectively. Both VOC-ship and VOC-ship-test consider the weather factors, such as
detection angles, light, and dense occlusion. The specific classes and numbers of our
ship dataset are shown in Figure 7. The ship classes contain “engineering_ship, freighter,
passenger_ship, public_service_vessel, sailboat, speedboat, submarine, warship,” and
the numbers of training and testing targets are “1179, 2604, 802, 2311, 2749, 3145, 2625,
1163” and “515, 638, 241, 499, 650, 782, 685, 320”, respectively. The steps to make the
ship datasets are as follows: (1) we use cameras to capture multiple scenes while utilising
Google Chrome and a plug-in to crawl ship pictures. (2) We delete pictures with low
quality through manual screening, classify ships filtered, and name pictures in batches with
Arabic numerals. (3) We utilise the “labelImg” downloaded from GitHub to make labels,
and label files are XML format which is conducive for visualisation. The code of “labelImg”
is https://github.com/tzutalin/labelImg (accessed on 26 July 2022).

Figure 7. The numberand classes of targets in our ship dataset. The ship datasets have eight specific
classes and contain two components, VOC-ship and VOC-ship-test, which are used to train and test
models, respectively.

The target distribution of our ship dataset is shown in Figure 8. The denotation of
light-red and light-blue dots is the same as the presentations in Figure 6. The images
of our dataset are concentrated in the area near “500× 500”. The corresponding targets
are focused on the room with a length or width of “0–500”. In addition, there are also
enough middle or large targets in our ship dataset, shown in the area of “500–800”, which
meets the requirements of medium-range detection utilising common cameras. Compared
with Figure 6, the targets of our ship dataset are more evenly distributed in the range of
“500× 500” while increasing the number and aspect ratios of targets. Comprehensively,
the ship dataset proposed has the ratio diversity of targets and potentially exploits the
advantages of visible-light cameras to form a match with the remote detection technology.
Part samples of our ship datasets are shown in Figure 9, which also demonstrates the
factors considered to build the ship dataset, containing multiple detection angles. Different
detection angles show that the detectors, trained by VOC-ship, can be used in static shore-
based detection scenes, as well as shipborne or airborne detection scenes.

https://github.com/tzutalin/labelImg


J. Mar. Sci. Eng. 2022, 10, 1043 10 of 23

Figure 8. The distribution of the ship dataset offered. The denotation of dots is the same as in
Figure 6.

Figure 9. The samples labelled from our ship dataset show various ship classes. Various detecting
angles are considered. The bounding boxes and the labels corresponding denote the object of interest
and the ship classes. To enhance the robustness of the algorithm, some targets are not marked.

The data augmentations of YOLOv5 are practical to enhance the value of samples,
while the stability of ship navigation is relatively complicated, especially in this case that
the shipboard camera detects other ships under the influence of rains and waves, leading
to a complexing background. To increase the diversity of detecting surroundings, data
augmentation of the cross-background is introduced to increase the diversity of detecting
backgrounds, as shown in Figure 10. A larger merged image contains 4 middle merged
images. The copied targets have a location in the new background, which releases the
relative lack of background diversity in ship datasets and enhances the utilisation of the
remaining grey area.
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Figure 10. Data augmentation of the cross-background. This is a merged image containing 4 middle
merged images, which are also merged by 4 images. The two middle images above have four different
backgrounds merged. The two middle images below have several copied targets labelled by red
arrows, enhancing the usage of the remaining grey area and the diversity of surroundings.

