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Abstract: Ice-induced vibration is one of the major risks that face the offshore platform located in
cold regions. In this paper, the gated recurrent neural network (GRNN) is utilized to predict and
suppress the response of offshore platforms subjected to ice load. First, a simplified model of the
offshore platform is derived and validated based on the finite element model (FEM). The time history
of the floating ice load is generated using the harmonic superposition method. Gated Recurrent Unit
Network (GRU) and the Long-Short-Term Memory Network (LSTM) are composed in MATLAB
to predict the behavior of the off-shore platform. Afterward, the linear quadratic regulator (LQR)
control algorithm is used to calculate the controlling force for the training of the GRU/LSTM-based
prediction controller. Numerical results show that the ice-induced vibration response prediction
method based on GRU network design can predict the structural response with satisfying accuracy,
and the ice-induced vibration response control method based on the LSTM network and GRU network
design can learn the LQR method well and achieve good control effect. Time lag and other problems
that the vibration control programs often encountered were solved well.

Keywords: ice-induced vibration; response predict; vibration control; LSTM; GRU

1. Introduction

Ice-induced vibration is a common threat to offshore platforms. When the floating ice
impacts the legs of an offshore platform, a strong motion will be excited at the deck of the
platform, resulting in damage to equipment or discomfort of personnel, and some extreme
cases causing damage to the platform. Ice-induced vibration was first observed on a jacket
offshore platform in Alaska′s Cook Inlet in the 1960s [1]. In the Gulf of Bosnia, several
lighthouses were damaged by sea ice in the 1970s [2]. In China, the Bohai No.2 platform lost
the bearing capacity of the pile leg due to the action of sea ice in 1969, which eventually
led to the collapse of the platform and resulted in huge economic losses. In 1977, the
Haijin No.4 beacon tower in Bohai Bay was also destroyed due to sea ice. In 2000, serious
ice-induced vibration occurred on the JZ20-2MSW platform, causing flange loosening,
pipeline rupture, and natural gas leakage [3].

With the accumulation of damage cases caused by floating sea ice, engineers have
started to study the hazard mechanism and analysis methods. Szydlowski and Kolerski
studied the effect of the floating ice on bridge piers using the finite volume method [4].
Istrati et al. studied the tsunami-borne debris loading on coastal bridges using the finite
element method [5]. Afterward, Xiang and Istrati [6] proposed an arbitrary Lagrangian–
Eulerian method to establish the 3D hydrodynamic model of a deck subjected to extreme
wave impacts. The numerical results agreed well with large -scale experimental dataset
of a coastal deck. Hasanpour et al. [7] developed a coupled SPH-FEM model to simulate
complex turbulent flows and multi-physics interactions across domains (air, fluid, and
solid). Abdussamie et al. [8] used the computational fluid dynamic (CFD) approach and the
volume of fluid (VOF) to study the wave-in-deck forces on a box-shaped structure. Gotoh
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and Khayyer [9] summarized the projection-based particle methods in ocean engineering.
Besides, Allsop et al. [10] studied the lateral and uplift forces at the deck of an offshore
structure caused by the flow. Xiang et al. [11] proposed a predictive equation to estimate the
overturning moment caused by the flow. Afterward, Istrati et al. [12] developed a method
to identify the most damaging scenario. The out-of-plane response at the deck and also the
yaw and roll moments caused by the impact forces were also investigated [13,14].

Based on the aforementioned studies, a variety of mitigation methods were proposed to
reduce the catastrophic damage caused by the floating ice [15]. Currently, methods to reduce
the ice-induced vibration of a platform can be divided into two categories. The first category
is to install an ice-resistant vertebra to change the action form of ice load and prevent the
structure from steady ice-induced vibration. Wang et al. [16,17] verified the effectiveness of
the vibration isolation vertebrae in reducing ice-induced vibration response based on the
field measured data. Wang et al. [18–20] analyzed the ice-induced vibration characteristics
after the installation of ice-resistant vertebrae on the single-pile, four-pile, and multi-
pile jacket platform using the method of DEM-FEM. Based on Miner′s linear cumulative
damage theory and S-N curve, Zhang et al. [21] analyzed the service life and damage of
an offshore platform under ice load using ANSYS. The second category is to install dampers
to control the vibration response of the structure, which is often divided into passive
control, active control, and semi-active control [22,23]. Li et al. [24] studied and verified
the effectiveness of the TMD in reducing the ice-induced vibration response of the offshore
platform. However, if the frequency of the TMD shifts away from the target frequency of
the primary structure, the vibration control effectiveness will be significantly reduced (also
known as the detuning effect). To further improve the effectiveness and robustness of the
damper, Wu et al. [25] studied the semi-active control algorithm of the MR damper and
verified that the MR damper could effectively suppress the vibration of structures under sea
ice and seismic loads. Nevertheless, the performance of an MR damper may degrade due to
leakage during long-term service. Moreover, Ghadimi et al. [26] conducted a comparative
study on the TMD and the semi-active TMD and found that vibration response values
of offshore jacket platforms under environmental loads (i.e., wind, water, wave, and sea
currents) and seismic loads were significantly reduced.

