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Abstract: The Prokopos Lagoon is part of the Kotychi Strofilias National Wetlands Park, which is
supervised by the Ministry of Environment, Energy and Climate Change of Greece. The lagoon is
situated at the northwestern coast of the Peloponnese and is protected by the Ramsar Convention. It is
an important ecosystem with ecological services providing habitats for many plants and animals and
essential goods and services for humans as well. No previous relevant studies for the wider wetland
area are available, and given that lagoons are important ecosystems, their diachronic evolution
should be under constant monitoring. Using remote sensing techniques in Geographic Information
System (GIS) environment, alterations in critical parameters could be measured and applied for the
protection of the area. The present study examines the spatiotemporal changes of the water extent
of the Prokopos Lagoon, estimating landscape metrics and several morphometric parameters and
indices related to the geomorphological features of the lagoon for the 1945–2021 period. Moreover, the
adjacent shoreline was studied for each past decade evolution from 1945 to present, and it is discussed
to whether there is a relationship between shoreline changes and the lagoon. High resolution satellite
images and air photos at scale 1:30,000 were used to digitize the shorelines and the polygons of the
lagoon’s surface. Linear Regression Rates (LRR), Net Shoreline Movement (NSM), End Point Rate
(EPR) and Shoreline Change Envelope (SCE) provided by the Digital Shoreline Analysis System
(DSAS) were used to determine the changes. Finally, future shoreline positions for 2021 and 2031 are
estimated, while based on statistic models, we found that in the coastal area, the erosion–accretion
cycle is predicted to be completed in 2031, after almost 86 years since 1945.

Keywords: coastal and lagoon changes; sedimentation; remote sensing; GIS; DSAS

1. Introduction

Coastal lagoons are important ecosystems providing a range of ecological services
related to the supply of food, protection from floods, groundwater recharge, and seques-
tration of contaminants. They represent a transitional zone where freshwater and marine
ecosystems are linked to each other [1]. They consist of shallow water bodies separated
from the sea usually by a sandy barrier, connected at least intermittently to the sea by one
or more restricted inlets and usually oriented parallel to the shore [2–4]. The water uses in
agriculture have influenced lagoons ecosystems and their ecological status. The Convention
on Wetlands is an intergovernmental treaty that provides the framework for national action
and international cooperation for the conservation and wise use of wetlands and their
resources [5]. Lagoons are generally formed in topographically low regions behind coasts.
By monitoring the seasonal evolution of water boundaries, we can understand, conserve
and take advantage of lagoon water volumes. In addition, the connection with the open sea
is critical since its type affects the morphological and ecological conditions of the coastline.
During the winter months, a large amount discharge of fresh- water through the rivers and
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land runoff from the watershed is poured into the lagoon, resulting in a marked change in
the lagoons’ boundaries, while during the summer months, the water area shrinks. These
alterations, in most cases, have a devastating effect on vital natural resources, soil and
water volume. For example, there is a significant change in water salinity that affects the
balance of the ecosystem, as salinity controls the species of flora and fauna [3]. In addition,
large areas of arable land are created or lost with consequences for the local economy.

One of the latest developments in optical remote sensing is the use of the satellite
imagery in Earth observation. It has been proven that satellites are useful tools that
allow for effective and more efficient monitoring of lagoons water bodies around the
world compared to the traditional in situ measurements because of their ability to mon-
itor repeatedly and at multiple scales [6]. Medium- and low-resolution images such as
Sentinel-2 [7–10] and Landsat [11–13], although they are valuable sources of images refer-
ring to the past, are not suitable for shoreline mapping in high-scale studies due to their
high level of uncertainty [14].

Thus, high-resolution satellite images and aerial photography [15,16] have been ap-
plied in order to delineate land from water in several studies [17–20], and they should be
preferred over any other medium or low-resolution data.

According to a classification proposed by [3,21], lagoons are divided into three types
regarding the water exchanged with the sea body: (1) choked, (2) restricted and (3) leaky
lagoons (Figure 1). The type of lagoon is determined by the water exchanges with the
adjacent coastal sea. Chocked lagoons usually connect with a single long narrow entrance
channel. This entrance server as a dynamic filter that eliminates currents and water-
level fluctuations inside the lagoon. Restricted lagoons consist of a large and wide water
body, usually oriented shore-parallel, communicating with two or more inlets. Leaky
lagoons are elongated shore-parallel water bodies, are prone to tides, with many entrance
channels that can be affected by the wave action and the littoral drift so as to close the
channel entrances [3].
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Figure 1. Coastal lagoons sub-divided into (a) choked, (b) restricted and (c) leaky (remodified after [3]).

In the present study, we tried to evaluate the spatiotemporal evolution of the Prokopos
Lagoon using remote sensing techniques for the 1945–2021 period in order to establish
a long-time series dataset of changes in the lagoon area. There are no previous relevant
studies for the wider wetland area, and as mentioned before, lagoons are important ecosys-
tems such that their diachronic evolution should be under constant monitoring. Using
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remote sensing techniques, it is possible to regularly measure the critical parameters and
alterations of which may foretell a significant disturbance in ecosystem balance, and thus,
the authorities would be able to act in time.