3.3. The Rain-Fog Dataset

VOC [26] and COCO [25] are public datasets for the detection and segmentation of
common targets. However, the corresponding testing datasets tend to validate detectors in
an ideal state, leading to the fact that the robustness of ship detectors is hardly validated in
an adverse environment. Therefore, collecting a rain–fog dataset suitable for the marine en-
vironment is necessary to validate the practicability of ship detectors. Considering adverse
impacts from rainy or foggy weather, the SPA [43], Rain100H [44], and Rain1400 [45] have
been offered to minimize the influence of bad weather. However, the rain datasets above
are mainly utilized for the rain removal of inland environments. In addition, the public
rain datasets have a few pure images only having little rain or drops, which hardly meet
the requirements of soaking ship images. Most backgrounds of rain datasets are cut or
synthetically made from entire images, and the backgrounds have buildings and streets,
hardly representing the marine surroundings, such as the rain–fog crossing scenes and
raindrops created by rain or waves. Our rain–fog dataset contains 550 images with pure
weather backgrounds, which consist of pure rainy or foggy scenes, rain–fog crossing scenes,
and raindrops wetting lenses. The steps for collecting pure rain–fog images are similar to
the ship dataset, except for the labelling processing. The images of the rain–fog dataset are
entire images collected from the real world without artificial data interference. To enhance
the value of the rain–fog dataset, we can randomly choose rain–fog images to paste or
soak the testing images in staggered repetition. Part of the images soaked by different
degrees are shown in Figure 11, and classic scenes of the rain–fog dataset are shown in
Figure 12. The soaking operation is based on the Python Imaging Library (PIL), and the
different soaking degrees are set from 0.4 to 0.8. The adverse marine scenes are more
complicated than the major scenes of public rain–fog datasets, which are suitable for the
rain removal task of the inland environment. Our rain–fog dataset is built by considering
various adverse weather conditions and scenes, which appropriately simulate the marine
environment. Compared to rain datasets containing buildings and streets, our rain–fog
dataset is more suitable for quantitatively testing the practical effects of ship detectors
based on deep learning.
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Figure 11. Part soaking scenes. Classical rain–fog scenes contain lenses soaked by raindrops, the pure
fog or rain, and rain–fog intertwined scenes. Images containing the ships above are stemmed from
our ship dataset and soaked by the rain–fog dataset, and the values of each row above are the
soaking degree from 0.4 to 0.8. More severe soaking cases are excluded in the following experiments,
considering visible light sensors’ maximum and practical applicability.

Figure 12. Part displays of the rain–fog dataset proposed. The images of the rain–fog dataset are
classic rain–fog scenes without other targets, which is more suitable to validate the robustness of ship
detectors, compared with Rain100 [44], Rain1400 [45], SPA [43], and Raindrops [46].

4. Experiments and Results
4.1. Experimental Setting
4.1.1. Experimental Conditions

The experimental software contains Ubuntu 16.04.4, PyTorch 1.7, and CUDA10.2.
TITAN V and RTX 2080ti are GPUs utilised. If not specifically mentioned, TITAN V is the
default device.
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4.1.2. Datasets

The datasets, utilised in our manuscript, contain COCO [25], VOC-ship, VOC-ship-
test, and rain–fog datasets. COCO [25] is a public dataset containing training and testing
components, which can be used to, respectively, train and test the common detectors.
Correspondingly, the ship dataset proposed consists of VOC-ship and VOC-ship-test.
VOC-ship is utilised for the training ship detectors that participated. VOC-ship and VOC-
ship-test are the ship datasets we proposed. VOC-ship is used to train ship detectors and
VOC-ship-test is utilised to test ship detectors. The training samples of our ship dataset
are shown in Figure A1. The rain–fog dataset proposed is a pure rain–fog image collection
which can validate the practical generalisation ability of ship detectors.

4.1.3. Parameter Setting

With regard to the FRSD training in COCO [25], the detailed settings are as fol-
lows: Epochs: 300; Batch Size: 32; Image Size: 640× 640; Initial Learning Rate: 1×10−3;
Optimizer: Adam; Adam Beta1: (0.3 0.6 0.98); and Data Augmentation: Mosaic augmen-
tation. With regard to the FRSD training in VOC-ship, the detailed settings are following:
Epochs: 300; Batch Size: 64; Image Size: 640× 640; Initial Learning Rate: e−2; Optimizer:
Adam; Adam Beta1: (0.3 0.6 0.98); and Data Augmentation: Data Augmentation of Cross-
background (at the time of mention). Detectors who participated take their own published
parameters. Concerning the testing in the VOC-ship-test, the FPS is contained with a batch
size of 1, and inference augmentation is unset. Rain–fog dataset randomly soaks the testing
images to the degree of “0, 0.4, 0.5, 0.6, 0.7, 0.8”. The loss function used in the training step
of FRSD relevant is as follows:

Lclass = −∑N
n=i(x∗i log( 1

1+e−xi
) + (1− x∗i )log( e−xi

1+e−xi
))

Llocation = 1− (IOU − (
Dangles
Dcenters

)2 − α2

1−IOU+α )

Lcon f i = (1− i fgt) + i fgt ∗ IOUscore
Totalloss = Lclass + Llocation + Lcon f i

(2)

where x∗i and xi are the probability of the category predicted and Ground Truth, respectively.
Dangles / Dcenters is the contrast value of Distance of opposite angles and centers. α is
a parameter that measures the consistency of aspect ratio. IOU is the union ratio of
the prediction box to the GT box (Ground Truth). i fgt denotes that there is or is not
a target in the noticing area. The square root of α is set as 2/π × (arctan(Wgt/Hgt) −
arctan(Wpred/Hpred)).

4.1.4. Data Augmentation

The data augmentation of the cross-background is controlled by Thresh, Prob,
Copy_times, and Epochs, which are set to 50 × 50, 0.5, 3, and 30. Thresh is the thresh-
old of the object copied whose H ×W < thresh, Prob is the probability of copy occurring,
Copy_times is the times to be copied, and Epochs represents that the data augmentation
proposed is efficient until the Epochs set.

4.1.5. Metrics

The metrics utilised to validate the performance of detectors contain average precision
(AP) and other metrics based on AP. Frames per second (FPS) is the popular measurement
to represent the running or processing time. The higher the FPS value, the better the
real-time performance of the algorithm. The detailed concepts are the following:

AP =
∫ 1

0
psmooth(r)dr ⇔

1

∑
r=0

(rn+1 − rn) max
r̃:r̃≥rn+1

p(r̃) (3)

where psmooth(r) and p(r̃) are the max value of precision recall(PR) after smoothing the
curve of PR. r̃ : r̃ ≥ rn+1 represent the split points of precision recall.
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AP0.5:0.95: The threshold of intersection over union (IOU) is adjusted from a fixed 0.5
to calculate the multi-AP values at intervals of 0.5 to 0.95, and the average of all results is
taken as AP0.5:0.95.

AP50 and AP75: The AP is gained when the IOU is set to 0.5 and 0.75, respectively.
APS, APM, and APL: The AP is gained when pixel areas of targets set are 0 : 322,

322 : 962, and 962 : end, respectively.
FPS: Frames per second(FPS) denotes the number of images processed per second

and directly the real-time effect of algorithms.

