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Abstract: Masonry arch bridges form an essential part of existing transport infrastructure around the
world, including mainland Europe and the northeastern US. Recent extreme flood events highlight
that masonry arch bridges spanning watercourses are vulnerable to flood-induced hydrodynamic
and debris impact loads. When the flow interacts with the bridge superstructure, with or without
discrete floating debris, a complex interaction is observed. This paper presents both experimental and
numerical studies to investigate this complex phenomenon, including fluid–structure and structure–
structure interactions. A typical single-span masonry arch bridge and large woody debris representing
a tree log are investigated. Experimental observations from a scaled hydraulic model, with and
without debris in the flow, are first presented for the case where the abutment of the bridge is fully
submerged. Next, the capability of the numerical method smoothed particle hydrodynamics (SPH) in
simulating the hydrodynamic behaviour and debris impact observed in the experiment is discussed.
Following this, both hydrodynamic and debris-induced pressure–time histories on the bridge are
obtained using the SPH model. Results reveal that the debris impact leads to a significantly more
localised load on the bridge compared to the situation with hydrodynamic load only.

Keywords: masonry arch bridges; flood events; open channel flow; discrete debris impact force; drag
force; pressures; SPH

1. Introduction

Bridges are an essential part of our infrastructure and can be damaged or destroyed
by flooding, as observed in many places around the world. Floods caused damage to or
collapsed 28 bridges in 1952 in Lynmouth, UK, 233 bridges in 1976 in Japan and 73 bridges
in 1985 in the US [1]. The 2002 flood in Central Europe caused damage and/or collapse of
several hundred bridges in Germany [2] and the Czech Republic [3]. Serious flood damage
to bridges was seen in Boscastle, UK, in August 2004 [4], in the US in August 2005 after
Hurricane Katrina [5], in Cumbria, UK, in November 2009, in Afghanistan in 2012 [2] and
in the UK in December 2015 after storms Desmond and Eva [6].

Masonry arch bridges are among the oldest bridge types and date back several thou-
sand years. Although masonry arch construction became less popular towards the early
part of the 20th century due to associated labour costs and the emerging technology of
steel and concrete, this bridge form still constitutes a vital part of transport infrastructure
networks worldwide. It is estimated that between 200,000 and 500,000 masonry arch
bridges are in daily use in mainland Europe [7,8]. Approximately 35,000 in Germany, 78,000
in France, 56,800 in Italy and 17,867 in the UK are in the use of railway networks alone;
the overall number is approximately 40,000 in the UK [9]. Existing masonry arch bridges
show good performance under normal service loads; however, extreme environment load-
ing with possible deterioration and ageing over time may limit the performance of these
bridges spanning watercourses. A number of masonry arch bridges have been damaged or
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destroyed during the extreme flood events in the last two decades; some examples in the
UK are given by Majtan et al. [6]. The damage and failure of masonry arch bridges causes
disruption to transportation networks, communities and services; for example, Figure 1
shows a brickwork road bridge in Derbyshire, UK which was closed due to damage (ring
separation and bulging of the spandrel wall) and requires remedial works to continue
its service.
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Figure 1. Downstream elevation of a single-span brickwork arch bridge spanning Bollinhurst Brook
in Lyme Park, Cheshire, UK, with woody debris located upstream and damage at the spandrel wall
and arch barrel (image by Eda Majtan).

To assess these existing bridges in flood risk areas, the flood-induced loads on masonry
arch bridges need to be quantified. These hydraulic actions at existing highway bridges
are considered by the UK’s National Highways’ assessment code (CS 469, formerly BD
97/12) [10,11]; however, the main focus is the identification of scour effects and associated
substructure behaviour of the bridge. Diehl [12] performed a detailed study to predict
debris accumulation at bridges and US NCHRP report 445 [13] investigated debris forces
on bridges with different drag coefficients associated with the flow–blockage ratio. How-
ever, none of these guidance or design codes [10,14,15] focused on masonry arch bridges
and no specific equations for calculating forces on this bridge form are available [16].
Flood-induced loads on the structural components of a masonry arch bridge (abutment,
arch barrel, spandrel wall) are different from those of other bridge forms, considering its
geometry and structural behaviour.

