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Abstract: For unmanned surface vehicles (USVs), perception and control are commonly performed in
embedded devices with limited computing power. Sea surface object detection can provide sufficient
information for USVs, while most algorithms have poor real-time performance on embedded devices.
To achieve real-time object detection on the USV platform, this paper designs a lightweight object
detection network based on YOLO v5. In our work, an improved ShuffleNet v2 based on the attention
mechanism was adopted as a backbone network to extract features. The depth-wise separable
convolution module was introduced to rebuild the neck network. Additionally, the fusion method
was changed from Concat to Add to optimize the feature fusion module. Experiments show that
the proposed method reached 32.64 frames per second (FPS) on the Nvidia Jetson AGX Xavier and
achieved a mean average precision (mAP) of 93.1% and 93.9% on our dataset and Singapore Maritime
Dataset, respectively. Moreover, the number of model parameters of the proposed network was
only 25% of that of YOLO v5n. The proposed network achieves a better balance between speed and
accuracy, which is more suitable for detecting sea surface objects for USVs.

Keywords: YOLO v5; lightweight object detection; ShuffleNet v2; unmanned surface vehicles

1. Introduction

In recent years, unmanned surface vehicles (USVs) have been widely used to perform
varieties of tasks due to the increase in human maritime activities. The advantages of
USVs are commonly considered high speed, small size, and labor-saving. In addition,
it has been proved that USVs can complete sophisticated tasks and are more adaptable
and efficient. The environmental perception system of the USV is composed of various
sensors, such as optical cameras and radar. Radar has relative stability in complex marine
environments so that it can be used in various weather conditions [1]. However, optical
cameras can obtain high-resolution images, which provide rich environmental information.
Visual object detection plays an important role in obstacle avoidance and autonomous
navigation of the USV. However, the computing power of embedded devices carried by
USV is generally insufficient. Thus, it is significant to develop a lightweight sea-surface
objects detection network that can easily deploy on embedded devices of USV.

Recently, with the development of computer hardware, many researchers are focusing
on object detection based on deep learning [2], where neural networks can be used to
extract the features of the detected object automatically. These algorithms can be divided
into two main types. The first is two-stage object detection, which divides object detection
into two-phase such as R-CNN [3], Fast R-CNN [4], and Cascade R-CNN [5]. Another is
single-stage object detection, which directly predicts the position and category, such as
SSD [6], YOLO [7–10], and RefineDet [11]. The performance of object detection algorithms
has significantly improved, and some have been applied in practical scenarios, including
self-driving cars [12], unmanned aerial vehicles [13], and more.
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At present, to make USVs more intelligent, object detection methods based on deep
learning have also been used to detect sea surface objects. However, most of the related
studies focus on improving detection performance by increasing the model parameters
or adding different components to the network. Although the recognition accuracy of
most existing detection algorithms is high, the real-time performance of most algorithms is
insufficient due to the high complexity and a large number of model parameters. To satisfy
the requirements of USVs, it is essential to reduce the model parameters and improve the
detection speed.

In this study, we design a lightweight sea surface object detection network based
on the framework of YOLO v5 [14] to improve detection speed on an embedded device.
YOLO v5 is an excellent object detection algorithm considering the balance between speed
and accuracy. However, its network still has many redundant parameters, and further
optimization and improvement are required. Consequently, we proposed a lightweight
object detection network for USVs. Firstly, improved ShuffleNet v2 [15] based on squeeze
operation and excitation (SE) attention mechanism [16] was used as the backbone network
of YOLO v5. In addition, depth-wise separable convolution was introduced to rebuild
the neck network. Meanwhile, the Add fusion method was applied to optimize the Pixel
Aggregation Network (PAN) [17] used in YOLO v5. Experiments were carried out on
our dataset, which was collected and labeled for this study, and the Singapore Maritime
Dataset. The results show that the network greatly improved the detection speed, which
is extremely suitable for deploying on USVs to detect sea surface objects. The primary
contributions of the paper are as follows:

(1) An improved ShuffleNet v2 based on the SE attention mechanism was proposed as
the backbone feature extraction network, which significantly reduces the number of
model parameters.

