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Abstract: We measured oxygen (O2) fluxes in two major shallow subtidal benthic habitats (kelp
bed (KB) and bare rock (BR) covered with crustose coralline algae) of Dokdo islet in the East Sea
by applying noninvasive in-situ aquatic eddy covariance (AEC). The AEC device allows time series
measurements (~24 h) of three-dimensional velocity (u, v, and w components) and high-resolution
dissolved O2. This allows estimation of O2 exchange flux via benthic habitats. Local flow rates and
irradiance levels were found to be major factors controlling O2 exchange flux in the rocky habitats.
Gross primary production rates tended to be significantly higher in KB (163 mmol O2 m−2 d−1) than
in BR (51 mmol O2 m−2 d−1). The net ecosystem metabolisms were assessed as opposite types, with
8 mmol O2 m−2 d−1 in KB (autotrophy) and –12 mmol O2 m−2 d−1 in BR (heterotrophy). Our results
indicate that kelp beds are important for organic carbon cycling in rocky coastal waters and that AEC
application to macroalgae habitats is a useful assessment approach.

Keywords: Dokdo islet; aquatic eddy covariance; benthic habitats; net ecosystem metabolism; benthic
photosynthesis; crustose coralline algae; Ecklonia cava; Eisenia bicyclis; whitening

1. Introduction

Macroalgal-dominated habitats, mainly kelp beds (forest), cover about 25% of the
world’s coastlines, from temperate to subpolar regions in both hemispheres [1–3]. Kelp
beds are one of most productive ecosystems in coastal waters, where they also provide
complex biogenic habitats for juveniles and enhance secondary production [1,2]. Organic
matter produced by benthic communities in high-productivity kelp beds can become a food
source for adjacent coastal to deep-sea ecosystems [1]. Furthermore, because of their high
capacity for carbon fixation and storage, through their physiological cycle, these ecosystems
are recognized as a blue carbon sink (i.e., carbon stored in coastal and marine ecosystems)
in the context of global carbon dioxide cycles. As a result, kelp bed communities may
offer an important bioengineering opportunity in coastal waters [1]. However, increasing
anthropogenic pressures (e.g., eutrophication, overfishing, climate change) have caused a
decline of 38% in the kelp populations found in kelp beds [1,2].
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Rocky bottoms, in the shallow euphotic zone of Korea, are important habitats for macroal-
gae: predominantly, long-lived canopy-forming Ecklonia cava and Eisenia bicyclis [4,5]. The
distribution and abundance of these species are rapidly declining in the coastal waters of
Korea, similar to Japan [6]. Although the reasons for the destruction of the kelp forest on
the northeast Pacific coasts are not well known, warming of surface water temperatures
by Kuroshio Current may be an important key to controlling the distribution of kelp [6].
In addition, a massive outbreak of crustose coralline algae (CCA) whitening has been
rapidly expanding on the rocky bottom [7,8]. These issues can represent a severe threat
to the macroalgal communities, but impacts on ecological functions in coastal waters are
still limited.

Production and respiration in the benthic community are key parameters for under-
standing ecological health and organic carbon flow in the food web [9]. Net ecosystem
metabolism (NEM), the difference between gross primary production (GPP) and respiration
(R) (NEM = GPP − R), is a valuable proxy for several things: (1) consumption through
food webs, (2) remineralization/decomposition by microbial respiration, (3) burial to sedi-
ment, and (4) exports from vegetated habitats [9]. Therefore, quantification of NEM is an
important component, essential for understanding the ecological functioning of kelp beds.

Several methods for NEM estimation have been used to date. A simple laboratory
approach, based on the conventional light/dark incubation method, is widely used to
quantify NEM in benthic communities [10]. The recently developed in-situ photorespirom-
eter overcomes the limitations of laboratory methods [11,12]. However, the installation
of a rigid enclosed chamber in the field can isolate seaweed samples from natural water
movements, which can alter the diffusive boundary layer at the thallus surface [13,14].
Thus, an alternative and robust method that can include surrounding physical effects is
preferred to measure NEM in benthic habitats.