The recent decade has seen a rapid development of neural networks (NN) and
deep learning in both academics and industry, including the field of vibration control.
Ma et al. [27] designed a vibration controller based on the BP neural network and realized
active vibration control of the offshore platform under the action of random wave force.
Cui et al. [28] respectively studied the application of grey prediction, fuzzy neural net-
work, and support vector machine in the field of vibration control of the offshore platform.
Chen et al. [29] utilized a multi-layer perceptron and autoregression model to learn the
LQR optimal control algorithm and carried out an experimental study to verify its effec-
tiveness. Wang et al. [30] proposed a semi-active non-smooth control algorithm based on
deep learning, and the numerical analysis implied that the algorithm had good robust-
ness and anti-interference. Based on the LSTM long-term and short-term neural network,
Gao et al. [31,32] studied the structural response prediction and vibration control methods
of structures under seismic loads and proved the feasibility of deep neural networks in the
field of structural vibration control.

On the basis of previous studies, this paper aims to suppress the ice-induced vibration
control of offshore platforms by using a cyclic element network based on gate control.
Firstly, the GRU network is proposed to predict the ice-induced vibration response of
the offshore jacket platform. According to the predicted response data, the GRU control
network and the LSTM control network are constructed, respectively. After training and
testing, it is found that both two network control strategies demonstrate a good control
effect on the ice-induced vibration of the offshore platform.
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2. Numerical Model of Offshore Platform and Ice Load

The structure used in this paper is an upright marine jacket structure, designed
according to [33,34]. It has two floors and four pile legs. The water depth is 79.5 m, the
height of the lower deck is 15.3 m, and the height of the main deck is 23.0 m. The structure
above the mud surface is shown in Figure 1 and the structural material properties are listed
in Table 1.
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Figure 1. Jacket offshore platform model: (a) SACS model of jacket offshore platform; (b) simplified
model of jacket offshore platform.

Table 1. Structural material properties.

Name of Parameter Value

E (kN/cm2) 20,000
G (kN/cm2) 7722
Fy (kN/cm2) 34.5

Density (T/m3) 7.849

2.1. Simplified Structural Model

Even though the FE model of an offshore platform can predict its dynamic response
with high precision, the FE model often contains a large number of degrees of freedom
(d.o.f.), which makes it computationally unacceptable for vibration prediction-based control.
Consequently, a simplified multi-mass model is established based on the methods proposed
by Wang et al. [35].

The structural modal frequency and mode shape are obtained by modal analysis in
SACS. These data are input into the model simplification program to obtain the structure
parameters of the simplified model. The obtained mass and stiffness are listed in Table 2.

Table 2. Structure equivalent parameters and modal values.

Height (m) Equivalent Stiffness (kg/m) Equivalent Mass (kg)

−50 1.433 × 108 614,190
−21 7.138 × 108 421,309

0 4.432 × 108 132,653
15.3 5.567 × 108 131,660
23 1.285 × 108 426,815

To verify the simplified model, the same dynamic load was applied to the SACS model
and the simplified model to verify the effectiveness of the simplified model. As shown in
Figure 2, the acceleration at the top deck of the platform calculated by the FE model and
the simplified model are quite similar, which implies that the accuracy of the simplified
model can be accepted.
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Figure 2. Dynamic response time history curve of jacket offshore platform.

2.2. Ice Load

The ice forces acting on the upright jacket structure without vertebral structure are
calculated according to the following formula [33]:

F = mI fcσcDh (1)

where m is the shape coefficient. For the circular section m is 0.9, while for the square
section m is 1.0 in the perpendicular direction and 0.7 in the oblique ice direction. I denotes
the embedding coefficient. fc is the contact coefficient. σc is the unconfined compressive
strength of the ice, MPa. D is the width of the ice extrusion structure, m. h is ice thickness, m.

The embedding coefficient I and the contact coefficient fc of the pier with a circular
section are determined by the following empirical formula [33]:

I fc = 3.57h0.7/D0.5 (2)

where h is the thickness of ice, cm; D is the effective diameter of the pile, cm. For circular
pier columns with 2.5 m < D < 10 m, Ifc: recommended value is generally 0.4; for circular
pier columns with 10 m ≤ D, the recommended Ifc value is generally 0.4~0.25.

The structural dynamic equation of an upright-legged offshore platform under dy-
namic ice load is as follows:

M
..
X + C

.
X + KX = F(t) (3)

where M is the structure mass matrix. K is the structure stiffness matrix. C is the struc-
tural damping matrix. F(t) is the time-history curve of dynamic ice load. X,

.
X,

..
X are the

displacement vector, velocity vector, and acceleration vector, respectively.
When calculating dynamic ice force, the load is usually divided into two parts: fluctu-

ation component and direct flow [36]:

F(t) = Fa + Fb(t) (4)

where Fa is the mean value of Fb(t) and Fb(t) the fluctuation component of ice load.
The random ice force spectrum and Davenport wind speed spectrum are both low-

frequency power spectrums and have similar energy distribution. Methods commonly used
to generate time history data include the harmonic superposition method, linear filtering
method, wavelet analysis method, etc. In this paper, a simple harmonic superposition
method is used to transform the power spectrum of ice load from a frequency domain
to a time domain [37].
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According to Shinozuka′s theory [37], the wave component sample Fb can be expressed
as follows:

Fb = Fd(t) = f (n∆t) =
M

∑
j=1

√
2SF

(
ωj
)
∆ω cos(ωjn∆t + φj) (5)

where SF is the ice load power spectrum of the fluctuating component Fb; ωj is the Jth

angular frequency value; ∆ω is angular frequency increment; ϕj is a random variable
uniformly distributed between 0 and 2π; M is a sufficiently large spectral density curve
equal fraction; n is the total step of the random process control signal; ∆t is the time interval
for generating the control signal.