The landscape metrics of the lagoon, such as area (km2), perimeter (km) and several
morphometric parameters and indices related to the geomorphologic features, were com-
puted based on the yearly layer of surface water. Moreover, as the lagoon is connected with
the littoral zone through a groove in the north, we identify changes in the shoreline by sta-
tistical methods, provided by the DSAS tool developed by USGS for ArcGIS software. The
Linear Regression Rates (LRR), Net Shoreline Movement (NSM), End Point Rate (EPR) and
Shoreline Change Envelope (SCE) were computed, in order to investigate whether there is
a relationship between Prokopos Lagoon evolution and the littoral zone. In addition, an
attempt to estimate the position of the future shoreline for 10 and 20 years was made.

2. Study Area

Coastal depositional environments of Peloponnese are prone to climatic, sea level,
tectonic, and human-induced changes. Previous studies in the Peloponnese focused on
paleo-environmental [22–24] and palaeoclimatic reconstructions [25], changes in sedimen-
tation [26–28], sea-level changes [29] and high-energy events [30], many of which were in
archaeological settings [31]. The area of the northwest Peloponnese is of particular ecologi-
cal interest, as there are important wetlands such as the Kotychi, Pappas, Lamia, Prokopos
and Kaiafas Lagoons, which are protected by the Ramsar convention on Wetlands (Figure 2).
The Prokopos Lagoon is part of the Kotychi Strofilias National Wetlands Park, which is
supervised by the Ministry of Environment, Energy and Climate Change of Greece. It is a
network of lagoons, swamps and forests along the northwestern coast of the Peloponnese,
situated in the Achaia Prefecture, and it has been protected by the Ramsar Convention
since 1971. It covers an area of about 1500 acres with small depths of about 0.5–1.50 m parts
of the area recognized as Special Protection Areas (SPAs) for birds, in accordance with the
Directive 2009/147/EE, as well as Sites of Community Importance (SCIs) in accordance
with the Directive 92/43.EEC, which has led to the establishment of the European NATURA
2000 Network of protected areas (GR2320011, GR2320001, GR2330007) [32]. It separates
the forest from the sea and is a natural fish farm with sea bass, mullets and eels. It is
surrounded by sand hills, which prevent the waters of the torrents from flowing into the
sea, and thus, the lagoon is created. Many aquatic and transient birds arrive there for
wintering. There is also a bird observatory. The lagoon is connected to the sea through a
groove 2300 m long with a width of 6–7 m and a depth of 0.8 m, while the water of the
Larissos river flows into the lagoon (Figure 2). The area is flat with large sections of zero
altitude, while it is bordered to the north by hills called “Black Mountains” that are 240 m
high (Figure 2). The Prokopos Lagoon is characterized by frequent alterations in depth, thus
forming a variety of habitat conditions. During the winter, the seasonal water is collected
and acts as a feeding ground for waterflow, whereas during the summer, it dries off and
serves as a breeding ground for rare species. A key feature of the area is the sandy and
clayey composition of the soil, as a result of the intense transport and dispersion of sand
from the coast to the interior under the influence of westerly winds. The climate is typical
Mediterranean without particularly high temperatures in summer or low temperatures
in winter, with approximately 300 days of sunshine per year, thus making possible the
observation from optical satellites. The water of the lagoon is seasonally stagnant or slowly
moving, while their exit to the sea is blocked by the coastal dunes [33]. Summarizing all the
above, the Prokopos Lagoon is an important area with unique ecosystems and economical
activities, where an evaluation of the spatiotemporal evolution and its future development
is required.
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study area (Prokopos Lagoon).

3. Materials and Methods
3.1. Data Used

In the present study, the long-term spatiotemporal alterations of the surface water
of the Prokopos Lagoon are studied. We focused on the summer season (June–August),
using a set of aerial images of different years for several decades: 1945, 1960, 1965, 1968,
1975, 1987, 1996, 2000, 2008, 2012, 2014, 2016, 2019 and 2021, with spatial resolution ranging
from 0.25 to 5 m. Different high-resolution datasets of satellites, aerial photography, and
orthomosaics were combined and used to monitor the coastline’s changes in the littoral
area of the Prokopos lagoon. Official datasets of orthomosaics for the years of 1945, 2008
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and 2016 were acquired through the National Greek Cadastre and Mapping Agency with
a spatial resolution of 1.0, 0.5, and 0.25 m, respectively, which are the most accurate
datasets for the Greek territory. We did not perform any further processes on it. Moreover,
Worldview-2 high-resolution imagery (0.50 m spatial resolution) of the years 2012 and 2014
were used. In addition, two datasets of the Pleiades satellite imagery of the years 2019
and 2021 with spatial resolution of 0.50 m were processed and used. For the years 1960,
1971 and 1987, analogue aerial photographs at 1:30,000 scale, accessed through the Hellenic
Military Geographical Service (HMGS) with 60% along the track overlap, were used. For
the year 2000, a panchromatic scene of the Indian Remote Sensing satellite (IRS) with spatial
resolution of 5 m was used. Finally, CORONA declassified images of the years of 1965, 1968,
and 1975 were freely downloaded from the United States Geological Survey (USGS) through
Global Visualization Viewer (GLOVIS) site (http://earthexplorer.usgs.gov/, accessed on
10 November 2021). Satellite images were in the Universal Transverse Mercator (UTM)
projection with zone 34 and WGS 84 datum and were automatically georeferenced to the
Hellenic Geodetic Reference System of 1987 (Greek Grid) using the Leica Photogrammetry
Suite (LPS) of ERDAS Imagine 2014 software, with root mean square (RMS) error lower
than 0.5-pixel size. All images showed 0% cloud cover over the study area, while the tide
height throughout the year was estimated at 0.00 to ± 0.10 m, according to the online
platform (https://www.worldtides.info/, accessed on 10 November 2021), which quite
negligibly affects the shoreline extraction process. All the datasets used in the current study
are presented in Table 1.