Flood-induced loads on a masonry arch bridge can be categorised as: horizontal hydro-
static force, horizontal hydrodynamic (drag) force, hydrodynamic uplift force, hydrostatic
uplift force where the arch barrel and backfill are submerged and floating debris impact
and accumulation (Figures 1 and 2). Guidance on calculating hydrodynamic (drag) and
uplift forces on the superstructure with simple geometry can be found in Australia’s bridge
design standard [15], the UK’s National Highways’ design code [14] and the US’s Federal
Highway Administrations’ report [17]. Since a masonry arch bridge crossing a waterway is
either partially or entirely submerged by the water during flood events, the bridge is subject
to a hydrostatic uplift force, i.e., a buoyancy force depending on the submergence ratio.
The buoyancy force mainly equates to the differences in hydrostatic pressures exerted on
the bottom and top of the deck submerged in water that can be calculated in relation to the
displaced volume of the submerged deck and density difference. As Robertson et al. [18]
concluded for concrete decks, submergence in water decreases the effective self-weight of
the structural members by nearly 50%. This type of reduction in the effective self-weight
due to buoyancy results in decreasing the compressive stresses of the main load-carrying
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member of masonry arch bridges, the arch barrel. Considering this change in the stress
state, the bridge may become more prone to failure.
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Figure 2. Debris accumulation at the bridge cutwater (the streamlined head of the bridge pier) in the
River Wye in Derbyshire, UK (Image by Eda Majtan).

In addition, single or multiple pieces of large floating debris and accumulations of
floating debris (e.g., leaves, wood and other objects lighter than water) around masonry
arch bridges in rivers are an important problem [19,20]. This may result in a decrease in
the capacity of bridge openings, thus causing an increase in the backwater upstream of the
bridge, as well as the distribution of the hydrodynamic forces on the bridge superstructure
with increase in water level. In addition to these increased lateral forces on the structural
components of bridges with the presence of the debris, the debris impact loading on the
structures may be highly transient since they are occurring in a shorter time compared to the
hydrodynamic forces. Although the importance of this loading type has been emphasised
by the studies associated with tsunami-induced loads on other structures [21–23] and the
first numerical study performed by Majtan et al. [6] to investigate the flood-induced loads
on arch bridges spanning watercourses, there is no experimental study in the literature
of this nature. Considering this gap in the assessment codes as well as the research
literature, the present study explores these flood-induced loads on a single-span masonry
arch bridge both experimentally and numerically. The work presented here forms part of a
more extensive experimental campaign, the full extent of which, including the dynamic
characterization of the test assembly, is discussed in a forthcoming separate publication.

To decide an optimal numerical modelling approach in relation to this complex phe-
nomenon including both fluid–structure and structure–structure interaction, most common
mesh-based (Eulerian) and meshless (Lagrangian) computational fluid dynamics (CFD)
methods are discussed herein. Three mathematical models of mesh-based CFD methods,
finite difference method (FDM), finite volume method (FVM) and finite element method
(FEM), are employed in the literature depending on the target application, with different
initial conditions, boundary conditions and the set of partial differential equations, etc.
Although the FDM can obtain higher-order accuracy without any truncation errors on
structured meshes, it cannot be employed in most engineering problems with complex ge-
ometries [24]. The FEM is the most commonly used method for solid mechanics problems,
and it has been successful in estimating tsunami-induced hydrodynamic loads on bridge
decks [25], along with the particle finite element method (PFEM) [26]. However, the method
suffers from the drawbacks of mesh generation and remeshing required for complex highly
nonlinear flows. Xiang et al. [27] recently applied the Arbitrary Lagrangian-Eulerian for-
mulation of the FEM to investigate tsunami-induced wave impact on bridges; however,
mesh generation may still be problematic, with a complex geometry. Although the FVM
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was successfully applied in fluid mechanics, modelling the interface and/or interfacial
phenomena, i.e., multi-phase flows, free-surface flows and fluid–structure interaction, is
the most challenging part [28].