(2) A combination of the depth-wise separable convolution and the ADD feature fusion
method was adopted to rebuilt the neck network, which is conducive to reducing the
complexity of computation.

(3) We provided a solution for deploying sea surface object detection algorithms on
embedded devices carried by USVs. All experiments were tested on NVIDIA Jetson
AGX XAVIER, and real-time performance was demonstrated.

The remainder of this paper is structured as follows. Section 2 introduces some of
the most important related works. The visual perception system of USVs is introduced in
Section 3. Section 4 describes the proposed object detection network. Section 5 describes
the experimental results and analysis. Finally, a summary and prospects are provided in
Section 6.

2. Related Work

Many researchers have achieved outstanding achievements in the field of sea surface
object detection. Some object detection algorithms based on deep learning have been
successfully employed in USVs to detect sea surface objects. Tao Liu et al. [18] proposed a
sea surface object detection algorithm based on YOLO v4. They introduced the module
of Reverse Depthwise Separable Convolution [19] to reduce the number of weights. A
novel method [20] was proposed to fuse DenseNet [21] and YOLOV3 [9], which enhanced
the environmental adaptability of the USV. Xiaoqiang Sun et al. [22] introduced a fast
weighted feature fusion network into the USV object detection network, which achieved
better performance under different lighting and weather conditions. A ship detection algo-
rithm [23] was designed based on Discrete Cosine Transform. The approach can improve
detection accuracy and enhance real-time performance. A visual detection algorithm based
on improved YOLOv3 was proposed to detect sea surface targets [24]. The accuracy of
YOLO v3 to detect sea-surface targets was improved by increasing the inference time.

Most studies have improved detection accuracy in complex marine environments.
Improving the accuracy usually increases the number of model parameters. Due to the
limited computing power of embedded devices, the application of object detection networks
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on embedded devices carried by USVs is seriously limited. To apply object detection
methods based on deep learning to embedded devices, lightweight networks have been
studied to reduce the number of model parameters and the complexity of computation.

At present, the research on lightweight neural networks can be divided into two
aspects: one is network structure, and another is model compression. The former is to
directly design lightweight networks, such as ShuffleNet(V1, V2) [15,25], MobileNet (V1,
V2, V3) [26–28], and Xception [19]. The latter aims to compress models through pruning [29]
or knowledge distillation [30], for example. The main idea of pruning is to find and discard
several unimportant channels or kernels. The main idea of knowledge distillation is to
distill knowledge from a large model to a small model. Nowadays, lightweight networks
have become a popular research direction in object detection, such as PP-PicoDet [31],
Nanodet [32], and YOLO-Fastest [33]. They have significantly reduced the number of model
parameters and improved the detection speed, but the accuracy is comparatively low.

Although the research on lightweight networks has great engineering value, there
is little research in the area. In the study of sea-sky-line detection, Lujing Yang [34] et al.
proposed a lightweight network based on YOLO v5 to detect sea-sky-line. However, they
did not consider other sea surface objects such as ships and buoys. In this work, we design
a lightweight network to detect sea-surface objects well and quickly.

3. Perception System of USVs

Due to the influence of the wind and waves, USVs will roll, pitch, and heave in a
marine environment. Relative motion between the detected object and the camera mounted
on the USV will blur the image. To eliminate the influence of environmental disturbances,
we use an optoelectronic pod with image stabilization to collect sea surface images in
real-time. The perception system of the USV is shown in Figure 1. The optoelectronic
pod collects sea surface images and transmits them to the embedded computing module
through the digital switch. The inertial navigation system (INS) continuously transmits
the position and orientation information of the USV. NVIDIA Jetson Xavier platform is
adopted as an embedded computing device to process the collected images and implement
object detection algorithms for feature extraction and detection. Then, the detection results
are transmitted to the industrial personal computer (IPC) to provide information for path
planning and motion control of USVs.

Figure 1. The visual perception system of USVs.