Aquatic eddy covariance (AEC) has been developed in recent decades [15]. AEC is
a noninvasive in-situ measurement technique that has been used to measure O2 flux in
various natural water habitats (e.g., coral reefs, seagrass meadows, hard bottom ben-
thic flora beds, oyster reefs) [16–24]. The measurement covers a relatively large sur-
face area (10–50 m2) and interferes minimally with the prevailing hydrodynamic con-
ditions [25]. In particular, AEC can be validly applied in complex hard-bottom areas, such
as rocky bottoms, coral reefs, and oyster reefs, where conventional chamber deployment is
problematic [17,18,21,23].

In this study, we estimated, in situ, the metabolism balance of benthic communities in
vegetated (kelp bed [KB]) and ‘bare’ rock [BR] habitats dominated by encrusting coralline
algae (CCA). Our objective was to assess the ecological functioning of these habitats in the
shallow waters of a pristine islet. Our results may then be used to assess any alterations in
organic carbon cycles in the coastal benthic communities of these two habitats, in relation
to climate change.

2. Materials and Methods
2.1. Study Sites

The Dokdo Islets, parts of a volcanic island complex in the East Sea between Japan
and Korea, are located near the northeastern boundary of Ulleung Basin (Figure 1). They
are about 87.4 km from Ulleung Island and consist of two main islets with submerged
volcanic edifices. They rise about 2100 m from the base of Ulleung Basin and have a total
area of ~0.186 km2 [26]. Unique oceanographic features have been observed around the
island. A polar front varies between south and north movement according to the strength
of warm and cold waters [27,28]. Occasionally, eddies formed near the southern Korea
peninsular encroach from the east and/or south [29]. These oceanographic dynamics,
in the southern part of the basin, may contribute to the high primary production in the
region [30]. The macroalgal diversity of Dokdo Islets is greater than that of Ulleung Island
and comparable to that of well-developed tidal flats in western Korean waters, reinforcing
its status as a biodiversity hotspot [31]. Various seaweed species have been observed on
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the rocky bottoms of the Dokdo Islets, but these have declined recently, associated with
CCA whitening [5,32,33].
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Figure 1. Map showing the sampling stations. The solid circle is the kelp bed (Ecklonia cava and
Eisenia bicyclis) and the open circle is the bare rocky bottom (BR).

2.2. Site Selection

Samplings and AEC experiments were conducted on 10–11 October 2019. The mea-
surements were programmed to start at 07:30 AM (local time) (Table S1). The steep water
depth gradient around the Dokdo Islets creates a narrow zonation of seaweeds and, thus,
the sites for AEC measurement that need careful selection to represent the benthic habitats
properly. With diver assistance, the two measurement sites were chosen using the following
criteria: (1) flat area for firm AEC deployment, (2) dense seaweeds for KB or small rounded
rocks covered with CCA for BR, and (3) representative of the benthic habitats.

2.3. Aquatic Eddy Covariance System (AEC)

The coastal version of the AEC system was developed by the Korea Institute of
Ocean Science and Technology, KIOST ECI, to estimate O2 exchange rates in benthic
boundary layers [34]. Briefly, the design was based on the work of Berg et al. [15] for ready
application to coastal-water studies. It consists of four compartments: (1) a frame, (2) a
three-dimensional (3D) acoustic Doppler velocimeter (ADV) (Nortek, Vector), (3) a fast-
response optode sensor (OXR50-UHS, Pyro Science) with an amplifier (Firesting O2-Mini
oxygen meter, Pyro Science), and (4) an auxiliary O2 optode sensor for in-situ calibration
(Anderra, 4330 and 3835) (Figure 2). Key modifications of ECI, compared with previous
AEC systems [15], include a foldable frame and a fast-response O2-sensing system [35].
The unique triangular folding frame enhances portability in the field, thereby allowing
easy operation from a small boat in shallow water. Furthermore, an additional AEC system
can be installed independently, in parallel, at the opposite side of the AEC in a single
frame [35]. To determine the O2 exchange flux in rocky habitats, high-frequency O2 data
(<1 Hz) synchronized with 3D velocity measurements are required [15]. The modified
glass-needle oxygen sensor and amplifier have been widely used for AEC systems [15,35].
However, the durability of the glass sensor limits long-term measurement because the
sensor commonly breaks and cannot record data for an entire day [35]. To overcome this
limitation, the glass oxygen microsensor was replaced with a fast-response (<0.3 s) optode
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sensor system [35,36]. However, the lifetime of the optode and its slow amplifier response
time, relative to the glass microsensor system, still limit the AEC system [36].
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2.4. AEC Measurements