To treat the interfacial flows that exist in multi-phase phenomena, a volume-of-fluid
(VOF) method was developed [28]. This method aims to track the motion of the free
surface in time which still requires a CFD solver (i.e., FVM, FEM) to solve differential
equations. Although this approach was usually used by various computer codes to solve
fluid–structure interaction problems where free surface is involved, such as ANSYS Fluent,
FLOW-3D and OpenFOAM [29–35], tracking a floating debris and associated structure–
structure interaction phenomena continues to be a challenge. The difficulties of applying the
conventional mesh-based methods resulted in developing meshless particle (Lagrangian)
methods in order to tackle the problems with a deformable boundary, moving interface
and free surface. The lattice Boltzmann method (LBM) calculates a fluid density on a lattice
with streaming and relaxation (collision) processes rather than solving Navier–Stokes
equations [36,37]. The method can treat the interfacial flows easily with its natural ability,
whereas the reliability of the physical models for inter-particle force representation and
flow viscosity is the main concern. Additionally, modelling interfacial jump conditions with
the presence of surface tension, high viscosity ratio and density is challenging [28]. The
moving particle semi-implicit (MPS) and smoothed particle hydrodynamics (SPH) methods
obtain a realistic physical modelling of interface problems in the meshless particle methods.
Although both methods approximate the strong form of the partial differential equations
based on integral interpolants, the MPS method employs a simplified differential operator
depending on a local weighted averaging procedure, rather than the gradient of a kernel
function used in the SPH method. Another difference between the methods is the solution
process of partial differential equations. The MPS uses a semi-implicit prediction-correction
approach, compared to the fully explicit approach widely used in SPH. Though both
methods can be employed on interfacial problems successfully [38,39], SPH has received
more attention by researchers, hence offers more advanced methodologies appropriate for
the present research, e.g., open boundary conditions and a floating object. Although the
standard SPH method has shortcomings similar to the other CFD methods, e.g., simulating
the interface with large ratios of density/viscosity discontinuity and approximating flow
variable accurately as an optimised point between the numerical diffusion and interpolation
accuracy, the recent modifications, such as delta-SPH, particle shifting and kernel gradient
corrections, enable tackling these problems by evaluating the accuracy, convergence and
efficiency of the SPH method [40–44]. It should also be noted that whilst the present study
focuses on a discrete piece of floating debris impacting a structure using a one-way coupling,
previous studies have explored interactions between multiple debris in a flow field as well
as fixed structures by coupling various numerical approaches, e.g., discrete element method
and FEM [39,45–49]. The authors’ wider research investigates the structural response of
masonry arch bridges subject to these loads.

Considering the gap highlighted above, this paper first presents an experimental
investigation of flood-induced hydrostatic, hydrodynamic and discrete floating debris
(representing a tree log) impact loads on a single-span arch bridge (1:10 scale) where the
abutment was fully submerged. Then, the capability of the SPH model to capture this
complex phenomenon is evaluated in terms of velocity, water elevation and force using
the open-source DualSPHysics v5.0 code. Following this, spatial pressure distributions
on the bridge and associated pressure–time histories in the cases with and without debris
are obtained using the SPH model. Finally, the main findings and limitations in both the
experiment and the SPH numerical model are discussed.

2. Experimental Investigation
2.1. Experimental Setup

The hydraulic experiments were carried out using an existing recirculating flume at
the University of Manchester. The flume is 4.88 m long, 1.22 m wide and 0.61 m high
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without any slope, as shown schematically in Figure 3. The flume test section was kept to
a section of the flume 2.88 m in length between location V1 and the outlet. A perforated
metal plate at the inlet was used to eliminate possible unwanted objects in the test area,
whilst a rectangular piece of wood acted as the weir at the outlet. The arch bridge was
modelled with 1:10 scale in the experiment with a 0.8 m span, 0.25 rise-to-span ratio and
0.4 m width in the flow direction. Similar to previous hydraulic experiments [50,51], a fairly
rigid and transparent arch bridge was constructed using 12 mm thick acrylic Perspex. It
should be noted that in the corresponding SPH model, the arch is assumed to be fully rigid;
this is obviously a simplification. Considering the presence of the debris and unknown
location of the debris impact, the bridge was suspended keeping an approximately 5 mm
gap between the flume surface and bridge bottom (Figure 3a). Similarly, the abutment
dimension perpendicular to the flow direction was 0.205 m to keep the gap of 5 mm between
the flume side wall and bridge side wall, so that the bridge was allowed to freely move
in the flow direction under hydrodynamic and debris impact forces (Figure 3b). In theory,
the bridge is free to move in the direction of the flow; however, the load cell immediately
adjacent to the downstream face is fixed in order to measure the reaction force resulting
from the hydrodynamic flow and debris impact on the bridge. The equivalent full-scale
bridge height of 4.5 m was decided in consideration of common rise-to-span ratios [52],
backfill depth at the crown, as well as the parapet wall height of the bridge. With a 1:10
scale model, this equates to 0.45 m height of the modelled bridge. To represent a tree log in
the rivers (Figure 2), a cylindrical debris was designated based on the span length of the
bridge and the ratio between the length and diameter of the debris with 0.059, based on
several studies [53–55]. In reality, tree logs are likely to incorporate branches, etc., which
may have an effect on behaviour; however, this is outside the scope of the present study.
Locations V1–V9 in the flume test section (Figure 3a) represented the measurement points
for both velocity and height. Froude scaling was used throughout the experiment [56].
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To suspend the bridge, four elbow joiners were used where movement was only
allowed in the flow direction and restraint provided in other directions (Figure 4). Behind
the bridge, on the downstream side, another beam was mounted to carry the steel plates
and load cells used. The locations of the steel beams and load cells were parallel with
respect to the longitudinal centreline of the bridge. The most important point here was
to keep the distance between two aluminium beams used for the bridge and load cells
the same.
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2.2. Test Cases and Data Acquisation