4. Method

The framework of YOLO v5 is mainly composed of three components: backbone, neck,
and head. The backbone network is mainly composed of BottleneckCSP modules, which are
used to extract feature information. The neck network adopts an improved feature pyramid
network (FPN) structure, which is used to fuse extracted feature maps. The detection head
is the final detection part of the model, which predicts the category and position of the
detected object. To achieve the purpose of being lightweight, ShuffleNet v2 was finally
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chosen as the backbone network after comparing it to some other lightweight networks
instead of the large backbone network used in YOLO v5. To enlarge the interest area, the
SE attention mechanism was embedded into the ShuffleNet v2 structure. Additionally, the
depth-wise separable convolution was used to rebuild the neck network, which can further
reduce the computational complexity. Then, three feature maps were enhanced by the FPN
and PAN structures for feature fusion. The Concat fusion method of PAN was replaced
by the Add method to better fuse different scale feature maps and reduce the number of
model parameters. The structure of our network is shown in Figure 2.

Figure 2. The proposed lightweight object detection network structure.

4.1. Improvement of Backbone Network

The object detection algorithm for USVs not only needs to identify sea surface targets
in a complex marine environment accurately but also needs to reduce computational
complexity as much as possible. Later, the backbone network of YOLOv5 architecture
was optimized.

The backbone network of YOLO v5 is the BottleneckCSP [35] module, which con-
tains multiple convolutional layers. These convolutional layers can extract features from
the image. A considerable number of parameters are included in the convolution kernel,
which will increase the number of model parameters and slow down the inference speed.
Therefore, the network of ShuffleNet v2 is used to replace the original backbone network.
ShuffleNet v2 has the advantages of fewer model parameters and fast calculation speed.
Figure 3 is the network structure of ShuffleNet v2, which introduces the operation of
channel split to split the feature channels into two branches and calculate them separately.
ShuffleNet v2 has a larger capacity due to the amount of network parameters, and cal-
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culations are reduced by the operation of channel split. At the same time, half of feature
channels directly go through the module and join the next module without convolutional
computation. The operation can be considered a kind of feature reuse, which has been used
previously in DenseNet [21] and CondenseNet [36]. As their connection between adjacent
layers is stronger than other layers, the feature reuse mode with dense connection will
be redundant. The feature reuse mode in ShuffleNet v2 is more effective, which is very
beneficial to our network.

(a) (b)

Figure 3. The improved ShuffleNet v2 unit is based on the SE attention mechanism. (a): the basic unit;
(b): the unit for spatial down-sampling (2×).

In real marine environments, due to the wide view of the sea surface and the large
sensing range of the unmanned surface vehicles, there are many small-sized targets. More-
over, the characteristics of different types of sea surface objects, such as ships, are relatively
similar. These factors greatly increase the difficulty of sea surface object detection.

In recent years, attention mechanisms have been widely used in various computer
vision tasks. SE is a lightweight attention mechanism. In this paper, we embed the SE
module into ShuffleNet v2 to improve the weight of important channels. This greatly
improves the ability to detect sea surface objects. As shown in Figure 4 , the SE module
mainly consists of two steps: Squeeze and Excitation operations. The Squeeze operation
compresses the feature map of each channel by global pooling, and the Excitation operation
can obtain the weight of each channel. Then, the Scale operation multiplies these weights
with the original feature map. The SE channel attention mechanism improves accuracy
with little computational cost.

Figure 4. The structure of the SE attention mechanism.
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4.2. Depth-Wise Separable Convolution

For the original YOLO v5 network, the BottleneckCSP module is in the neck network.
Inspired by MobileNet, which uses depth-wise separable convolutions to replace the
normal convolution, the module of depth-wise separable convolutions is used to replace the
BottleneckCSP module in the neck network. As shown in Figure 5, the depth-wise separable
convolution consists of a depth-wise convolution followed by a point-wise convolution.
Depth-wise convolution adopts one filter on each channel. Then, a 1 × 1 convolution
is applied by the point-wise convolution to generate novel feature maps. Depth-wise
separable convolution can significantly reduce the computational complexity and the
number of model parameters.

Figure 5. The process of depth-wise separable convolution.

4.3. Improvement of Feature Fusion Module

In object detection, the effective fusion of different scale feature maps is the key to
improving the model performance. Following the arrow direction in Figure 6, the FPN
enlarges the feature map size through the up-sampling operation and fuses it with the
feature map from the backbone network to convey semantic information. The PAN is
responsible for reducing the feature map size through the operation of down-sampling, and
the feature maps in the PAN structure are fused with corresponding feature maps in the
FPN structure to transfer strong positioning information. Feature maps of different scales
are repeatedly fused to extract semantic information better and positioning information,
which is helpful in detecting multiple-scale objects.