Table 1. Datasets used in the current study.

Year Data Type Source Reference System Number
of Photos

Spatial
Resolution

2021 Satellite imagery Pleiades No reference system 1 0.50 m

2019 Satellite imagery Pleiades No reference system 1 0.50 m

2016 Orthomosaic National Greek Cadastre
and Mapping Agency

Hellenic Geodetic Reference
System of 1987 (Greek Grid) 1 0.25 m

2014 Satellite imagery World View-2 No reference system 1 0. 50 m

2012 Satellite imagery World View-2 No reference system 1 0.50 m

2008 Orthomosaic National Greek Cadastre
and Mapping Agency

Hellenic Geodetic Reference
System of 1987 (Greek Grid) 1 0.50 m

2000 Satellite imagery IRS No reference system 1 5 m

1996 Orthomosaic Ministry of Rural
Development & Food

Hellenic Geodetic Reference
System of 1987 (Greek Grid) 1 1 m

1987 Analogue aerial
photography HMGS No reference system 8 1 m

1975 Declassified satellite
imagery USGS No reference system 1 4 m

1971 Analogue air photos HMGS No reference system 8 1 m

1968 Declassified satellite
imagery USGS No reference system 1 2 m

1965 Declassified satellite
imagery USGS No reference system 1 3 m

1960 Analogue aerial
photography HMGS No reference system 20 1 m

1945 Orthomosaic National Greek Cadastre
Mapping Agency

Hellenic Geodetic Reference
System of 1987 (Greek Grid) 1 1 m

http://earthexplorer.usgs.gov/
https://www.worldtides.info/
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3.2. Software Used

In this study, we used the ERDAS IMAGINE 2014 software of Leica Geosystems for
image georeferencing and the ArcGIS 10.8 software for vector generation, editing and map
composition, while for the statistical analysis, DSAS v5.0 was used [34–36]. The DSAS
functionalities have been described in detail in a previous study from our team [37].

4. Methodology

In the present study, we developed two models for controlling the evolution of the
Prokopos Lagoon. The first concerns the spatiotemporal evolution of the lagoon’s shoreline
and the multitemporal calculation of several morphodynamical parameters from 1945
to 2021, while the second concerns the change in the sea–coastal zone adjacent to the
lagoon boundaries.

4.1. Quantitative Morphometric Parameters of the Prokopos Lagoon

We digitized the lagoon’s boundaries manually (on-screen method) for all the years
in the dataset, in a Geographic Information System (G.I.S) environment, using the wetted
boundaries that were visible in the images. A set of quantitative morphometric parameters
(Table 2, Figure 3) introduced by [38] and used by [39], which describe the lagoon’s orienta-
tion and geometry, its horizontal and vertical scales, and the potential sea influence, were
determined. Moreover, the landscape metrics of the lagoon, such as area, perimeter and
sea entrance length for each year, were computed.
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Table 2. Morphometric lagoon parameters.

Parameter Description

Pr =
Σdi

b [3,39]
Restriction ratio (Pr) is the ratio between the total width of the lagoon entrance (Σdi) and the

parallel shore direction (b), Pr∈ (0, 1)

Por =
b
a [3,39]

Orientation or anisotrophy parameter. The lagoon has orthogonal dimensions of the same order if
Pr ≈ 1. It is more elongated in the parallel or perpendicular to shore directions if Pr ≥ 1 or Pr ≤ 1,

respectively (where (a) is the cross-shore length, and (b) is the along-shore length).