The hydraulic conditions in the experiments were set based on the flume capacity in
terms of the flow rate where the water depth at the V1 location was 0.208 m for the fully
submerged abutment, and the free-surface velocity was kept as approximately 0.2 m/s
corresponding to the flow rate of 0.0436 m3/s. This was the main limitation of the experi-
ment, where the geometrical similarity based on Froude scaling was successfully achieved,
whilst the kinematics of a real flooding scenario could not be replicated, considering the
free-surface velocity of 0.67 m/s in the prototype compared to those observed during
the real floods, e.g., approximately 3.14 m/s at Pooley Bridge, 3.2 m/s at Eamont Bridge,
4.2 m/s at Brougham Bridge and 4.3 m/s at Sprint Bridge during the 2015 UK flood
events [57]. The focus of the experiment was to obtain the ratio between the loads without
and with debris (Table 1), as well as to provide data for validation purposes detailed
in Section 3. Further investigation, e.g., possible yaw and overturning moment mea-
surements may be performed in future studies [58]. The most common floating debris
type in watercourses [6], a tree log, specifically English Brown Oak with a density of
905 kg/m3 (wet) was used in case 2. The length and diameter of this cylindrical debris were
0.84 m and 0.05 m representing a tree log with the diameter–length ratio of 0.059. The initial
debris orientation was defined as the orientation of debris at V2 location representing 1.5 m
upstream of the bridge with regard to its centre of mass, where the long axis of the debris
was parallel to the bridge span. It should be noted that a set of 5 experimental runs for
each case was performed as a part of repeatability analysis and further discussions on the
accuracy of the measurements are provided in the following section.

Table 1. Details of case studies.

Case Flow Depth at V1 (m) Flow Rate (m3/s) Fr Re Debris

1 0.208 0.0436 0.120 35,724 -
2 0.208 0.0436 0.120 35,724 Tree log
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The streamwise, vertical and spanwise velocities of water were measured at locations
V1–V9 using Nortek Vectrino Acoustic Doppler Velocimeter (ADV). The sampling rate of
200 Hz was employed for all velocity measurements considering previous experiments
performed using the same flume with a similar hydraulic condition [59]. Additionally,
it should be noted that a fast sampling rate may cause higher variability in the velocity
measurement, with an increase in the standard deviation [60]. To obtain an accurate velocity
measurement at the free-surface level without fluctuation, glass microspheres were added
at 1 m upstream of the measurement point. To optimise the time period for recording
velocity, as well as the accuracy, a time period of 60 s was chosen equating to 12,000 total
velocity measurements with 200 Hz for each case with maximum difference of 2.52% in the
results, compared to a longer time period of 120 s. The input module with two channels,
the NI-9218, was connected to the NI Data Acquisition (DAQ) system not only to read but
also to adapt the load cell outputs comprising full-bridge strain gauges. An NI cDAQ-9178
driver was used in this experiment. After setting up all data-logging devices, the DAQ
system was connected to the computer where the LabVIEW software was programmed
accordingly. With the presence of debris resulting in short-time debris impact forces on
the bridge, the sampling frequency needed to be at least 500 Hz to be able to capture these
short-time impulsive forces, based on the preliminary SPH numerical results [6]. Following
the Nyquist–Shannon sampling theorem, the sampling frequency was kept higher than the
minimum required to retain all information without missing any data [61]. A sampling rate
of 2000 Hz was therefore employed in the experiments. Although the sampling rate could
have been increased within the programmable LabVIEW software, this optimal value was
used with regard to the amount of required memory with higher sampling rate.

The debris motion was recorded using a Panasonic Lumix DMC-TZ71 camera at the
side of the flume (Figure 5a). Videos of each test run were recorded at 50 frames per second
(fps) with a resolution of 1920 × 1080 pixel. A video editor (Movavi) was used to adjust the
frame rate and resolution if necessary, as well as to capture debris motion. Every 0.1 m with
the total of 0.3 m upstream of the bridge was marked (Figure 5b) in order to estimate the
debris velocity at the impact location by using the time from the videos recorded. Although
no bias was observed in the flume based on preliminary experiments, the debris orientation
at the impact location varied in the tests of each case. This might be due to human errors,
considering no mechanical system was used for releasing the debris inside the water flow.
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2.3. Results