4.2. Results
4.2.1. Influence of the Remapping and Fast U-Net

Comparing YOLOv5s_ReMap_FastUnet (another denotation of FRSD) with other
public detectors in COCO [25] is the first step to constructing robust ship detectors, which
is necessary to validate the remapping attention and fast U-Net in the public dataset. The
comparison of popular detectors in the public dataset is shown in Table 1. YOLOv5s_Unet
is the detector utilizing three “nn.Upsampling” layers in the head network of YOLOv5s.
YOLOv5s_CBAM_Unet, YOLOv5s_Coord_Unet, and YOLOv5s_ReMap_Unet are the de-
tectors using the CBAM [38], Coord [39], and remapping methods, respectively. CBAM
and Coord are inserted into the backbone, whose position is the same as the remapping at-
tention in the FRSD. Compared with the results of YOLOv5s_Unet and detectors promoted
by three attention insertions, attention methods reliably prompt the accuracy. The AP50
of YOLOv5s_ReMap_Unet has increased by 3.5%, 3%, and 0.2%, respectively, compared
with YOLOv5s_Unet, YOLOv5s_Coord_Unet, and YOLOv5s_CBAM_Unet, demonstrating
the rationality of the remapping method. Especially, the most gap of the AP50 between
YOLOv5s_ReMap_Unet and YOLOv5s_CBAM_Unet reaches approximately 1%, as shown
in Figure 13, indicating that the remapping attention proposed has the potential advantage
of promoting the robustness in rainy and foggy weather, because of the relatively high per-
formance in the case of undertraining conditions. YOLOv5s_ReMap_FastUnet maintains al-
most the same speed when the batch size is set to 1 compared with YOLOv5s_ReMap_Unet.
Owing to the compression of the channel by the fast U-net, as shown in Figure 4, the infer-
ence speed increases by 15 fps to 278.4 fps when multiple batches are taken in the testing
stage, which is suitable for the multi-task model and suggests the rationality of the fast U-
Net. YOLOv5s_ReMap_FastUnet has a slightly lower speed than YOLOv5s_ReMap_Unet
when the testing batch is set to 1, which the seemingly weird result is led by the preprepared
production of double-size features. The advantages of fast U-Net are more visible when
the testing batch size is set to multiple batches. Although the remapping attention and
fast U-Net have an unimpressive influence on YOLOv5s_ReMap_FastUnet when adopting
the testing images of COCO, the practical effect is visible in the rain–fog soaking situation,
as shown in Table 2. The immediate influence of the fast U-Net on features is shown in
Figure 14. Features of fast U-Net have more visible sparsity compared with the upsampling
method of “nn.Upsampling”, which suggests why fast U-Net is evident when the channels
are indirectly compressed.

4.2.2. The Comparison of Ship Detectors

The robustness of ship detectors in the VOC-ship-test is shown in Table 2, in which all
ship detectors are validated on the same software and hardware, and the GPU used is 2080ti.
Soaking 0.4 to 0.8 represent the mean average precision of ship detectors under different
rain–fog soaking, in which the higher the number at the end, the more intrusive soaking
degree. Although a better performance without considering the inference speed is achieved
compared with YOLOv5s, YOLOv4 has a unimpressive practical detection results in mul-
tiple rain–fog scenes. YOLOV5s_ship and YOLOv5s_ReMap_ship are the ship detectors
directly based on YOLOV5s and YOLOv5s_ReMap_Unet, and YOLOv5s_ReMap_Unet is
the detector adopting only the remapping method in the YOLOV5s. FRSD_CBAM_FU and
FRSD_FU are the ship detectors utilizing CBAM and remapping methods in the backbone,
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respectively, and “FU” denotes the fast U-Net in the head network. FRSD_FU maintains
a real-time inference speed, reaching 42.56 fps, which meets the real-time ship detection.
After the prompts of data augmentation proposed, FRSD_ship_dataaug have an impressive
performance. The mean average precision of FRSD_ship_dataaug reaches the best under
different soaking levels, reaching 83.30%, 80.50%, 78.00%, 74.40%, 67.40%, and 51.10%,
respectively. Compared with FRSD_U, FRSD_FU achieves a lower deviation and better
accuracy, suggesting that the fast U-Net also prompts robustness in the fog–rain conditions
except for the inference speed accelerating. Meanwhile, FRSD_FU obtains better accuracy
than FRSD_CBAM_FU, suggesting that remapping attention has the advantage of promot-
ing robustness in rain–fog weather, and the probability adjustment based on the remapping
attention proposed is a reasonable assumption to boost the robustness in adverse weather.
FRSD_ship_dataaug has the best accuracy and lowest deviation, demonstrating that the
data augmentation of the cross-background is effective. A more impressive comparison
of ship detectors’ robustness is shown in Figure 15. The average precision of specific ship
classes is shown in Table 3. The “ship” class represents the ship target is detected while the
specific class is indistinguishable. The detection results of FRSD are shown in Figures 16–18.

Table 1. Comparison of detectors in COCO (devtest2019) [25]. To distinguish algorithms, FRSD is
denoted by “YOLOv5s_ReMap_FastUnet”. The batch sizes of all detectors are set to 1 in the testing
stage. To display the inference boosting of fast U-Net, the batch sizes of YOLOv5s_ReMap_Unet
and YOLOv5s_ReMap_FastUnet are set to 1 and 10, respectively, and the values before and after “/”
correspondingly represent the inference speed.