Kärnä et al. [36], based on a large amount of random ice load data measured in Bohai
Sea and Bosnia Bay, established the random ice force spectrum after statistical analysis:

S( f ) = s2
F ·

1.34v−0.6

1 + 5v−0.9 f 2 (6)

sF =
IF · Fmax

1 + n · IF
(7)

where v is the ice velocity, m/s. F is the interval frequency, Hz. SF is the standard deviation
of maneuvering ice force. IF is the action strength of dynamic ice force. n is a constant,
take 3. Fmax is the extreme static ice force, kN.

The average ice load is taken as the direct flow to calculate and the following formula
is commonly used:

Fa = Fmean = IF · SF (8)

where IF is the strength of moving ice force, generally distributed between 0.2 and 0.6, with
an average of 0.4 [36]; SF is the standard deviation of the ice force with maneuvering.

When calculating the total ice force of a multi-pile offshore platform, the shielding
effect of the structure needs to be considered. The vertical leg offshore platform in this
paper is a four-leg jacket-type platform without a waterproof casing. According to the
direction of sea-ice action, the shielding effect is shown in Figure 3. The effective diameter
coefficient of the pile leg affected by the shielding effect is 0.1.
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It should be noted that the hydrodynamic loads will also influence the dynamic
response of a structure subjected to wave and floating objects [38–41]. However, this
influence is not fully considered in this paper for computation simplicity and efficiency.

3. Neural Network Model

Though the artificial neural network (ANN) has been widely accepted in civil engi-
neering for parameter estimation, classification, and pattern recognition, the ANN-based
vibration control is relatively less reported. Recently, Sharafati combined the adaptive
neuro-fuzzy inference system (ANFIS) with several optimization methods, including parti-
cle swarm optimization (PSO), ant colony optimization (ACO), the differential evolution
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(DE), and the genetic algorithm (GA) for the prediction of wave-induced scour depth below
pipelines. The effectiveness of those methods and their robustness against uncertainties
were discussed in detail [42,43]. A stochastic model based on the group method of data
handling (GMDH) and the generalized likelihood uncertainty estimation (GLUE) was also
proposed. The adequacy and accuracy of the GMDH-GLUE model were validated with
numerical results [44].

Traditional control strategies, such as instantaneous optimal control algorithm and
pole assignment algorithm, need to obtain the precise model parameters of the structure
and that is often difficult to achieve in practical engineering. The neural network control
algorithm can adapt to the uncertain model and has good self-learning ability, adaptability,
and nonlinear fitting ability. Traditional shallow neural networks, such as Radial Basis
Function Network (RBF), have no memory ability and cannot consider the correlation
between samples. However, the dynamic response of the structure is time-series data; the
state of a specific moment is not only related to the state of the last moment but also related
to the state of the past several steps of time.

Recurrent Neural Network (RNN) is a network that has short-term memory capacity.
Neurons in this network can receive information not only from themselves but also from
other neurons. RNN is often used in temporal problems such as speech recognition and
natural language generation. Based on RNN, the Long Short-Term Memory Network
(LSTM) proposed by Hochreiter and Schmidhuber et al. [45] and the Gated Recurrent Unit
Network (GRU) proposed by Cho et al. [46,47] and Chung et al. [48] are the most widely
used recurrent neural networks. This kind of network can effectively solve the problem
of gradient disappearance or explosion frequently encountered in the RNN network by
introducing a gating unit.

3.1. Basis of LSTM and GRU

In the LSTM, there are three control units called gates: input gate (it), output gate (ot),
and forget Gate (ft). The input gate determines how much information from the current
state of the network needs to be stored in the internal state, and then the forgetting gate
determines how much information from the past state needs to be discarded. Besides, the
output gate determines how much information about the current internal state needs to be
output to the external state. The output gate is achieved by introducing a logistic function,
σ, a function whose output is distributed between 0 and 1, indicating that information is
allowed to pass in a certain proportion.

The calculation process of LSTM is as follows: firstly, the external state ht at the last
moment and the input xt at the current moment are used to calculate the values of the three
gates (it, ot, ft) and candidate states c̃t. Then combining the forgetting gate ft and the input
gate it updates the memory unit ct. Finally, the internal information is transmitted to the
external state ht according to the output gate ot. This process can be expressed as follows:

c̃t
ot
it
ft

 =


tanh

σ
σ
σ

(W[ xt
ht−1

]
+ b) (9)

ct = ft � ct−1 + it � c̃t (10)

ht = ot � tan h(ct) (11)

where xt ∈ RM is the input data at the current moment W ∈ R4D×(D+M) and b ∈ R4D are
parameters of the network.

Compared with the LSTM, the network structure of the GRU is simpler. Different
from the LSTM, the GRU combines the input gate and the forget gate into one gate, which
is called the update gate. In the GRU, there is no division of internal state and external
state in a network, and a linear dependency relationship is directly added between the
current network state ht and the last network state ht−1 to solve the problem of gradient
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disappearance and gradient explosion. The calculation formula for updating gate zt and
resetting gate rt in GRU is as follows:

Updating gate : zt = σ(Wzxt + Uzht−1 + bz) (12)

Resetting gate : rt = σ(Wrxt + Urht−1 + br) (13)

Output : ht = zt � ht−1 + (1− zt)� h̃t (14)

where xt is the input data at the current moment, Wz, Wr, Uz, Ur, bz, and br correspond to
the weight matrix and coefficient vector of the updated gate and reset gate, respectively.