Ds = l × (4πA)−0.5 [3,39]
Shoreline development (Ds) is the ratio of the length of (l) the lagoon’s perimeter and (A) is the

surface area of the lagoon

SLAG (A) Lagoon surface (km2)

PERI (l) Lagoon perimeter (km)

DMAX Maximum diameter of the lagoon (km)

DMIN Minimum diameter of the lagoon (km)

DPER Perpendicular distance to the open sea coastline (km)

DPAR Parallel distance to the open sea coastline (km)

CMAR Number of inlets or channels

4.2. Changes in Coastal Sea Zone

Digitizing the shorelines based on multitemporal satellite and aerial images from nine
decades (i.e., 1950, 1960, 1970, 1980, 1990, 2000, 2010, and 2020), we estimated the shoreline
evolution in the coastal sea zone for the period 1945–2021, using the statistical tools of EPR,
NSM, SCE and LRR provided by the DSAS plug-in. Moreover, we estimated the future
shoreline position for 2031 and 2041 using the DSAS forecasting beta tool, which is based
on the Kalman Filter [40,41]. It initializes with a linear regression rate, which is calculated
by using the DSAS. Digital shoreline shapefiles imported in a geodatabase are created
in ArcGIS platform, following the DSAS v5.0 requirements such as the acquisition date,
identity, shape, length, and uncertainty [34]. A baseline demarcates following the buffering
method is the most reliable and accurate method because it takes the same sinuosity shape
of the nearest shoreline [42], while transects were set every 30 m along the coastlines. The
EPR (m/yr) calculates the distance between the oldest and the most recent shorelines in a
given dataset divided by the time elapsed (Equation (1)) and corresponds to the short-term
rates of changes, where y1 and y2 are the distances separating the shoreline and baseline,
and t1 and t2 are the dates of the two shoreline positions. Given the one-meter spatial
resolution that the images have, and the 90% confidence interval that we have set, 10%
equaling to 0.10 corresponds to a frame of uncertainty, and as it is close to 0, the rates
between −0.10 and +0.10 m/yr were considered as a stable coast.

EPR =
y1 − y2

t1 − t2
(1)

According to a recent review study from our team [12], this method is the most
commonly used method by many coastal researchers [43–46]. Moreover, we computed
the LRR (m/yr), which is calculated using a least square regression line from all shoreline
positions along each transect and which is used to observe the trend of the shoreline
evolution. The inclination of the line is the linear regression rate and corresponds to the
long-term rates of coastal changes [47]. The method has the potential to use more than
two shorelines and thus to overlap the EPR’s disadvantages [48–50]. In addition, the
NSM is the net spacing (m) between the old and new shoreline positions for each transect
(Equation (2)).

NSM = [dnew − dold] (±m) (2)

The negative NSM indicates that the lagoon is expanding, the positive NSM indicates
that the lagoon is shrinking, while the SCE computes the biggest distance between the
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shorelines imported into the geodatabase, representing the highest net of coastal evolution
during the study period.

4.3. Shoreline Position Forecasting

Using the integrated forecasting tool of the Digital Shoreline Analysis System (DSAS)
v.5 betta software, the future position of the shoreline (forecasted shoreline) for 10 and
20 years since 2021 was estimated [34]. The tool uses the Kalman filter [40] to forecast a
future shoreline position as developed by Long and Plant [41]. The results achieved using
the forecasting tool are better if the SCE rates of the shorelines used are within a stable low
range (lower than 40 m) [51].

We computed the EPR rates to estimate the shoreline future movement for the
2021–2031 (EPR31) and 2021–2041 (EPR41) periods, and the results were compared to
the respective LRR rates calculated for the period of 1945–2021 (LRR21).

The results were cross-validated using the R-squared rates, the root mean square error
(RMSE), and the mean annual error (MAE) coefficient methods [52–55]. The R-squared
represents the proportion of the variance in the dependent variable, which is explained
by the linear regression model and reveals how well the data fit the regression model. It
can take any value between 0 and 1. The closer to 1, the better the correlation. The MAE
represents the average of the absolute difference between the actual and predicted values
of the residuals in the dataset. MAE values close to 0 indicate that the model is an accurate
predictor [52], while the RMSE measures the standard deviation of residuals [56].

4.4. Uncertainty

Hapke et al. [57] have reported analytical calculations for the shoreline uncertainty
estimation using aerial and satellite images. The uncertainty of shoreline position is
associated with main sources of error. These errors are georeferencing error, digitizing error,
pixel error, and sea level fluctuation error. In the present study, orthomosaics and satellite
images of spatial resolution ranging from 1 to 0.50 m were used, while tide rates were
negligible. In addition, the georeferencing error for the 1960 and 1987 aerial photographs
and satellite images were calculated from the georeferencing and rectifying processes lower
than 0.5 pixels. Based on the previous statements, for the estimation of the shoreline change
rates uncertainty, we set the predetermined confidence level percentage provided by the
DSAS for linear regression (LCI) at 90%. The mean LCI rate is computed at 0.26 m/yr. This
means that the band of confidence around the reported rate of change is ±0.26 m/yr.

Moreover, regarding the shoreline position forecasting, an uncertainty band automat-
ically created through the respective beta tool of DSAS was displayed as a transparent
polygon feature class. The uncertainty band was provided due to past shoreline positions
and assumes that future changes will be similar to past changes. These uncertainties cannot
account for other factors that may influence the position of the shoreline in the future [3].