This section presents the results obtained from the experiment. The results in relation
to kinematics of the water flow are first discussed with the water level and depth-averaged
velocity at these V1–V9 locations. Then, the dynamics of the flow and debris carried by the
flow around the bridge is examined with the force values. Further discussion on the results
of related uncertainty and statistical analyses is also provided in the associated sections.
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2.3.1. Flow Depths and Depth-Averaged Velocity Profiles

The free-surface and flume bottom levels were measured using a water depth gauge so
as to obtain the water depth at the lateral centreline of the locations V1–V9. The water depth
at the location V1 was 0.208 m with the 0.1 m-high weir at the outlet, 0.75 m downstream
of the bridge rear wall. Figure 6a illustrates the water level elevations through the flume
centreline in case 1 upstream and downstream of the bridge, regardless of the bridge width
in the flow direction The measurement was taken every 0.25 m upstream representing
with V1–V7, while the V8 was 0.3 m downstream of the bridge, due to the presence of the
second aluminium beam used for the load cells, and the distance between V8 and V9 was
0.25 m. Repeatability analysis was conducted for each case to be able to provide the same
hydraulic conditions, since a small instability occurred in this water depth, and velocity
measurements related to the kinematics of the flow can nonetheless cause a significant
scatter in pressure and force records [62,63]. Based on the analysis, the uncertainty of
±1.5 mm was observed in the water depth measurements.
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The fluid velocity tangential to the boundary goes to zero at the solid boundary. This
phenomenon is called the no-slip condition, where the fluid velocity matches the boundary
velocity (zero in the experiment) owing to the friction effect of the flume walls and bottom.
In accordance with this, the water velocity decreased near the bed of the flume in the
experiment, while the velocity reached the highest value at the free-surface level and the
velocity varied over the vertical coordinate between the bed and free surface. This spatial
variation of velocity, called shear, affects the boundary layer next to the walls and bed.
The height of the boundary layer is theoretically defined as the distance above the bed
where the local velocity reaches 99% of free-stream velocity. This can vary with different
viscosity values associated with the bed characteristics. To minimise the effects of not only
this variation, but also possible human errors in taking the measurement, and hence reduce
uncertainty in the measurements, the depth-averaged velocity profiles were produced. Ten
readings along the water depth in the z direction were obtained at the centreline of the
location V1–V9 for each case with an uncertainty of ±0.008 m/s. Then these local velocity
values were used to calculate the depth-averaged velocities at those locations. Figure 6b
illustrates the depth-averaged velocity profile in the x direction at the flume centreline with
a depth-averaged velocity of 0.1784 m/s at V1 and 0.3815 m/s at V9. When the flow is
constricted due to the presence of the bridge, the depth-averaged velocity at the bridge
opening increases to maintain the constant flow rate.

2.3.2. Hydrodynamic and Debris Impact Loads

To characterise the confidence intervals of the peak pressure and force value, as well
as their repeatability from one experiment to another, five experiments were carried out
for each case, referred to as R1 to R5. Figure 7a shows an image of the free-surface level
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around the bridge observed in the first reading in case 1 with a fully submerged abutment.
The results of each test are provided in Figure 7b, where the force in the graphs represents
the total force corresponding to the drag force in case 1 with hydrodynamic load only, and
total force (drag force and debris impact force) with case 2 with the presence of the debris.
This facilitated obtaining the confidence interval, as well as detailed data for the statistical
analysis provided in Table 2, where the root-mean-square (RMS) force was calculated
for each case. The mean force and its standard deviation (SD) are provided related to
the confidence interval to be able to use for validation purposes in the following section.
The uncertainty in the measurements of the tests was also examined by computing the
coefficient of variation (COV). The results with the SD of 0.77 N and COV of 12.40% show
that reasonable consistency was observed with relatively small variability.
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Figure 7. (a) Fully submerged abutment and (b) force–time histories in case 1, readings R1–R5.

Table 2. Test results in case 1.

Reading No. ForceRMS (N)

R1 5.74
R2 7.39
R3 5.40
R4 6.78
R5 5.62

Mean 6.19
SD 0.77

COV, % 12.40

Figure 8a–e shows the snapshots from debris motion records in millisecond precision
to estimate the debris velocity at the impact in case 2. The debris velocity was estimated
according to its travelling time between these specific distances; thus, the debris velocity
was calculated as 0.291 m/s and 0.331 m/s based on 0.3 m and 0.1 m distances, see
Figures 5b and 8a–e. Considering the increase in debris velocity close to the bridge, the
0.1 m distance was hereby used and relatively low COV was obtained (Table 3). The force–
time histories are shown in Figure 9, the force including both hydrodynamic and debris
impact load ranged between 32.94 N and 43.92 N, compared to the mean force obtained
without debris of 6.19 N in case 1. The mean measured force with debris impact was
therefore 6.25 times larger than the case without debris, equating to 6.25 times higher load.
The impact durations in readings R1–R5 were obtained with 0.064 s, 0.081 s, 0.061 s, 0.087 s
and 0.052 s. The SD and COV in the peak value of the debris impact were 4.00 N and
10.30%, respectively (Table 3).
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Figure 8. Motion of debris in case 2, (a–e) from readings R1–R5.