Figure 6. The structure of the feature fusion network.

Considering the requirement of being lightweight, we further improved the fusion
method of the PAN structure to improve the detection speed. The Concat fusion method
increases the number of channels and the amount of calculation. However, the Add
fusion method increases the information of each channel without increasing the number of
channels. As a result, the Add method is a better choice, as shown in Figure 7.
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(a) (b)

Figure 7. (a): The Concat fusion method; (b): The Add fusion method.

The two figures above describe the different characteristics of the Add fusion method
and the Concat fusion method, while the formula below can more directly describe the
difference between the two methods. Suppose the two input channels are X1, X2, . . . , XC
and Y1, Y2, . . . , YC, respectively. The output channel of the Concat method is (∗ denotes
convolution and K represents the convolution kernel):

Zconcat =
c

∑
i=1

Xi ∗ Ki +
c

∑
i=1

Yi ∗ Ki+c (1)

The output channel for Add is:

Zadd =
c

∑
i=1

(Xi + Yi) ∗ Ki =
c

∑
i=1

Xi ∗ Ki +
c

∑
i=1

Yi ∗ Ki (2)

It can be seen from the above formula that: (1) The Add method has more advantages
for object detection because the amount of information is increased by increasing the
information under each channel, while the number of channels does not increase. (2) The
Concat method involves combing two input channels, which increases the number of
channels while the information under each channel is not increased. (3) Therefore, the
parameters of the Concat method are nearly twice as numerous as the Add method. When
the two input channels have similar dimensions to the corresponding channel, the Add
method can reduce the number of parameters compared with the Concat method.

5. Experiment
5.1. Introduction of Dataset

The datasets used in the experiments were our own and the Singapore Maritime
Dataset. Both are randomly split into 80% for training and 20% for validation. The
following is a detailed description of the two datasets.

The images in our dataset were collected in the real marine environment. The opto-
electronic pod was installed horizontally on top of the USV for image acquisition. Figure 8
shows the “QZ” USV developed by Harbin Engineering University. To verify the effective-
ness and robustness of the proposed lightweight object detection network, we collected
images under different weather conditions, such as sunny, rainy, and foggy days. This
experiment was carried out in the Zhanjiang sea area, Guangdong Province, China.
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Figure 8. The “QZ” USV platform.

Then, we selected images from the collected videos and manually labeled them. A
total of 5 categories were labeled, and the numbers of each category are shown in Table 1.
Figure 9 shows some images of our dataset.

Table 1. The instances information statistics of our dataset.

Class Instances Percentage

Raft 482 22.22%
Ship 845 32.26%
Buoy 979 37.38%
USV 203 7.75%
Boat 110 4.2%

Figure 9. Training samples from our dataset.

The Singapore Maritime Dataset [37] is open source and contains videos collected
from Singaporean waters with a high definition (1920 × 1080 pixels). The dataset contains
various light and weather conditions. Images were obtained at an interval of three frames,
with a total of 17,966 images being obtained. The experiment focused on eight categories:
Ferry, Buoy, Vessel/ship, Speed boat, Boat, Kayak, Sailboat, and Other. Table 2 shows the
numbers of each category. Figure 10 shows some images of the dataset.
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Table 2. The instances information statistics of Singapore Maritime Dataset.

Class Instances Percentage

Ferry 8588 5.63%
Buoy 2973 2.17%

Vessel/ship 114,411 74.19%
Speed boat 7780 4.95%

Boat 1298 0.8%
Kayak 4308 2.7%

Sail boat 1926 1.18%
Other 12,551 9.54%

Figure 10. Training samples from Singapore Maritime Dataset.

5.2. Mosaic Augmentation

As shown in the above figures, our dataset and the Singapore Maritime Dataset contain
some small-scale targets that are difficult to detect. To solve this problem, we proposed to
do Mosaic image augmentation. The main idea is to crop four images randomly and then
put them together into one image, as shown in the Figure 11. This enriched the background
of the image and increased the number of small-sized objects. This significantly facilitated
the robustness of the model and improved the performance when recognizing small targets.