When zt = 0, r = 1, the GRU degenerates into a simple cyclic network. When zt = 0,
r = 0, the current state ht is only related to the current input xt, and has nothing to do with
the historical state ht. When zt = 1, the current state ht is equal to the previous state ht−1,
which is independent of the current input xt. Unlike the LSTM, the GRU has no separate
storage unit, so the operation cost is lower, and the data learning ability is not as good as
the LSTM.

Overfitting is a common problem in machine learning due to the limited training
data and the network structure. In a previous study, Srivastava et al. [49] proposed to
add a Dropout layer to eliminate overfitting and enhance the model robustness. The
principle of Dropout regularization is to make the neurons in the neural network randomly
inactivate at the appropriate scale so that the model does not become overly dependent on
a particular neuron.

The standardization of data is to scale the data in proportion and make it fall into
a small specific interval, which makes the calculation of loss function simpler and faster.
The commonly used normalization methods include scaling normalization and Z-score
normalization. In this paper, the Z-Score normalization is used since the response data
generated by structural vibration has a strong disorder and no obvious boundary. The
mean value µ and standard deviation σ of the data were calculated, and the normalized
data with normal distribution was obtained by Gaussian mapping.

3.2. Forecast Network Model

In a structural vibration control program, the time lag is inevitable due to various
reasons. In this paper, a gating-based cyclic neural network prediction method is proposed
to forecast the structural response. This method can predict the response of the next
time step based on the monitored structural response of several previous steps. Then the
predicted response will be transmitted to a controller to calculate the controlling force of the
next step. In this way, the time lag can be addressed. The LSTM and the GRU can be built
by the MATLAB deep learning toolbox and the prediction effect of these two commonly
used cyclic networks on structural ice-induced vibration response will be discussed.

The structural parameters and training hyperparameters of the LSTM and the GRU
will be determined after several rounds of trial calculation. As shown in Figure 4, the
LSTM is a deep network with five layers (the input layer, the LSTM layer, the dropout
layer, the full connection layer, and the output layer). The LSTM layer is a recursive loop
layer containing 128 gating units and the random loss rate of the dropout layer is 0.5. As
a forecast network model, the GRU has similar parameters to the LSTM (just change the
LSTM layer to the GRU layer). For the training hyperparameter, the Adam optimizer was
used for both networks, the initial learning rate was set as 0.005 and the number of training
was set as 100.
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3.3. Control Network Model

The LQR algorithm has high requirements for the accuracy of the structural model
and poor generalization for different external excitations, which limits its application in
a real-world project. However, the controlling force calculated by the LQR method can be
used to train the neural network-based vibration controller [32]. The predicted response of
the offshore platform and the ice load is the input of the neural network, while the output
is the controlling force. The load value, response value, and corresponding control force
under different ice conditions are used as training set and verification set, respectively, to
verify that the control system has good generalization performance.

According to experience, there will be four feature combinations discussed in this
paper and they are displacement and load value, velocity and load value, acceleration
and load value, and displacement, velocity, acceleration, and load value, respectively. In
addition, the data of the ice-induced vibration response by predicting as the input data
will verify the feasibility of the prediction data in the control program to calculate the
control force.

The network structure is shown in Figure 5. By empirical calculation, the network
with a single structural response and load as input data is a 4-layer network: input layer,
LSTM layer (GRU layer), full-connection layer, and output layer. The gated cyclic layer
contains 128 gated units and the initial learning rate is set at 0.005 and 100 times of training.
If the input data is a combination of displacement, velocity, acceleration, and load values,
the network structure will have five layers, a dropout layer with a random loss rate of
0.5 should be added after the gated loop layer to prevent data overfitting.
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Figure 5. Control program network structure.

Through several rounds of trial and optimization, the structure of the network is
determined. The network is composed of 4 layers: the input layer, the LSTM layer (or the
GRU layer), the full-connection layer, and the output layer. The layer of the gated cyclic
layer contains 128 gated units and the initial learning rate is set at 0.005 and 1000 times of
training. Other network parameters and training parameters remain unchanged and Adam
optimizer is used for network training.

4. Network Model Analysis
4.1. Structural Analysis of Forecast Network

The simplified model of the offshore jacket platform is used to calculate the ice-
induced vibration dynamic response of the structure, and the result is used as the data
set for training and validation of the networks. The LSTM and the GRU are built by
MATLAB deep learning toolbox, and the prediction effects of these two commonly used
cyclic networks on structural ice-induced vibration are discussed.