5. Results
5.1. Morphometric Parameters in the Prokopos Lagoon

The vectorized shorelines of the lagoon’s boundaries for all the years in the dataset are
presented in Figure 4. Using these vectors, we calculated several morphometric parameters
(Table 3) for each year, which describe the lagoon’s orientation and geometry, its horizontal
and vertical scales, and the potential sea influence, while a comparison between them
was attempted.

The restriction rate (Pr) seems to have a stable value of 0.02 (mean value), showing
that the lagoon is isolated from the open sea (Figure 5). It was observed that in the year
1968, a higher value appears. The same happened for the other statistics of the year (SLAG,
DMAX, DMIN), which is probably related to seasonal fluctuations in water volumes. The
orientation parameter (Por) ranges from 1.31 (min) to 2.01 (max), while the mean value is
1.60 > 1, revealing that the lagoon developed as elongated and parallel to the direction of
the shore during the study period (Figure 6).
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Table 3. Morphometric parameters of the Prokopos Lagoon.

Year Pr Por Ds
SLAG (Sq

km)
PERI
(km)

DMAX
(km)

DMIN
(km)

DPER
(km)

DPAR
(km) CMAR

1945 0.02 1.31 1.50 4.97 11.89 3.42 2.24 1.68 2.93 3.00

1960 0.02 1.47 1.40 5.90 12.09 4.34 1.98 1.70 2.92 3.00

1965 0.02 1.46 1.39 4.79 10.75 3.39 2.00 1.71 2.92 3.00

1968 0.04 1.38 1.38 6.04 12.06 3.76 2.05 1.61 2.82 3.00

1971 0.02 1.41 1.42 5.13 11.41 3.42 2.08 1.67 2.93 3.00

1975 0.02 1.40 1.27 4.56 9.64 3.25 2.01 1.68 2.82 3.00

1987 0.02 1.46 1.37 5.24 11.12 3.51 2.00 1.71 2.91 3.00

1996 0.02 1.78 1.39 5.44 11.51 3.58 1.99 1.72 3.55 3.00

2000 0.02 1.74 1.38 5.15 11.09 3.52 2.03 1.71 3.53 3.00

2008 0.02 1.76 1.44 5.00 11.41 3.45 1.98 1.77 3.49 3.00

2012 0.01 1.68 1.51 5.52 12.61 3.61 2.10 1.75 3.52 3.00

2014 0.01 1.75 1.58 5.06 12.61 3.53 2.01 1.77 3.52 3.00

2016 0.01 1.72 1.45 4.19 10.51 3.47 1.99 1.76 3.42 3.00

2019 0.01 2.01 1.50 5.69 12.69 3.65 2.01 1.69 4.05 3.00

2021 0.01 1.74 1.39 5.16 11.16 3.49 2.00 1.73 3.48 3.00
Min 0.01 1.31 1.27 4.19 9.64 3.25 1.98 1.61 2.82
Max 0.04 2.01 1.58 6.04 12.69 4.34 2.24 1.77 4.05

Mean 0.02 1.60 1.43 5.19 11.50 3.56 2.03 1.71 3.25
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In addition, the shore development parameter (Ds), which indicates the shape of the
lagoon’s shoreline in comparison to the circumference of a circle whose area A is equivalent
to that of the lagoon’s, ranged from 1.27 (min) to 1.58 (max), while the mean value is 1.43
(Figure 7). Rates equal or close to a value of 1 means that the lagoon’s shape is closer to
a circle.
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Moreover, regarding the lagoon water surface area fluctuations (SLAG-index), the
minimum rate is 4.19 sq. km, and the maximum rate is 6.04 sq. km, while the mean rate is
5.19 sq. km. The enhanced lagoon water surface area for the study years shows that this
parameter is almost stable and is close to 5 sq. km in general (Figure 8—red line). A similar
trend to the lagoon perimeter index (PERI) is observed in Figure 9, where the minimum rate
is 9.64 km, and the maximum rate is 12.69 km, while the mean rate is 11.50 km. In addition,
the multitemporal ratios of change in the lagoon area (DSLAG) and perimeter (DPERI)
during the study period are presented in Figure 10. The statistics reveal that there have
been frequent changes over time. For instance, during the periods 1945–1960, 1965–1968,
and 2016–2019, the most significant changes in the water surface occurred (SLAG-index)
with rates of −18.79%, +26.15%, and +35.80%, respectively (Figure 10). Moreover, in the
periods 1971–1975, 1975–1987, 2014–2016, and 2016–2019, relevant changes to the lagoon’s
perimeter (DPERI) took place, with rates of −15.51%, +15.40%, −16.65% and +20.75%,
respectively (Figure 10).
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The maximum diameter of the lagoon ranges from 3.25 km (min) to 4.54 km (max),
while the mean rate is 3.56 km. The respective rates corresponding to the minimum
diameter of the lagoon are 1.98, 2.24 and 2.03 km, respectively. Finally, the rates of the
perpendicular distance to the open sea coastline (DPER) range from 1.65 km (min) to
1.77 km (max), while the mean rate is 1.71 km. The respective rates of the parallel distance
to the open sea coastline (DPAR) range from 2.82 km (min) to 4.05 km (max), while the
mean rate is 3.25 km.
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The multitemporal fluctuations in the lagoon morphology related to size, such as sur-
face (SLAG), perimeter (PERI), and diameter (DMAX, DMIN), are presented in Figure 11.
It is characteristic of the expansion of the water surface of the lagoon during the period
2016–2019, which corresponds to +35.80% (DSLAG) and +20.74% (DPERI), and its shrink-
age during the last 3 years (2019–2021), corresponding to −9.31% (DSLAG) and −12.06%
(DPERI). In addition, the southern region of the lagoon is constantly shrinking and ex-
panding during the 1945–1987 period, while from 1987 to 2016, it seems that the water
surface has been stabilized. From 2016, the fluctuations of the surface began to appear
again, proving that the area is in a vulnerable hydrodynamic regime currently.
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of 2021.
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5.2. Littoral Zone Evolution