Detectors Backbone ImgSize FPS AP0.5:0.95 AP50 AP75 APS APM APL

SSD300 [15] VGG16 300 43.2 0.251 0.431 0.258 0.066 0.259 0.414
Faster RCNN [12] ResNet-50 1000 9.4 0.398 0.592 0.435 0.218 0.426 0.507

RetinaNet [47] ResNet-101 800 5.1 0.378 0.575 0.408 0.202 0.411 0.492
CenterNet [48] Hourglass-104 512 4.2 0.449 0.624 0.481 0.256 0.474 0.574

EfficientDet [21] EfficientDet-B0 512 62.3 0.338 0.525 0.358 0.12 0.383 0.512
YOLOv4s [19] CSPDarknet-53 416 38.0 0.412 0.628 0.443 0.204 0.444 0.56
YOLOv5s [20] CSPDarknet-53 640 69.9 0.369 0.561 0.4 0.196 0.413 0.457

YOLOv5s_Unet CSPDarknet-53 640 59.0 0.393 0.582 0.431 0.23 0.432 0.466
YOLOv5s_Coord_Unet CSPDarknet-53 640 48.7 0.396 0.587 0.433 0.232 0.436 0.468
YOLOv5s_CBAM_Unet CSPDarknet-53 640 45.87 0.424 0.615 0.465 0.254 0.462 0.512
YOLOv5s_ReMap_Unet CSPDarknet-53 640 43.5/263.2 0.425 0.617 0.465 0.251 0.463 0.513

YOLOv5s_ReMap_FastUnet CSPDarknet-53 640 40.3/278.4 0.425 0.617 0.465 0.251 0.463 0.513

Table 2. Comparison of ship detectors in the VOC-ship-test. FRSD_ship_dataaug is the final
model which utilizes the data augmentation of the cross-background. Soaking 0.0−0.8 denote
the mean average precision under the different levels of influence corresponding to the rain–fog
dataset. FRSD_CBAM_FU and FRSD_FU are the ship detectors utilizing CBAM and remapping
methods proposed in the backbone, respectively. “U” and “FU” denote the upsampling methods of
“nn.Upsampling/nn.interpolate” and fast U-Net in heads, respectively. The positive impacts of fast
U-Net and remapping attentions proposed are more visible under the most severe rain–fog wetting
conditions (Soaking 0.8).

Detectors Imgsize Soaking
0.0

Soaking
0.4

Soaking
0.5

Soaking
0.6

Soaking
0.7

Soaking
0.8 MEAN DEV FPS

Faster RCNN [12] 800 70.59% 66.75% 62.65% 55.13% 46.16% 26.27% 54.592% 16.38% 25.10
RetinaNet [47] 600 76.90% 73.92% 70.98% 66.92% 58.98% 41.49% 64.865% 13.03% 34.61

SSD300 [15] 300 78.30% 74.40% 70.90% 64.50% 54.40% 36.70% 63.20% 15.45% 66.02
CenterNet [48] 512 78.70% 75.20% 71.90% 66.90% 58.300% 39.80% 65.13% 14.30% 42.30

EfficientDetd0 [21] 512 74.00% 70.10% 66.80% 61.50% 52.80% 35.50% 60.12% 14.13% 36.40
YOLOV4_ship [19] 416 74.26% 69.19% 65.81% 61.17% 52.22% 36.37% 59.87% 13.72% 34.20
YOLOV5s_ship [20] 640 78.79% 74.90% 71.60% 66.90% 57.80% 40.00% 65.16% 14.41% 68.01

FRSD_U 640 80.10% 76.70% 73.90% 69.10% 60.90% 41.80% 67.08% 14.07% 43.61
FRSD_CBAM_FU 640 80.19% 76.90% 74.10% 69.78% 61.60% 43.30% 67.65% 13.55% 43.31

FRSD_FU 640 80.39% 76.90% 74.20% 69.80% 62.22% 44.50% 68.01% 13.12% 42.56
FRSD_ship_dataaug 640 83.15% 80.70% 78.40% 74.50% 66.60% 48.40% 71.958% 12.91% 42.56
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Figure 13. The influence of Coord, CBAM, and Remapping attention to YOLOv5s. The validating
dataset used is “COCO val2017” [25]. The “Max gap” reaches approximately 1%, suggesting the
method of remapping attention has the potential advantage of prompting the performance of the ship
detector proposed, because actually collected ship datasets cannot completely represent the actual
detection environment, the corresponding model unfits the actual detection scenes.