Each AEC component was assembled as follows: (1) the ADV sensor was aligned
vertically, and was either upward-looking in the vegetated habitat (KB) or downward-
looking in the rock bottom (BR) areas; (2) the oxygen sensor tilted at about 45◦ and its tip
located at the edge of the sampling volume of the ADV [36]; (3) the measurement heights
(h) were fixed ~30 cm above the kelp canopy in KB and above the rock surface in BR;
(4) the auxiliary O2 optode was independently mounted on the frame at the same measuring
height; and (5) the AEC was carefully hand deployed by rope from a small boat with the
help of a scuba diver. Using an underwater compass and level, the AEC frame was oriented
to the north, without disturbance of the local flow direction, and parallel to the bottom
surface. Before AEC device deployment, the ADV was preprogramed, on the boat deck,
with a sampling rate of 32 Hz in continuous measuring mode. The photosynthetically
available radiation (PAR) at the surface of the habitat was measured independently, at 1 s
intervals, using a PAR sensor (JFE Advantech Co., DEFI-L., Nishinomiya, Japan).

2.5. Data Analysis and Calculation

Benthic O2 flux was calculated using custom-developed software written using MAT-
LAB (MathWorks, v. 2018, Natick, MA, USA) and Python (v. 3.8, Python Software Founda-
tion, Beaverton, OR, USA) following established protocols [36–38]. Before the derivation
of O2 flux, the data were verified and corrected in three sequential steps. In brief, the
high-temporal-resolution ADV data were carefully assessed using beam correlations and
signal-to-noise ratios (SNRs). Data with poor beam correlation (<70%) and a low SNR (<5)
were excluded. The remaining data were then averaged from 32 Hz to 4 Hz to reduce noise
and facilitate data handling [36]. Outliers in the downsized 3D velocity and O2 time series
data were removed using an acceleration threshold method [39], and these were replaced
by linear interpolation between neighboring values. Finally, the filtered data were rotated
using a double-rotation method and sliced into 15 min intervals [38].

The mean turbulent O2 flux (hereafter O2 flux) was calculated over the 15 min (0.25 h)
periods as:

O2 flux = w′c′, (1)

where the overbars indicate time averaging and w′ and c′ represent the instantaneous
fluctuations away from the mean of the vertical velocity (cm s−1) and O2 concentration
(mmol m−3). The fluctuation components, w′ and c′, were extracted using Reynolds
decomposition, where c′ = c − c and w′ = w − w with w and c being, respectively,
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the measured vertical velocity and oxygen in situ, and w and c being the time averaged
values [15]. The decomposition was performed by linear detrending using MATLAB’s
detrend function. The window size of 15 min has been defined in previous studies as the
optimal time period for maintaining a constant flux signal [17]. Then, hourly mean O2 flux
was calculated by averaging four 15 min O2 fluxes [16].

Categories of light and dark were grouped using averaged 15 min PAR values while
assuming that the critical value of PAR across a day was >0.2 µmol photon m−2 d−1. The
benthic respiration, GPP, and NEM were calculated for each 15 min window as follows:

R =
1
n
(∑ fluxdark +

∑ fluxdark
hdark

hlight), (2)

GPP =
1
n
(∑ fluxlight +

|∑ fluxdark|
hdark

hlight), (3)

NEM =
1
n
(∑ fluxlight + ∑ fluxlight), (4)

where n is the number of 15 min fluxes, ∑ fluxdark is the flux during the nighttime
(mmol O2 m−2 d−1), ∑ fluxlight is the flux during the daytime (mmol O2 m−2 d−1), hlight is
the number of hours of light, and hdark is the number of hours of darkness [16].