The shoreline vectors of the coastal zone, extracted from all the available images, show
that the coastline adjacent to the Prokopos Lagoon changes considerably during the period
from 1945 to 2021. We estimated the rates of change for every past decade (1950, 1960, 1970,
1980, 1990, 2000, 2010, and 2020), based on the respective available data using the EPR
method (Figure 12). The shoreline change rate (m/yr) for each past decade is presented
in Table 3.
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According to Figure 12 and Table 4, the general pattern of the coastal zone evolution
was divided into five stages.

(a) The stable stage (1945–1960) as well as the mean EPR rate is 0.00 m/yr, while the
maximum accretion rate is +1.49 m/yr, and the mean accretion rate is +0.40 m/y, while
the maximum and the mean erosion rates are −2.24 and −0.67 m/yr, respectively,

(b) The rapid accretion stage (1960–1971) shows that the mean EPR rate is +1.13 m/yr, while
the maximum accretion rate is +5.00 m/yr and the mean accretion rate is +1.64 m/yr,
and the maximum and the mean erosion rates are −4.53 and −1.13 m/yr, respectively.

(c) The rapid erosion stage (1971–1987), corresponds to a mean EPR rate of −0.14 m/yr
and a maximum and mean accretion rate of +2.92 and +0.49 m/yr respectively, while
the maximum and the mean erosion rates are −1.43 and −0.50 m/yr, respectively.

(d) The rapid accretion stage (1987–1996) corresponds to a mean EPR rate of +0.34 m/yr
and to a maximum and mean accretion rate of +3.24 and +1.07 m/yr respectively, while
the maximum and the mean erosion rates are −2.97 and −1.22 m/yr, respectively.



J. Mar. Sci. Eng. 2022, 10, 931 15 of 22

(e) The long erosion–accretion stage (1996–2008 and 2008–2021) is still active. During
these two seasons, the mean EPR rates are−0.52 and−0.71 m/yr, while the maximum
and mean accretion/erosion rates are similar in Table 3. This multiple variation of
shoreline movement over time does not appear to be related to the corresponding
changes that occurred on the shoreline of the lagoon. For instance, in the stable stage
of the 1945–1960 period, the water surface of the lagoon was expanded at +19%, while
in the rapid accretion stage of the 1960–1971 period, the lagoon’s surface was shrunk
at −13%. In both cases, the shoreline showed a different trend in stability (0.00 m/y)
and accretion (+1.13 m/y), proving that shoreline movement is not related to the
lagoon’s water surface volume.

Table 4. Multitemporal shoreline change rate EPR (m/yr) in the Prokopos Lagoon.

Period 1945–1960 1960–1971 1971–1987 1987–1996 1996–2008 2008–2021

max+ 1.49 5.00 2.92 3.24 1.36 1.00
average+ 0.40 1.64 0.49 1.07 0.43 0.41
average− −0.67 −1.13 −0.50 −1.22 −1.12 −1.02

min −2.24 −4.53 −1.43 −2.97 −3.24 −2.77
mean 0.00 1.13 −0.14 0.34 −0.52 −0.71

For the 1945–2021 period, we estimated the rate of shoreline change (m/yr) using the
EPR and the LRR methods. The LRR method considers all 15 years of shoreline-available
positions, whereas the EPR considers only the youngest (2021) and the oldest (1945). Thus,
the LRR method seems to be more reliable than the EPR (Figure 13).
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Figure 13. Erosion and accretion rates along the Prokopos Lagoon sea zone.

The LRR is a statistical tool and usually tends to show fluctuations regarding the
rate of shoreline change relative to the EPR rate, as intermediate coastlines can affect the
result. In the study area, significant fluctuations in the mean rate of change have been
noticed, which are estimated at +0.34 m/yr (accretion) and −0.25 m/yr (erosion), while the
maximum accretion and erosion rates are +0.60 and −0.82 m/yr, respectively.