Figure 14. The sparsity visualization of fast U-Net versus “nn.Upsampling”(a common operation
of PyTorch). “FastUnet” and “Upsampling” denote the upsampling processing of fast U-Net and
“nn.Upsampling”. The subfigures represent the visualization of each upsampling layer, and three
layers of images per row indicate the features produced by three upsampling layers, respectively.
The features of “Fast U-Net” have smaller areas of the same values, suggesting the practical effects
from another angle.

Table 3. Comparison of ship detectors for specific ship detection. FRSD_ship_dataaug is the final
model which utilizes the data augmentation of the cross-background during the training period. “ship”
is categorised into a class in which the location is detected while the specific class is indistinguishable.

Detectors Imgsize Engi_ship Freighter Passe_ship Public_ser Sailboat Speedboat Submarine Warship Ship

Faster RCNN [12] 800 70.70% 85.55% 59.68% 86.36% 79.67% 85.81% 87.78% 65.08% 14.72%
RetinaNet [47] 600 81.58% 93.31% 69.60% 90.35% 86.35% 91.79% 87.58% 77.72% 13.80%

SSD300 [15] 300 84.37% 88.77% 78.08% 88.61% 82.22% 87.31% 90.21% 85.10% 20.47%
CenterNet [48] 512 77.60% 91.70% 75.00% 92.50% 85.70% 90.50% 92.50% 81.90% 20.05%

EfficientDetd0 [21] 512 74.10% 90.40% 66.40% 89.10% 87.30% 89.80% 88.10% 72.70% 11.30%
YOLOV5s_ship [20] 640 71.10% 92.00% 72.20% 91.79% 88.10% 91.40% 94.20% 84.40% 23.90%
FRSD_ship_dataaug 640 84.70% 94.20% 80.60% 93.70% 89.20% 93.90% 95.01% 85.80% 26.90%
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Figure 15. The heptagon of performance comparison. Soaking 0.4 to 0.8 represent the mean average
precision of ship detectors under different levels of rain–fog soaking. MEAN denotes the mean
accuracy of each ship detector in all soaking situations.

Figure 16. The detection results of FRSD corresponding to Figure 9. The images above are the same
as those in Figure 9, and several targets unlabelled are still detected accurately, showing that our ship
detector is practical.
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Figure 17. The performance of FRSD at different soaking degrees. Each column of pictures shows the
detection results under different rain and fog scenes.

Figure 18. The detection visualization of FRSD in the original VOC-ship-test. There are 24 results
whose original images are derived from the VOC-ship-test unsoaked. The images above also demon-
strate the factors considered to build the ship dataset, containing high density or occlusion scenes,
which is more practical than the dataset proposed by R.W. Liu [9].
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5. Discussion

Ship detectors are mainly dependent on radars or remote sensing satellites, partially,
but significantly, because of the relatively complex hydrology and the advantages of remote
monitoring. Advanced radars detect not just ships with intense precision and even real-time
speed, while satellites obtain extraordinary resolution images in the sky, containing ample
information. Nevertheless, it is not economical and is wasteful to utilize remote monitoring
systems in ship detection over short or medium ranges. Advanced radars are impressively
money-consuming even after adopting products to reduce costs, without consideration of
follow-up tedious maintenance, satellites are scarce in terms of expensive launching costs
and limited service life. Compared with the detection technologies above, although ship
detection utilizing visible-light cameras is susceptible to rain and fog, the observation
distance reaches more than 10 km under ideal weather conditions. More importantly,
the information obtained by visible-light sensors is more abundant.