Assuming that the O2 flux in the benthic habitats was the product of photosynthesis
(P) and respiration (R) by benthic organisms, the light dependencies of the O2 fluxes
(P–I curves) were estimated at both sites using the relationship between the hourly mean
daytime O2 flux and PAR [40]. Specifically:

P = Pmax tan h
(

I
Ik
− Rd

)
, (5)

where Pmax is the maximum photosynthesis rate (mmol O2 m−2 d−1), I is the measured
PAR at the canopy height in KB or at the bottom surface in BR (µmol photon m−2 s−1),
Ik is the light saturation constant (µmol photon m−2 s−1), and Rd is the dark respiration
(mmol O2 m−2 d−1). The hourly mean O2 fluxes were fitted to the 1 h mean PAR. The
best fitting parameters, Pmax, Ik, and Rd, were estimated using the “curve_fit” function of
the scipy module in Python. Additional parameters, α (photosynthetic efficiency) and Ic
(compensation irradiance), were calculated as Pmax/Ik and Rd/α, respectively.

2.6. Sampling and Species Richness

To determine the species richness and biomass of macrophytes in KB, a 50 × 50 cm
square frame was installed randomly at two spots for duplication. Samples, including
epiphytes, on the rock surface in the square frame were carefully collected and fixed using
natural formalin. The samples were transported to the laboratory and the macrophytes
were identified to species using a microscope. Their wet biomass was measured with a
balance, and the number of individuals was counted using image analysis.

3. Results
3.1. Site Characteristics

In KB, the dominant kelp species was Eisenia bicyclis, which had wet biomass of
2710 g m−2. This was lower than previously measured at Dokdo (2000: 7600–29,000 g m−2,
2014: 895–5377 g m−2) [5]. Eisenia bicyclis individuals ranged from 357 to 1656 g, with an
average of 678 g wet weight. The total length of the thallus ranged from 43.0 to 85.0 cm,
with an average of 60.2 cm. The typical CCA species observed at the bottom in KB were
Synarthrophyton chejuensis and Lithophyllum okamurae [6,33]. There were no macroalgae in
BR, but CCA were abundant on the rock surface. The mollusks (snails and mussels) and
starfish were sparsely distributed.
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Mean KB water depth was 5.1 m, which was shallower than BR (8.4 m) (Table S1). The
bottom water temperature varied from 18.83 to 19.63 ◦C (mean ± standard deviation [SD],
19.20 ± 0.20 ◦C) and salinity from 33.82 to 34.26 (mean ± SD, 34.02 ± 0.07) (Table S1). The
daytime PAR was up to 493 µmol photon m−2 s−1 (mean: 74 µmol photon m−2 s−1) for
KB and up to 399 µmol photon m−2 s−1 (average: 67 µmol photon m−2 s−1) for BR, which
might depend on water depth.

3.2. Time Series Data

Using the continuous measuring mode of the ADV, 3D velocity and O2 were measured
for ~25 h (Table S1). To avoid the inclusion of abnormal data during deployment and
recovery of the AEC, both ends of the data were excluded from the analysis; thus, the
measurements used for further calculation were less than 24 h.

As expected, the 3D velocity was significantly higher in KB than in BR as a consequence
of wave orbital motion (Figure 3) [35,41,42]. The mean flow velocity (U =

√
x2 + y2 + z2)

in KB was estimated as 8.8 cm s−1, which was about twice that in BR (3.6 cm s−1) (Table 1).
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black, blue, and red lines represent the u, v, and w components measured at 32 Hz, respectively.

Table 1. Photosynthesis parameters and net ecosystem metabolism in KB and BR. Pmax, Rd, GPP,
R, and NEM are in mmol m−2 d−1, Ik and Ic are in µmol photon m−2 s−1, and α is in mmol m−2

d−1/µmol photon m−2 s−1.