Conversely, the respective rates based on the EPR method are +0.18, −0.26, +0.50 and
−0.93 m/yr. In addition, we tried a linear correlation per transect between the EPR and the
LRR methods in order to validate the results (Figure 14). The R2 value from EPR vs. LRR
was obtained to be 0.925, revealing good correlation among the two methods, which proves
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that the factors that affect the position of the coastline remain the same as the previous
ones, and thus, the statistics follow the facts.
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Figure 14. Correlation of EPR and LRR change rates for all transects.

The net shoreline movement (NSM), as the EPR, considers only the youngest (2021)
and the oldest (1945) shorelines and computes their distance for each transect. It differs
from the EPR, as it is not a rate. In Figure 15, the NSM values are plotted with the respective
SCE rates, as they are closely related. The NSM shows that the southern (transects 0–60)
and the northern (transects 200–260) parts are in a state of erosion while the central segment
(transects 60–200) is under accretion. The distance between the two shorelines significantly
varies with a mean accretion value of +13.37 m and a mean erosion value of −18.90 m. In
addition, the maximum rates of erosion and accretion are−68.25 and +37.13 m, respectively.
The shoreline change envelope (SCE) highlights the greatest distance in each transect
among all the shorelines imported into the geodatabase representing the highest net of the
coast evolution not related to the shoreline’s dates. The result reveals that during the study
period, the mean SCE value is 46,13 m, while the trend of distance decreases from south to
north (transect 1 to 260).
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5.3. Shoreline Position Forecasting

As most of the SCE values are in an approximately constant range of 30 to 50 m, the
DSAS forecasting method can provide reliable results [51] in conjunction with a high degree
of correlation among the EPR and LRR rates [58].

Figure 16 shows that the general trend calculated via the LRR rates of the 1945–2021
period (LRR21—green line) is followed by the forecasted EPR rates of the 2021–2031 and
2021–2041 (EPR31 and EPR41), but at a higher rate of declination. In addition, as the period
of 20 years is quite long, there is a more restrained appearance of change rates (purple line)
in comparison to the line corresponding to a 10-year period (blue line). The prediction for
the 2041 shoreline position is precarious, as there are many interval years without data, and
thus, it is taken into account only for statistical reasons and will have to be re-evaluated over
the years. In addition, the future shoreline of the 2041 position estimation is an automatic
process of the DSAS, and as the coastline is a dynamic ecosystem characterized by frequent
environmental disturbances and fluctuations, it is quite difficult for the natural factors that
affect the future position of the coastline to remain stable for such a long period starting
from 2021.
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Statistics such as the maximum, minimum, and mean EPR rates based on the forecast-
ing of shorelines revealing erosion and accretion are presented, and they are compared to
the respective LRR21 rates (Table 5). We found that the mean rate of change for 2021–2031
is predicted at +0.40 m/yr, while for 2021–2041, it is estimated at +0.20 m/yr. According to
the forecast models, it seems that low accretion in general is expected to prevail in the area
in the coming years.

In order to validate the results described above, we followed a linear regression
analysis, and the statistical rates such as R-squared, RMSE, and MAE were estimated [59].

The R-squared correlation coefficient was 0.82 and 0.92 for the 2021–2031 and 2021–2041
periods, while the RMSE and the MAE were estimated at 0.31, 0.14, 0.19 and 0.09 m/yr,
respectively (Table 6).
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Table 5. Comparison of the forecasted EPR rates and LRR21.

Rates
EPR31 (m/yr) EPR41 (m/yr) LRR21 (m/yr)

2021–2031 2021–2041 1945–2021

max+ 1.42 0.86 0.61
average+ 0.69 0.48 0.34
average− −0.49 −0.38 −0.25

min −1.12 −1.00 −0.82
mean 0.40 0.20 0.12

Table 6. The estimated errors of the EPR correlation for the 2021–2031 and 2021–2041 periods
compared to the 1945–2021 LRR rates.

Estimated Errors EPR31/LRR21 EPR41/LRR21

R2 0.82 0.92
RMSE 0.31 m/yr 0.14 m/yr
MAE 0.19 m/yr 0.09 m/yr

6. Discussion

In the present study, remote sensing techniques contributed to the computation of
several critical parameters that managed the Prokopos Lagoon’s water surface fluctuations
for the 1945–2021 period. These parameters describe the lagoon’s orientation and shape,
its horizontal and vertical scales, and the potential sea influence. Moreover, using the
statistical tools of the DSAS v5 beta software, an attempt to estimate the position of the
future shoreline from 10 to 20 years beyond 2021 was made in order to investigate the
impact of the lagoon’s fluctuations in the evolution of the shoreline. The specific process
was mandatory for the area, as there are no relevant previous studies.

As already mentioned, the Prokopos Lagoon is an important wetland situated in
the north Peloponnese, which is protected by the Ramsar convention and significantly
influences the local economy. Thus, the diachronic evolution of several critical parameters
of the lagoon should be under constant monitoring.

The results reveal that for the last 3 years (2019–2021), the lagoon has yielded significant
shrinkage corresponding to−9.31% and−12.06% of the surface and perimeter, respectively.
It seems that the ecosystem has started to be destabilized and that it is vital to monitor and
measure these parameters in the coming years.