Table 3. Test results in case 2.

Reading No. ForcePeak (N) uDebris (m/s)

R1 32.94 0.331
R2 43.92 0.336
R3 35.25 0.330
R4 40.40 0.334
R5 40.84 0.337

Mean 38.67 0.334
SD 4.00 0.003

COV, % 10.33 0.818

In general, Figure 9 shows that there was not a clearly defined force–time impact
profile. However, each run had some common characteristics. Before the largest measured
force of the impact event, there was a short drop in the measured force (of different
magnitude in each run). Then, there was a rapid rise to the peak impact force. After the
peak impact force, there was a second drop in the force before a secondary impact force
was measured. These dual peaks were due to differences in the debris orientation at impact
compared to the initial orientation, whereby the long axis was parallel to the bridge span.
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3. Numerical Investigation: Smoothed Particle Hydrodynamics (SPH)
3.1. Numerical Setup

The smoothed particle hydrodynamics (SPH) method is employed in this study. The
SPH theory, preliminary numerical setup, SPH parameters and GPU specifications used
in the simulation and validation have been presented in detail by Majtan et al. [6]. The
plan and side views of the numerical domain are given in Figure 10, where the inlet and
outlet represent the V1 and V9 locations, respectively, in relation with the test area as well
as computational efficiency. Following the experiment, a parabolic velocity profile with
a free-surface velocity of 0.2 m/s and associated water depth were defined at the inlet,
while water depth and constant velocity profile were imposed, considering the water depth
measured at location V9 in the experiments and conservation of mass between these two
locations. Note that the velocity profile measured at the location V9 was at the centreline
of the flume width, which was not imposed at the outlet, considering its highest velocity
value along location V9 and mass conservation. Note that the density was extrapolated
at both the inlet and outlet. Considering recent development on the boundary conditions,
the flume walls and bridge were created using the modified dynamic boundary condition
(mDBC) rather than a dynamic boundary condition (DBC), while, due to limitations of the
DualSPHysics code, the DBC was used for the floating object associated with available
code in DualSPHysics v5.0 [64]. It should be emphasised that the main advantage of using
mDBC in this research is to obtain pressure values on the structure without consideration
of 1.5–2.0 h gap between solid and fluid particles [65,66], where h is the characteristic
smoothing length. Since this gap size varies at each problem with each particle resolution,
an accurate location needs to be defined to take pressure measurements.
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ment locations of V1–V9 (not to scale).

Although a detailed convergence study was provided based on both hydrostatic and
hydrodynamic loads for preliminary results in the study of Majtan et al. [6], a convergence
study was performed for case 1 to ensure sufficient model resolution with a new boundary
condition. Although the dimensions of the impacted structure as well as debris needs to be
a multiple of dp in DualSPHysics, three different particle resolutions were used considering
the shortest dimension of the impacted bridge in case 1 without the presence of the debris:
0.02 m, 0.01 m and 0.005 m. All simulations were run for 15 s physical time. The drag
force–time history is given in Figure 11, where the experimental result in reading R1 is
presented. As can be seen in the results, decreasing the dp from 0.02 m to 0.01 m improved
the accuracy significantly by decreasing the error from 38.29% to 17.61% based on the mean
force of 6.19 N obtained in the experiment, while a slight increase was obtained in the
accuracy using 0.005 m dp corresponding to 4.2 times more total particles in the numerical
domain, and 7.5 times longer computational time compared to those with the dp of 0.01 m,
as shown in Table 4. To optimise the model resolution, a particle size of 0.01 m was used in
all simulations. Note that although decreasing the size of numerical domain compared to
the preliminary study, using mDBC increased the total particles in the simulation.
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Table 4. Details of particle size convergence.