The ice-induced vibration responses of the structure under different ice conditions
were calculated by the MATLAB program, and the numerical results will be separated as
training set and test set, respectively. The data of displacement, velocity, and acceleration
that at time T will be used as input data and that at time T + 11 will be regarded as output
time. The ice-induced vibration response of the offshore platform under the ice speed of
0.9 m/s, ice thickness of 0.6 m, and ice strength of 1.8 MPa was used as the training set.
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The Adjusted R2 (adjusted determination coefficient) is defined as follows to compare the
performance of the GRU and the LSTM network:

R_adjusted = 1− (1− R2)(n− 1)
n− p− 1

(15)

where n is the number of the samples, and p is the number of the predicted variables. In
this paper, the two neural networks were used to predict the response of displacement,
velocity, and acceleration, then p is set to 3. R2 is defined as follows:

R2 = 1− ∑ (Y_actual −Y_predict)2

∑ (Y_actual −Y_mean)2 (16)

in which Y_actual and Y_predict are the real response and the predicted response, respectively.
As shown in Table 3, although the Adjusted R2 of the speed predicted by the GRU and

the LSTM is not significantly different, the Adjusted R2 of the displacement predicted value
and the acceleration predicted values are significantly different. The minimum Adjusted
R2 of the GRU displacement prediction value was 0.9833, and the minimum Adjusted R2 of
the LSTM displacement prediction value was 0.9283. The minimum Adjusted R2 of the
GRU acceleration prediction value was 0.9286, and the minimum Adjusted R2 of the LSTM
acceleration prediction value was 0.8995. Therefore, the prediction effect of the GRU is
significantly better than that of the LSTM. In addition, the internal structure of the GRU is
simpler than the LSTM, so the speed of training and operation is faster. Therefore, the GRU
will be used to predict the structural dynamic response of ice-induced vibration.

Table 3. Structural response prediction analysis table.

Network Type Ice Conditions
Adjusted R2

Displacement Velocity Acceleration

GRU Network
V = 0.8 m/s, H = 0.4 m, σ = 2.2 MPa 0.9929 0.9685 0.9322
V = 1.0 m/s, H = 0.5 m, σ = 2.0 MPa 0.9925 0.9725 0.9286
V = 1.0 m/s, H = 0.46 m, σ = 1.6 MPa 0.9833 0.9698 0.9322

LSTM Network
V = 0.8 m/s, H = 0.4 m, σ = 2.2 MPa 0.9814 0.9652 0.9036
V = 1.0 m/s, H = 0.5 m, σ = 2.0 MPa 0.9888 0.9710 0.8995
V = 1.0 m/s, H = 0.46 m, σ = 1.6 MPa 0.9283 0.9679 0.9056

4.2. Analysis of Computing Structure of Control Network

Two hundred groups of experiments were carried out for different input methods
of the GRU and the LSTM, respectively. The modified determination coefficient of each
operation result was calculated as well as its maximum value, minimum value, average
value, and standard deviation were counted. The research results are shown in Table 4.
When a single response characteristic is input data, the maximum correction coefficient
of control force calculated by the GRU is 0.891 and the maximum correction coefficient
of control force calculated by the LSTM is 0.969. When combined input of response
characteristics is used, the maximum correction coefficients of control force calculated by
the GRU and the LSTM are 0.986 and 0.983, respectively. It can be found that the control
force calculated by combined input is significantly better than that calculated by single
response input. And the standard deviation of the combined input is far less than that of
the single input, which proves that the network stability is better when the combined input
is used.
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Table 4. Control network calculation analysis table.

GRU LSTM

Input 1 Input 2 Input 3 Input 4 Input 1 Input 2 Input 3 Input 4

MAX 0.868 0.891 0.857 0.986 0.969 0.897 0.911 0.983
MIN 0.397 0.501 −0.721 0.942 0.784 0.588 0.508 0.928
AVG 0.778 0.772 0.443 0.972 0.935 0.829 0.815 0.964
S.D. 0.080 0.071 0.237 0.009 0.026 0.042 0.067 0.010

5. Case Study
5.1. Prediction of Structural Ice-Induced Vibration Response

According to relevant specifications, the forecast of ice-induced vibration response
of a jacket platform is analyzed when the strength of sea ice is 2.2 MPa, the thickness of
ice is 40 cm and the ice speed is 0.8 m/s. The simplified model is used to calculate in
the MATLAB program. First, the prediction of the GRU network will be verified that it is
effective. As shown in Figure 6, the Adjusted R2 of the predicted value of displacement
response was 0.9987, the Adjusted R2 of the predicted value of speed response was 0.9685,
and the Adjusted R2 of the predicted value of speed response was 0.9322. It is proven that
the GRU is effective at predicting ice vibration response.

5.2. Control of The Ice-Induced Vibration

As shown in Figure 7, the LSTM control method and GRU control method proposed
based on the GRU predicted response data have a good vibration control ability after learn-
ing the LQR optimal control algorithm. The control effect is shown in the following Table 5.

As shown in Table 5, the LSTM control method and GRU control algorithm proposed
based on the GRU predicted response data have good vibration control ability after learning
the LQR optimal control algorithm. Among them, the structure uncontrolled displacement
peak is 4.20 cm, the LSTM algorithm is used to reduce to 3.34 cm, decreased 20.42%, the
GRU algorithm is used to reduce to 3.44 cm, decreased 18.21%, the LQR algorithm is used
to reduce to 3.30 cm, decreased 21.24%; the structure uncontrolled speed peak is 7.53 m/s,
the LSTM algorithm is used to reduce to 5.23 cm/s, decreased 30.58%, the GRU algorithm
is used to reduce to 5.30 cm/s, decreased 29.66%, the LQR algorithm is used to reduce to
5.36 cm/s, decreased 28.79%; the structure uncontrolled acceleration peak is 26.81 cm/s2,
LSTM algorithm is used to reduce to 17.02 cm/s2, decreased 36.54%, the GRU algorithm is
used to reduce to 17.71 cm/s2, decreased 33.96%, the LQR algorithm is used to reduce to
18.13 cm/s2, decreased 32.40%.
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Table 5. Response control analysis table.