Regarding the evolution of the coastline, its development was studied for each past
decade, and it was found that its change is not related to the respective episodes of change
of the lagoon’s surface, which were expected, as the canal that connects the sea with the
lagoon has a length of about 2.5 km.

In addition, the possibility of a correlation between the change in the littoral shoreline
and the change in the lagoon’s water surface was examined. In Table 7, multitemporal rates
of change (%) in the water surface of the Prokopos Lagoon are presented.

Table 7. (%) Multitemporal rates of changes in the extension of the Prokopos Lagoon.

Periods Area Change (Sq. km)

1945–1960 19%
1960–1971 −13%
1971–1987 2%
1987–1996 4%
1996–2008 −8%
2008–2021 3%

During the period of 1945–1960, the lagoon’s ecosystem expanded at +19% and the
corresponding process in the coastal zone was mainly from the deposition, with a mean
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rate of +0.40 m/yr. Moreover, for the 1960–1971 period, the lagoon’s water surface shrunk
at a rate of −13%, and the deposition remained as the dominant littoral process, with a
mean rate of +1.64 m/yr. Furthermore, for the following periods (1971–1987, 1987–1996,
1996–2008, and 2008–2021), the water surface showed several negligible fluctuations of
+2%, +4% and −8%, respectively, which are not able to explain the fact that the shoreline
revealed erosion and accretion regimes during these periods. It was proven that the adjacent
shoreline development from 1945 to present is not related to the respective episodes of
change of the lagoon’s surface. These changes are due to the prolonged drought observed
during this period.

The shoreline future movement for 2021–2031 (EPR31) and 2021–2041 (EPR41) was
estimated. The mean rate of change for 2021–2031 is predicted at +0.40 m/yr, while for
2021–2041, it is estimated at +0.20 m/yr. According to the forecast models, we found that it
is more possible for the erosion–accretion prediction cycle to be completed in 2031 rather
than in 2041, almost 86 years since 1945.

Moreover, it was revealed that the coastal zone followed five stages of evolution: the
stable stage (1945–1960) with a mean EPR rate of 0.00 m/yr, the rapid accretion stage
(1960–1971) with a mean EPR rate of +1.13 m/yr, the rapid erosion stage (1971–1987) with a
mean EPR rate of −0.14 m/yr, the rapid accretion stage (1987–1996), with a mean EPR rate
of +0.34 m/yr, and the long erosion–accretion stage (1996–2008 and 2008–2021), which is
still active. During these two seasons, the mean EPR rates are −0.52 and −0.71 m/yr.

Conversely, studying the entire period from 1945 to 2021, the NSM values show that
the southern and the northern parts are in a state of erosion while the central segment
is under accretion. The mean accretion value is +13.37 m, and the mean erosion value is
−18.90 m, while the maximum rates of erosion and accretion observed were −68.25 and
+37.13 m, respectively. The mean rate of change was estimated at +0.34 m/yr (accretion)
and −0.25 m/yr (erosion), while the maximum accretion and erosion rates were +0.60 and
−0.82 m/yr, respectively.

Such studies are limited worldwide [60,61], and although there are more than 400 coastal
lagoons in the Mediterranean region [62], there are no relevant studies in the literature
investigating the impact of the sea to the lagoon surface or vice versa, including the wider
area of west Peloponnese. Moreover, there are several studies in the broader area regarding
the spatiotemporal changes of the lagoon’s sedimentation [26,63,64] but there are no such
studies regarding the relationship between the shoreline changes and the Prokopos Lagoon
spatiotemporal expansion changes for the 1945–2021 period.

In the future, we aim to apply the current method to the other lagoon ecosystems of
western Peloponnese and especially to those that are adjacent to the sea, to thus create a
valuable database with spatiotemporal parameters that reveal the alterations of the lagoons’
surfaces in order for the authorities to be able to act in time when the ecosystem indicates
that it is losing balance.

7. Conclusions

This study monitored the spatiotemporal changes of the surface water of the Prokopos
Lagoon. Several morphometric parameters and indices related to the geomorphologic
features were calculated and analyzed. According to the results, the Prokopos Lagoon is
isolated from the open sea (Chocked), elongated in the parallel-to-shore direction. The
adjacent shoreline development was studied from 1945 to the present and found that its
changes are not related to the respective episodes of change in the lagoon’s surface. More-
over, based on statistical models, we found that in the coastal area, the erosion–accretion
cycle is active and is predicted to be completed in 2031, almost 86 years since 1945.

Given that lagoons are important ecosystems, their diachronic evolution should be un-
der constant monitoring. Using remote sensing techniques, alterations in critical parameters
could be measured and applied for the protection of the area. Remote sensing techniques
in conjunction with DSAS v5.0 could provide reliable results regarding the monitoring of
the alterations in critical parameters that have affected the long-term shoreline changes at



J. Mar. Sci. Eng. 2022, 10, 931 20 of 22

the Prokopos Lagoon coast as well as an overview of the erosion–accretion that occurred
for the last nine decades. In addition, the future seaside shoreline trend could be measured
in an efficient way.
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