Flow Depth at
V1 (m)

Particle Size,
dp (m)

ForceRMS
(N) Error (%) Total Particle Total Run

Time

0.208 0.005 5.25 15.19 7,931,232 21 h 13 min
0.208 0.01 5.10 17.61 1,873,208 2 h 49 min
0.208 0.02 3.82 38.29 348,336 23 min

3.2. Validation of the SPH Model
3.2.1. Case 1: Hydrodynamic Load Only

Figure 12 shows the velocity distribution at the end of the simulation upstream and
downstream of the bridge in case 1 with a fully submerged abutment. It can be seen that
the water height was slightly higher upstream of the bridge and velocity values increased
significantly along the bridge span. Figure 13a,b illustrates the water level elevation and
depth-averaged velocity profile in the x direction at the centreline of the flume in case 1. The
physical properties (water depth and velocity) at the V1 and V9 locations were defined at
the inlet and outlet, while these properties obtained at the V2–V8 locations were compared
herein. The flume was perfectly horizontal without any slope. To obtain the desired velocity
and water level elevation at V1, the weir height was adjusted. Due to the presence of the
weir at the outlet close to the bridge with lower water level compared to that at the inlet,
the water level elevation decreased in the x direction along the flume in the experiment. In
the numerical model with a horizontal flume bed and different water depth imposed at the
inlet and outlet, the flow depth was slightly higher in the SPH model, with a maximum
error of 2.42%, and associated depth-averaged velocity was lower, with a maximum error
of 11.52%. The drag force in case 1 (Figure 13c) was obtained with 17.61% error, compared
to the mean RMS force of 6.19 N in the experiment.
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3.2.2. Case 2: Hydrodynamic and Debris Impact Loads

Figure 14a gives the debris velocity–time history in the flow direction (x) obtained in
the SPH model where the debris was released inside the flow after the flow reached the
same steady-state flow condition as the experiment, t = 4 s, while the debris was transported
by the flow between t = 4 s and 7.026 s and then impacted the bridge with a velocity of
0.285 m/s. Thus, the SPH model predicted the debris velocity at impact with a 14.67%
error based on the mean value of 0.334 m/s in the experiment, while the debris transport
in the flow needs to be obtained in future experimental studies for detailed comparison.
Figure 14b shows a comparison of the force–time history in the SPH and experiment in
case 2, referring to reading R2, where the time refers to the experiment. The snapshots
at the impact in the experiment (reading R1) and SPH model are given in Figure 14c,d,
respectively. The impact duration of debris-induced force was higher in the SPH model,
with 0.092 s against the mean of 0.069 s in the experiment. The SPH model predicted the
peak force 5.84% higher, compared to the reading R2 in the experiment, and 16.81% against
a mean value of 38.67 N, where the sampling frequency of 500 Hz was used based on
the experimental results and the Nyquist–Shannon sampling theorem. This error might
be due to the debris orientation at the impact and/or the assumption of the rigid body
for both debris and bridge without consideration of their responses. It should be noted
that different approaches are available in DualSPHysics v5.0 to consider the stiffness of
the debris and bridge, as well as the interaction modelling between them. However, the
wider research (within which this work forms a part) aims to achieve one-way coupling
without consideration of bridge response, since these SPH outputs are used in another
model as input loads to investigate the structural response of the bridge, as discussed in
the following section. In a real-life masonry arch bridge, the rigid body assumption is
reasonable given the stiffness of the bridge, particularly in the direction of flow.
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3.3. Further Investigation: Pressure–Time Histories
3.3.1. Case 1: Hydrodynamic Load Only

Figure 15a,b illustrates velocity and pressure distributions on the 1:10 scale bridge in
case 1 at the end of simulation with the presence of the free surface. As can be predicted,
the maximum velocity occurred in the vicinity of the arch barrel close to the free surface,
and the total pressure was highest at the bottom of the front spandrel wall of the arch
bridge. To obtain averaged pressure histories based on pressure contour distribution on
the upstream (front) and downstream (back) spandrel walls for investigating the structural
response to this load, the measurement points given in Table 5 were used. The averaged
pressure values obtained at these measurement points are shown in Figure 15c,d. It should
be emphasised that these pressure values were observed on the scaled bridge.
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Table 5. Measurement points on front and back spandrel walls in case 1.