Control
Strategy

Displacement (cm) Velocity (cm/s) Acceleration (cm/s2)

Peak Drop Peak Drop Peak Drop

Without
control 4.20 - 7.53 - 26.81 -

LQR 3.30 21.24% 5.36 28.79% 18.13 32.40%
GRU 3.44 18.21% 5.30 29.66% 17.71 33.96%
LSTM 3.34 20.42% 5.23 30.58% 17.02 36.54%
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6. Conclusions

Based on the gated cycle neural network, this paper studies the ice-induced vibration
response control method of the offshore jacket platform. The major findings are as follows:

(1) Based on the structural modal parameters, the structural parameters of the simplified
model were identified. According to the verification results of its dynamic response,
it is proved that the simplified model can well reflect the dynamic response character-
istics of the original finite-element model.

(2) A prediction model of ice-induced vibration response based on the GRU neural
network is proposed, which can effectively predict the future structural response
according to the current structural response of the platform, and is applied to the
vibration control program to solve the problem of the control program time lag.

(3) It is found that the LSTM and the GRU both can learn LQR optimal control algorithm
well and have a good control effect for different working conditions, indicating that
the LSTM has good robustness. The response control effect of the LSTM control
strategy is slightly better than that of the GRU under the condition of sacrificing
a certain calculation time.

Moreover, the ice load considered in this study is simplified for computational ef-
ficiency, with the hydrodynamic effect ignored. Besides, the ice load is only applied
at a specific height of the leg as a point load. Ice load applied to the deck of the platform
may also cause serious damage. In the future, a more sophisticated ice force model shall be
considered and the ice load shall be applied to different nodes of the offshore platform from
different angles to investigate the robustness of the LSTM and the GRU-based controller.

Author Contributions: Conceptualization, P.Z. and Z.W.; methodology, P.Z. and Z.W.; software, Z.W.;
validation, C.C., Z.W. and P.Z.; formal analysis, P.Z.; investigation, Z.W. and R.Y.; resources, P.Z.; data
curation, Z.W.; writing—original draft preparation, Z.W. and P.Z.; writing—review and editing, P.Z.,
R.Y. and C.C.; visualization, Z.W. and R.Y.; supervision, C.C.; project administration, C.C.; funding
acquisition, P.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC), grant
number 51808092; United Navigation Foundation of Liaoning Province, grant number 2020-HYLH-48; the
National Key R&D Program of China (2021YFB2601102); and the open fund of State Key Laboratory
of Coastal and Offshore Engineering (DUT-LP2122).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sinha, N.K.; Timco, G.W.; Frederking, R. Recent Advances in Ice Mechanics in Canada. Appl. Mech. Rev. 1987, 40, 1214–1231.

[CrossRef]
2. Engelbrektson, A.; Janson, J.E. Field Observations of Ice Action on Concrete Structures in the Baltic Sea. Concr. Int. 1985, 7, 48–52.
3. Zhang, D.; Yu, S.; Wang, Y.; Yue, Q. Sea Ice Management for Oil and Gas Platforms in the Bohai Sea. Pol. Marit. Res. 2017,

24, 195–204. [CrossRef]
4. Szydłowski, M.; Kolerski, T. Numerical modeling of water and ice dynamics for analysis of flow around the Kiezmark Bridge

piers. In Free Surface Flows and Transport Processes; Springer: Berlin/Heidelberg, Germany, 2018; pp. 465–476.
5. Istrati, D.; Hasanpour, A.; Buckle, I. Numerical investigation of tsunami-borne debris damming loads on a coastal bridge. In

Proceedings of the 17 World Conference on Earthquake Engineering, Sendai, Japan, 13–18 September 2020.
6. Xiang, T.; Istrati, D. Assessment of Extreme Wave Impact on Coastal Decks with Different Geometries via the Arbitrary

Lagrangian-Eulerian Method. J. Mar. Sci. Eng. 2021, 9, 1342. [CrossRef]
7. Hasanpour, A.; Istrati, D.; Buckle, I. Coupled SPH–FEM Modeling of Tsunami-Borne Large Debris Flow and Impact on Coastal

Structures. J. Mar. Sci. Eng. 2021, 9, 1068. [CrossRef]

http://doi.org/10.1115/1.3149553
http://doi.org/10.1515/pomr-2017-0083
http://doi.org/10.3390/jmse9121342
http://doi.org/10.3390/jmse9101068


J. Mar. Sci. Eng. 2022, 10, 967 15 of 16

8. Abdussamie, N.; Thomas, G.; Amin, W.; Ojeda, R. Wave-in-deck forces on fixed horizontal decks of offshore platforms. In Pro-
ceedings of the International Conference on Offshore Mechanics and Arctic Engineering, San Francisco, CA, USA, 8–13 June 2014;
American Society of Mechanical Engineers: New York, NY, USA, 2014; p. V1A.

9. Gotoh, H.; Khayyer, A. Current achievements and future perspectives for projection-based particle methods with applications in
ocean engineering. J. Ocean. Eng. Mar. Energy 2016, 2, 251–278. [CrossRef]

10. Allsop, W.; Cuomo, G.; Tirindelli, M. New prediction method for wave-in-deck loads on exposed piers/jetties/bridges.
In Proceedings of the Coastal Engineering 2006—30th International Conference, San Diego, CA, USA, 3–8 September 2006;
Volume 5, pp. 4482–4493.