Pmax α Ik Ic Rd GPP R NEM

KB 257 4.1 62 16 65 163 154 8
BR 168 0.8 205 59 48 51 63 −12

Oxygen time series did not show any temporal variation at either site, but the mean
O2 concentration was significantly higher (t-test, p < 0.05) in KB (277 µmol L−1) than in BR
(227 µmol L−1) (Figure 4, Table S1), which may be an effect of O2 production by benthic
flora (mainly E. cava and E. bicyclis) photosynthesis. Abnormal spikes in the O2 time
series data were observed around 12–13 h in KB, which may be interpreted as interference
by debris particles. Similar random spikes in BR were excluded from further analysis
(Figure 4).
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The diurnal cumulative O2 flux showed overall opposite trends during daytime and
nighttime (Figure 5). The cumulative O2 flux increased during the daytime because of
consistent O2 production by benthic flora photosynthesis, but decreased at nighttime
because of respiration of benthic organisms. Cumulative fluxes varied with PAR intensities
and the magnitude of variation was significantly higher in KB than in BR.
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3.3. Hourly Averaged O2 Flux with PAR

Hourly mean O2 fluxes were clearly related to diurnal PAR changes (Figure 6). The
hourly mean O2 fluxes ranged from –245 to 475 mmol O2 m−2 d−1 (mean ± standard error
(SE): 2 ± 42 mmol O2 m−2 d−1) in KB and from –95 to 172 mmol O2 m−2 d−1 (mean ± SE:
–14± 20 mmol O2 m−2 d−1) in BR. Differences in fluxes between sites (KB vs. BR) and times
(daytime vs. nighttime) were statistically significant (t-test, p < 0.01), suggesting that the
photosynthesis of benthic flora may be an important factor in overall benthic metabolisms
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at Dokdo. At about 09:30 to 10:30 local time, O2 fluxes dramatically increased following a
rise in PAR (~ 300 µmol photons m−2 d−1).
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The relationship between O2 flux and PAR is shown in Figure 7. The parameters
of the in-situ P–I curve are listed in Table 1. The modeled maximum net O2 production
(Pmax) and dark respiration (Rd) were 50% higher in KB than in BR, which implies that
both photosynthesis and respiration are higher in the kelp bed than in the CCA mat.
Furthermore, the light saturation (Ik) was significantly lower in KB than in BR, which
suggests that kelp responds to irradiance more efficiently.
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3.4. O2 Flux and Mean Current

The relationships between O2 fluxes, which were binned in 1 cm s−1 intervals for
clarity, and mean velocities (U) per bin in KB and BR, are shown in Figure 8. The variabilities
in the O2 fluxes and U values were larger in KB than in BR. Overall, the O2 fluxes were
positive during daytime and negative at nighttime, which may be the result of the benthic
biological activity (photosynthesis and respiration). Apart from in the daytime in KB,
the relationships between O2 flux and U were linear, increasing with U in daytime, but
decreasing with U at night.
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3.5. Net Ecosystem Metabolism (NEM)

Considerable differences in GPP and R were observed between the KB and BR habitats
(Figure 9, Table 1). The GPP in KB was 163 mmol O2 m−2 d−1, which was about three-times
higher than that in BR (51 mmol O2 m−2 d−1). Similarly, R was higher in KB (154 mmol O2
m−2 d−1) than in BR (63 mmol O2 m−2 d−1). The NEMs for KB and BR were, respectively,
8 mmol O2 m−2 d−1 and –12 mmol O2 m−2 d−1, suggesting that KB is net autotrophic,
whereas BR is net heterotrophic.
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4. Discussion
4.1. O2 Flux Variability

Our data clearly indicated that O2 fluxes varied with flow velocity at both sites
(Figure 8). The thickness of the diffusive boundary layer at the solid–water interface de-
pends on the friction force: an increasing flow rate can narrow the diffusion boundary layer,
which can stimulate both production and respiration in benthic communities [10,16,19–21].
Indeed, studies on the metabolism of seagrass (eelgrass) meadows show that local flow
velocity can influence O2 flux as much as six-fold [16]. Such results are consistent across
benthic habitats [17,22,23]. At night, the influence of flow on O2 flux was about five-times
higher in KB than in BR, which suggests that wave forcing, caused by wave orbitals,
facilitates kelp respiration [20,43,44].

4.2. P–I Relationship

At Dokdo, the two studied habitats had quite different hyperbolic P–I relationships
(Figure 7). Pmax and Rd were significantly higher in KB than in BR (Table 1), whereas
the Ik and Ic in KB were each about one-third of their values in BR. This implies that
photosynthesis is more responsive to light in kelp than in CCA.