Figure 11. Mosaic image augmentation.
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5.3. Training Details

Each experiment set the same initial training parameters to ensure fairness. The input
image size was uniformly resized to 640 × 640. The networks are trained for 300 epochs
with the optimizer of stochastic gradient descent (SGD). To speed up the training process,
4 Nvidia GeForce RTX 3090 GPUs are applied for parallel training. After training, the
weight file of the model with the highest accuracy was saved; then, the validation set was
utilized to evaluate the performance.

5.4. Evaluation Metrics

To better compare the performance of different networks, it was important to use
appropriate evaluation metrics. Floating point operations (FLOPs) were used to evaluate
the computational complexity. The number of frames per second (FPS) was used to evaluate
the detection speed, and the mean average precision (mAP) was adopted to evaluate the
accuracy. The mAP can be calculated as follows:

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

APi =
∫ 1

0
P(R)d(R) (5)

mAP =
1
N

N

∑
i=1

APi (6)

TP is a true positive example; FP is a false positive example; FN is a false negative
example; AP is the average accuracy of a certain category, and mAP is the average of APs
in all categories.

5.5. Ablation Experiments

To verify the effectiveness of different methods and submodules introduced into our
network, ablation experiments were carried out in this study. Table 3 shows the results of
the ablation experiments. In the listed models, Model1 could be regarded as a benchmark,
which shows the performance of YOLO v5n without any modification. Model2 replaced the
original backbone network with ShuffleNet v2. Model3 mixed the SE attention mechanism
and ShuffleNet v2. Model4 rebuilt the neck network with depth-wise separable convolution.
Model5 changed the Concat fusion method of PAN structure to the Add fusion method.

The results showed that Model1 achieved the best detection performance. Although
the mAP of Model2 decreased by 3.5% compared with Model1, the model parameters were
reduced by 69.95%. After adding the SE module, the mAP of Model 3 increased by 2.2%.
The model parameters of Model4 were reduced by 23.21% compared with Model3, while
the mAP only decreased by 1.0%. After replacing the fusion method of the PAN structure
with the Add method, the mAP of Model5 increased by 0.7% compared with Model4. The
results of ablation experiments show that ShuffleNet, DWConv, and Add introduced in this
study can significantly reduce the number of model parameters and improve the detection
speed. The SE attention mechanism improves the accuracy with a simple architecture and
a small amount of computation. Eventually, Model5 achieves the best balance between
accuracy and speed.

To demonstrate the effectiveness of the SE attention mechanism, the predicted heat
maps are visualized in Figure 12. The brighter area means that it is important for the
detection result. It can be seen that the heat map, after adding the attention mechanism, can
better focus on the center area of the detected object, which suggests that the SE module
can effectively improve the importance of the object area.
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Table 3. Results of ablation experiments.

Model ShuffleNet SE DWConv Add mAP Parameters FLOPs FPS

Model1 95.7% 1.77 M 4.2 G 22.39
Model2 X 91.2% 0.53 M 1.8 G 29.82
Model3 X X 93.4% 0.59 M 1.9 G 28.61
Model4 X X X 92.4% 0.45 M 1.4 G 31.35
Model5 X X X X 93.1% 0.44 M 1.3 G 32.64

(a) (b)

Figure 12. Examples of predicted heat map. (a): Without attention mechanism; (b): With atten-
tion mechanism.

5.6. Comparison with Other Object-Detection Algorithms

The proposed network is based on the framework of YOLO v5. Five kinds of models
with different sizes are designed in YOLO v5, which are YOLO v5x, YOLO v5l, YOLO
v5m, YOLO v5s, and YOLO v5n. YOLO v5n is the smallest. Consequently, the results of
our network are compared with YOLO v5n and some state-of-the-art lightweight object
detection networks. All algorithms are evaluated on our dataset, rather than directly
copying the results. The training and validation sets are identical in each experiment, and
the evaluation metrics are exactly the same. This ensures that the experimental results are
not affected by training details.