11. Xiang, T.; Istrati, D.; Yim, S.C.; Buckle, I.G.; Lomonaco, P. Tsunami loads on a representative coastal bridge deck: Experimental
study and validation of design equations. J. Waterw. Port. Coast. Ocean. Eng. 2020, 146, 4020022. [CrossRef]

12. Istrati, D.; Buckle, I.; Lomonaco, P.; Yim, S. Deciphering the Tsunami Wave Impact and Associated Connection Forces in
Open-Girder Coastal Bridges. J. Mar. Sci. Eng. 2018, 6, 148. [CrossRef]

13. Istrati, D.; Buckle, I.G. Tsunami Loads on Straight and Skewed Bridges—Part 1: Experimental Investigation and Design Recommendations;
Department of Transportation, Research Section: Salem, OR, USA, 2021.

14. Istrati, D.; Buckle, I.G. Tsunami Loads on Straight and Skewed Bridges—Part 2: Numerical Investigation and Design Recommendations;
Department of Transportation, Research Section: Salem, OR, USA, 2021.

15. Zhang, D.; Xu, N.; Yue, Q.; Liu, D. Sea Ice Problems in Bohai Bay Oil and Gas Exploitation. J. Coast. Res. 2015, 73, 676–680.
[CrossRef]

16. Wang, S.; Yue, Q. Vibration Reduction of Bucket Foundation Platform with Fixed Ice-Breaking Cone in the Bohai Sea. J. Cold Reg.
Eng. 2012, 26, 160–168. [CrossRef]

17. Wang, S.; Yue, Q. Ice induced vibration and its isolation of an offshore platform with bucket foundations in marginal oilfields.
In Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 6–11 June 2010;
ASMEDC: Houston, TX, USA, 2010; Volume 4.

18. Ji, S.; Wang, S. A Coupled Discrete–Finite Element Method for the Ice-Induced Vibrations of a Conical Jacket Platform with
a GPU-Based Parallel Algorithm. Int. J. Comput. Methods 2019, 17, 1850147. [CrossRef]

19. Wang, S.; Ji, S. DEM-FEM modelling interaction between level ice and conical jacket platform. In Proceedings of the 24th
International Conference on Port and Ocean Engineering under Arctic Conditions, Busan, Korea, 11–16 June 2017.

20. Wang, S.; Ji, S. Ice induced vibration of conical platform based on coupled DEM-FEM model with high efficiency algorithm.
Haiyang Xuebao 2017, 39, 98–107.

21. Zhang, D.; Wang, G.; Yue, Q. Evaluation of Ice-Induced Fatigue Life for a Vertical Offshore Structure in the Bohai Sea. Cold Reg.
Sci. Technol. 2018, 154, 103–110. [CrossRef]

22. Zhang, B.-L.; Han, Q.-L.; Zhang, X.-M. Recent Advances in Vibration Control of Offshore Platforms. Nonlinear Dyn. 2017,
89, 755–771. [CrossRef]

23. Kandasamy, R.; Cui, F.; Townsend, N.; Foo, C.C.; Guo, J.; Shenoi, A.; Xiong, Y. A Review of Vibration Control Methods for Marine
Offshore Structures. Ocean. Eng. 2016, 127, 279–297. [CrossRef]

24. Li, D.; Zhang, D.; Yue, Q. Phase analysis on the mechanism of TMD and mitigation of ice-induced vibrations for jacket platforms
with TMD. In Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China,
6–11 June 2010; Volume 49125, pp. 837–845.

25. Wu, B.; Shi, P.; Wang, Q.; Guan, X.; Ou, J. Performance of an Offshore Platform with MR Dampers Subjected to Ice and Earthquake.
Struct. Control. Health Monit. 2010, 18, 682–697. [CrossRef]

26. Ghadimi, B.; Taghikhany, T. Dynamic Response Assessment of an Offshore Jacket Platform with Semi-Active Fuzzy-Based
Controller: A Case Study. Ocean. Eng. 2021, 238, 109747. [CrossRef]

27. Ma, H.; Zhang, Y.; Tang, G.-Y.; Zhang, B.-L. BP Neural network vibration control with time delay for offshore platforms under
wave forces. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017.

28. Cui, H.; Hong, M. Adaptive inverse control of offshore jacket platform based on grey prediction. In Proceedings of the 2011
Second International Conference on Digital Manufacturing; Automation, Zhangjiajie, China, 5–7 August 2011.

29. Chen, P.-C.; Chien, K.-Y. Machine-Learning Based Optimal Seismic Control of Structure with Active Mass Damper. Appl. Sci.
2020, 10, 5342. [CrossRef]

30. Wang, Q.; Wang, J.; Huang, X.; Zhang, L. Semiactive Nonsmooth Control for Building Structure with Deep Learning. Complexity
2017, 2017, 1–8. [CrossRef]

31. Gao, J.; Zhang, C. Structural Seismic Response Prediction Based on Long Short-Term Memory Network. Earthq. Resist. Eng.
Retrofit. 2020, 42, 130–134. [CrossRef]

32. Tu, J.; Gao, J.; Li, Z.; Zhang, J. Research on Structural Intelligent Control Algorithms Based on Long Short-Term Memory Networks.
J. Huazhong Univ. Sci. Tech. (Nat. Sci. Ed.) 2019, 47, 110–115. [CrossRef]

33. China Nation Offshore Oil Corporation. Provisions for Sea Ice Conditions and Applications in the China Sea; China Nation Offshore
Oil Corporation: Tianjin, China, 2002.