Front (F) Back (B)

Name Measurement Point (x,y,z) Name Measurement Point (x,y,z)

FL1 1.75, 0.2, 0.03 BL1 2.15, 0.2, 0.03
FL2 1.75, 0.2, 0.08 BL2 2.15, 0.2, 0.08
FL3 1.75, 0.2, 0.13 BL3 2.15, 0.2, 0.13
FL4 1.75, 0.2, 0.18 BL4 2.15, 0.2, 0.18

3.3.2. Case 2: Hydrodynamic and Debris Impact Loads

To capture detailed debris-induced pressures on the bridge, numerical measuring
probes were placed with spacing 0.02 m on the bridge front at x = 1.74 m, considering
the gap between the debris and bridge associated with using DBC for the floating object.
Figure 16a,b shows flow velocity and pressure distributions on the scaled bridge in case 2
when the debris impact was observed at t = 7.026 s. Compared to case 1, the presence of
debris upstream of the bridge resulted in an increase in the free-surface velocity in the
vicinity of the arch barrel close to the upstream side. Although the water pressure on the
bridge slightly increased to 1883.1 Pa, a negative water pressure with a maximum value
of 221.1 Pa occurred at the upstream spandrel wall with the debris impact. As shown in
Figure 16c, a maximum pressure of 33,084 Pa was observed when the debris impacted
the bridge at t = 7.026 s. Detailed pressure–time histories are provided in Figure 16d,e.
Herein, (i) LP and RP are used to refer to the left- and right-hand sides, respectively, of
the upstream bridge face impacted by the debris; and (ii) the numbers 1–5 indicate the
numerical pressure probe impacted, with 1 being the furthest from the arch barrel and
5 being nearest the arch barrel. The rise times of the debris-induced pressure at the first
impact ranged between 0.018 s and 0.024 s with the total impact duration of ~0.052 s (see
Figure 16d,e), which was shorter than the total impact duration of debris-induced forces
(see Figure 14b).
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Figure 16. (a) Velocity and (b) pressure distributions on the bridge, (c) peak impact locations
associated with the debris at t = 7.026 s in case 2 where the debris impact locations were numbered at
the left (L) side of the bridge, (d) pressure–time histories at peak debris impact locations at left (L)
side with LP1–LP5 and (e) at right (R) with RP1–RP5 between t = 6.8 s and t = 7.5 s.

4. Conclusions and Discussions

This paper is the first study in the open literature investigating, experimentally and
numerically, the hydrodynamic and discrete floating debris impact loads on the superstruc-
ture of masonry arch bridges. The experimental investigation focusing on a representative
single span arch bridge was first presented for the case of a fully submerged abutment.
The main findings showed that the debris impact load was 6.25 times higher than the
combination of hydrostatic and hydrodynamic loads for the case of no debris, with a mean
debris impact duration of 0.069 s. Detailed statistical analyses were performed for each
case in order to examine the repeatability as well as the uncertainty in the experiment. The
COV was relatively low in the drag force, debris velocity and debris-induced peak force. It
is expected that the COV could be further reduced by using an accelerometer to improve
accuracy of measurement of the debris velocity. Special attention was devoted to defining
the confidence intervals so as to examine the capability of the corresponding SPH model to
simulate this type of fluid–structure and structure–structure interaction.

The SPH model successfully predicted the kinematics observed in the experiment. The
depth-averaged velocity was obtained with a maximum error of 11.52%, and a maximum
error of 2.42% was returned for the water surface elevation results. The hydrodynamic load
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on the arch bridge had a 17.61% error compared to the mean RMS force of 6.19 N in the
experiment. At the point of impact in the experiment, the debris orientation was not always
perfectly at 0 degrees; this may account for some of the % error between the numerical and
experimental results. The debris velocity was predicted with a 14.67% error at the impact
based on the mean values of 0.334 m/s in the experiment. The SPH model provided a good
agreement with the reading R2 in terms of the peak force with a 5.84% error, which was
16.81% considering the mean peak value in the experiment.

Using the validated SPH model, pressure–time histories across the entire surface
of the bridge were generated. The results showed that the debris induced significant
localised pressures on the bridge superstructure around the free-surface level equating
to 165 times higher pressure compared to the corresponding case with no debris, i.e.,
hydrodynamic pressure alone. As highlighted, the combination of hydrodynamic and
hydrostatic pressures at the upstream spandrel wall is expected to be higher than that
at the downstream spandrel wall during real-life floods which can lead to a significant
overturning force acting on the bridge. Investigation of the resulting forces, as well as the
bridge response to these loads, will be detailed in the forthcoming publication.

These findings reveal that flood-induced loads without debris can be significant;
however, the introduction of debris greatly increases the potential force generated. Floating
debris impact resulted in peak forces of up to 6 times those generated by corresponding
flows without debris. This clearly has implications for the global behaviour of the bridge
superstructure. Similarly, the very high localised pressures predicted by the SPH model
underline the vulnerability of certain parts of the masonry structure to damage, for example,
in areas of the spandrel wall where isolated wash-out of fill may have occurred. Considering
the lack of detailed assessment strategies for flood-induced loads on the superstructure of
masonry arch bridges, this loading type and associated effects need to be understood to
ensure the continued service of these bridge types.
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