Therefore, this paper considers that ship detection based on standard cameras should
form a low and high collocation with radars or other technologies suitable for far-sightedness.
We propose a ship detector based on fast U-Net and remapping attention (FRSD). With the
datasets proposed and the novel methods, FRSD performs relatively robustly and detects
9 classes with an mAP of more than 83%, and the practical robustness is fully validated,
reaching a state-of-the-art level. The practical performance in rain-fog conditions is further
displayed in Figure A2. Therefore, the FRSD proposed has an impressive capacity to build
a low and high collocation with radars or other technologies suitable for far-sightedness.
We believe that the cooperation of FRSD and remote detection skills should improve the
management of maritime security and transport.

Although our ship detector has impressive performance in the related field, this paper
also has limitations. The rain–fog dataset proposed is only suitable for validating the
practical effects of ship detectors and hardly meets the requirements of model training.
Although the ship dataset proposed has considerable samples, the original fog–rain scenes
of the ship dataset are fewer compared with the practical marine environments. The ship
detector proposed has the initial anti-adverse weather ability. However, the mean average
precision decreases impressively in full rainy or fog weather. Suppose we enable the
anti-adverse weather ability to the detection algorithm. In that case, the real-time effect of
FRSD template hardly meets post-improvement, which easily leads to a visible decrease in
inference speed. Overcoming the shortcomings is our next direction, we will build a ship
detector of anti-adverse weather by proposing novel methods.

6. Conclusions

The remapping attention method and fast U-Net are proposed to gain a real-time ship
detector suitable for various ocean weather conditions. Remapping attention combines
the local and global features that are relatively compatible with YOLOv5s. Fast U-Net
compresses the parameters by the index operation, accelerating the inference speed when
multiple batches are set and increasing stability in various weather conditions. The ship
dataset is offered to alleviate the lack of multiple ship datasets, and the data augmentation
of the cross-background is proposed to increase the value of the ship dataset. The rain–fog
dataset is introduced to quantitatively validate the ship detectors. Experiments demonstrate
that FRSD detects 9 classes with an mAP of more than 83%, and the practical robustness
is fully validated by a quantitatively soaking method, reaching relevant state-of-the-art
ship detectors.

Author Contributions: P.Z. is the main contributor to this paper and experiments related. X.Y. and
Z.C., having equally guiding for this work, provide practical suggestions for writing expressions. Y.L.
is the corresponding author and provides the platform and funding for this paper. All authors have
read and agreed to the published version of the manuscript.



J. Mar. Sci. Eng. 2022, 10, 1043 20 of 23

Funding: This work was supported by Science and Technology Development Fund of Macau
(0008/2019/A1, 0010/2019/AFJ, 0025/2019/AKP, 0004/2020/A1, 0070/2021/AMJ) and Guangdong
Provincial Key R&D Programme (2019B010148001). The APC is funded by the corresponding author
(Yanyan Liang) of this paper, who is the recipient of the funding above.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset of this paper will be available at https://github.com/
users/Jackyinuo/projects/ (accessed on 25 July 2022), as long as it passes the examination and
approval of the relevant cooperative organizations.

Conflicts of Interest: The authors of this manuscript declare that they have no known conflicts of
financial interests or unmerited personal competition.

Appendix A

Figure A1 demonstrates the factors considered to build the ship dataset, containing
detection angles. Different detection angles represent that the detectors, trained by our ship
dataset, can be used in static shore-based detection scenes, as well as shipborne or airborne
detection scenes. Figure A2 represents the practical detection results in various rain–fog
weather, although some rain–fog scenes exceed the detection ability of FRSD.

Figure A1. The training examples from VOC-ship. The images above, derived from the merge of
random four images, also demonstrate various detection angles and reflect the application scenes,
such as horizontal, and overlooking detection scenes for fixed and moving cameras.

https://github.com/users/Jackyinuo/projects/
https://github.com/users/Jackyinuo/projects/
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Figure A2. The performance of FRSD in multiple rain–fog conditions.
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