34. China Classification Society. Guide for Analysis of Ice-induced Vibration and Ice-induced Fatigue of Stationary Marine Steel Structures;
China Classification Society: Beijing, China, 2018.

http://doi.org/10.1007/s40722-016-0049-3
http://doi.org/10.1061/(ASCE)WW.1943-5460.0000560
http://doi.org/10.3390/jmse6040148
http://doi.org/10.2112/SI73-116.1
http://doi.org/10.1061/(ASCE)CR.1943-5495.0000042
http://doi.org/10.1142/S0219876218501475
http://doi.org/10.1016/j.coldregions.2018.05.012
http://doi.org/10.1007/s11071-017-3503-4
http://doi.org/10.1016/j.oceaneng.2016.10.001
http://doi.org/10.1002/stc.398
http://doi.org/10.1016/j.oceaneng.2021.109747
http://doi.org/10.3390/app10155342
http://doi.org/10.1155/2017/6406179
http://doi.org/10.16226/j.issn.1002-8412.2020.03.020
http://doi.org/10.13245/j.hust.191219


J. Mar. Sci. Eng. 2022, 10, 967 16 of 16

35. Wang, S.; Li, H.; Ji, C.; Jiao, G. Energy Analysis for TMD-Structure Systems Subjected to Impact Loading. Chain. Ocean. Eng. 2002,
16, 301–310.

36. Kärnä, T.; Qu, Y.; Ku Hnlein, W.L. A New spectral method for modeling dynamic ice actions. In Proceedings of the 23rd
International Conference on Offshore Mechanics and Arctic Engineering, Vancouver, BC, Canada, 20–25 June 2004; pp. 953–960.

37. Shinozuka, M.; Jan, C.-M. Digital Simulation of Random Processes and Its Applications. J. Sound Vib. 1972, 25, 111–128. [CrossRef]
38. Anagnostopoulos, S.A. Dynamic response of offshore platforms to extreme waves including fluid-structure interaction. Eng.

Struct. 1982, 4, 179–185. [CrossRef]
39. Istrati, D.; Buckle, I.G. Effect of fluid-structure interaction on connection forces in bridges due to tsunami loads. In Proceedings of

the 30th US-Japan Bridge Engineering Workshop, Washington, DC, USA, 21–23 October 2014; pp. 21–23.
40. Choi, S.; Lee, K.; Gudmestad, O.T. The effect of dynamic amplification due to a structure’s vibration on breaking wave impact.

Ocean. Eng. 2015, 96, 8–20. [CrossRef]
41. Istrati, D.; Buckle, I.; Lomonaco, P.; Yim, S.; Itani, A. Large-scale experiments of tsunami impact forces on bridges: The role of

fluid-structure interaction and air-venting. In Proceedings of the 26th International Ocean and Polar Engineering Conference,
Rhodes, Greece, 26 June 2016.

42. Sharafati, A.; Tafarojnoruz, A.; Motta, D.; Yaseen, Z.M. Application of nature-inspired optimization algorithms to ANFIS model
to predict wave-induced scour depth around pipelines. J. Hydroinform. 2020, 22, 1425–1451. [CrossRef]

43. Sharafati, A.; Tafarojnoruz, A.; Shourian, M.; Yaseen, Z.M. Simulation of the depth scouring downstream sluice gate: The
validation of newly developed data-intelligent models. J. Hydro-Environ. Res. 2020, 29, 20–30. [CrossRef]

44. Sharafati, A.; Tafarojnoruz, A.; Yaseen, Z.M. New stochastic modeling strategy on the prediction enhancement of pier scour depth
in cohesive bed materials. J. Hydroinform. 2020, 22, 457–472. [CrossRef]

45. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
46. Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder—Decoder

Approaches. Available online: https://arxiv.org/abs/1409.1259 (accessed on 1 June 2021).
47. Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations

Using RNN Encoder—Decoder for Statistical Machine Translation. Available online: https://arxiv.org/abs/1406.1078 (accessed
on 1 June 2021).

48. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
Available online: https://arxiv.org/abs//1412.3555 (accessed on 1 June 2021).

49. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

http://doi.org/10.1016/0022-460X(72)90600-1
http://doi.org/10.1016/0141-0296(82)90007-4
http://doi.org/10.1016/j.oceaneng.2014.11.012
http://doi.org/10.2166/hydro.2020.184
http://doi.org/10.1016/j.jher.2019.11.002
http://doi.org/10.2166/hydro.2020.047
http://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs//1412.3555

	Introduction 
	Numerical Model of Offshore Platform and Ice Load 
	Simplified Structural Model 
	Ice Load 

	Neural Network Model 
	Basis of LSTM and GRU 
	Forecast Network Model 
	Control Network Model 

	Network Model Analysis 
	Structural Analysis of Forecast Network 
	Analysis of Computing Structure of Control Network 

	Case Study 
	Prediction of Structural Ice-Induced Vibration Response 
	Control of The Ice-Induced Vibration 

	Conclusions 
	References