As shown in Table 4, YOLO v5n achieved the best performance in the experiments.
Since our network was designed to improve the detection speed, the accuracy was slightly
decreased compared with YOLO v5n, while the number of model parameters was reduced
by 78.5%. The complexity of the network often reduced the inference speed. For USVs,
considering both detection accuracy and speed, our proposed network was more suitable
than YOLO v5n. The accuracy of our network is clearly better than that of YOLO v4-
tiny [38], PP-PicoDet, Nanodet, and YOLO-Fastest.

As for the detection speed, the proposed network achieved 32.64 FPS when processing
a video on Nvidia Jetson AGX Xavier. Our network significantly improved the detec-
tion speed compared with the YOLO v5n network, which provided a detection speed
of 22.39 FPS. Compared with YOLO v4-tiny and PP-PicoDet, the detection speed was
also higher. Although the YOLO-Fastest network achieved the fastest detection speed, its
accuracy was only 82.3%. In summary, the proposed method can improve the inference
speed to meet the requirements of USVs.
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Table 4. Comparison of different object-detection algorithms.

Method Parameters mAP FPS

YOLO v5n 1.77 M 95.7% 22.39
YOLO V4-tiny 6.05 M 91.0% 11.26

PP-PicoDet 0.78 M 89.8% 27.18
Nanodet 0.39 M 84.6% 34.27

YOLO-Fastest 0.25 M 82.3% 46.32
Ours 0.44 M 93.1% 32.64

Some detection results of the proposed network are shown in Figure 13. It can be seen
from the results that almost all objects could be accurately recognized. Even small targets
such as buoys could be accurately detected. After analyzing the detection results, we know
that our lightweight object network performs well in the actual marine environment.

Figure 13. Visualization detection results on our dataset.

5.7. Detection Results on Singapore Maritime Dataset

To further verify the performance of our network in different marine environments,
experiments were conducted on the Singapore Maritime Dataset. It can be concluded from
the above experiments that YOLO v5n has the best performance and YOLO-Fastest has the
fastest detection speed. Therefore, these two methods are compared with our method on
the Singapore Maritime Dataset. As can be seen from the Table 5, the mAP of our network
achieved 93.9%, which was 12.5% higher than YOLO-Fastest and 4.1% lower than YOLO
v5n. The proposed method exhibited a better balance between accuracy and speed on the
Singapore Maritime Dataset.
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Table 5. Detection results on the Singapore Maritime Dataset.

Method Ferry Buoy Vessel/Ship Speed Boat Boat Kayak Sail Boat Other mAP FPS

YOLO v5n 97.5% 99.5% 98.9% 93.0% 87.7% 97.4% 99.4% 98.9% 96.5% 22.06
YOLO-Fastest 82.8% 92.5% 95.7% 68.9% 87.8% 38.4% 99.5% 82.3% 81.0% 45.98

Our 94.6% 98.7% 98.9% 87.5% 91.3% 86.0% 99.5% 94.8% 93.9% 32.11

The detection results on the Singapore Maritime Dataset are shown in Figure 14. The
dataset contains different lighting and weather conditions. The proposed network had
excellent performance in different conditions, such as sunny, foggy, and night, and could
meet the requirements of USVs to perform tasks in different marine environments.

Figure 14. Visualization detection results on the Singapore Maritime Dataset.

6. Conclusions

In this study, we designed a lightweight sea surface object detection network to meet
the requirements of USVs better. To improve the detection speed, an improved ShuffleNet
v2 based on the SE attention mechanism was used as the backbone network and the
depth-wise separable convolution module was adopted to rebuild the neck network, which
significantly improved the detection speed. Then, the Add fusion method was introduced
to the PAN structure to reduce the number of model parameters and improve accuracy.
Experimental results showed that the model size of our network was reduced by 76.3%
compared with YOLO v5, while the mAP was reduced by less than 3% on the two datasets.
The proposed model achieves a better balance between speed and accuracy. However, due
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to the diversity of samples, there are still deficiencies in some areas that need further study
and improvement.

In the future, the proposed network will be further optimized to reduce the detection
speed and improve the accuracy. In addition, we hope to achieve real-time object detection
on embedded devices with less computing power, such as the Raspberry Pi, which is more
suitable for deployment on USVs.
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