Murakami et al. [45] evaluated the seasonal photosynthetic levels of E. cava and
E. bicyclis through laboratory incubation experiments. They found little seasonal change
in photosynthetic parameters (Pmax, Rd, Ik, and Ic). Pmax ranged from 257 to 321 mmol
O2 m−2 d−1 and Rd from 62 to 73 mmol O2 m−2 d−1, values that are similar to our findings
(Pmax: 257 mmol O2 m−2 d−1, Rd: 65 mmol O2 m−2 d−1) (Table 1). Their net photosynthesis
(O2 flux) was saturated at light levels above 100 µmol photon m−2 s−1, which closely
matched our own in-situ measurements. However, their light saturation level parameters
(Ik and Ic) were 30%–40% below our results (Table 2). In a previous study, the Ik and Ic of
the leaf or thallus tissues of selected plants were significantly lower than overall community
values, which was attributed to internal self-shading in the community [46].
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Table 2. Comparison of net ecosystem metabolism in various regions of the macroalgal communities.
All units of respiration (R), gross primary production (GPP), and net ecosystem metabolism (NEM)
are in mmol O2 m−2 d−1.

Location Species R GPP NEM Method Frequency References

Santa Barbara, USA Macrocystis pyrifera −216–−54.2 65.1–911 −108–130 chamber seasonal [47]
Bolinao, (Philippines) &
Trondheim, (Norway)

Caulerpa racemose
Laminaria −11.7–−185 41.7–243 9.11–107 chamber monthly [48]

Aleutian archipelago, USA Macrocystis pyrifera,
Sargassum horneri −166 150 −19.9

benthic
isolation

tents
summer [49]

Heigun Island, Japan Sargassum algae −337–−351 - 393–1794 field bag seasonal [50]
Dokdo islet, Korea Eisenia bicyclis −154 163 8 AEC autumn This study

To date, incubation experiments for the estimation of the photosynthesis of aquatic
macrophytes have used an enclosed light (-dark) chamber under an irradiance gradient,
either in the laboratory or in situ [11,12,45,46]. As the community-level characteristics of
photosynthesis are tightly coupled with kelp density, light absorption, and light distribution
within the bed, incubation results using phytoelements may need to be more carefully
considered to understand benthic photosynthesis at the community scale [46]. On the
other hand, AEC results can noninvasively assess integrated O2 dynamics in whole benthic
communities on a large footprint (10 to 50 m2) [25]. AEC application may, therefore, provide
valuable information about the factors influencing photosynthesis in benthic habitats over
multiple time scales (up to yearly) [19].

4.3. NEM of Dokdo Islets

The NEMs of macroalgal communities in the Northern Hemisphere are listed in
Table 2 [47–50]. The GPP, R, and NEM values, respectively, range from 41.7 to 911 mmol
O2 m−2 d−1, –351 to –53.2 mmol O2 m−2 d−1, and –108 to 1794 mmol O2 m−2 d−1.
Our results are comparable with other macroalgal communities, even though taken in
a low-growth period.

The NEM of a specific target community is an important indicator of local ecological
function [51]. The community-wide difference between GPP and R (NEM = GPP − R) can
be a proxy for carbon flow in the food web [51]. For example, a positive NEM indicates a
net autotrophic condition, and reflects the degree of organic matter accumulation within
the community and, hence, the excess organic carbon available to nearby ecosystems as
food. By contrast, a negative NEM signals net heterotrophy and indicates the degree to
which a community requires organic carbon, from an exterior ecosystem, as food—which
also implies that it acts as a carbon sink. Our results clearly indicate that organic carbon is
produced in kelp beds, and some of this is exported to areas with little or no vegetation.
This suggests a “production–consumption” relationship between benthic communities in a
localized area. Our methods and results do not, however, permit calculation of carbon flow
between KB and BR.

4.4. Implications and Further Suggestions

Kelp beds in shallow coastal waters are among the most productive ecosystems
in the world [52], and serve as nurseries for juveniles, an energy source for the food
web, and a carbon source for adjacent habitats [53–58]. However, kelp beds are being
progressively destroyed by disease, herbivores (mainly sea urchins), and physiological
stresses from various environmental factors (e.g., suboptimal light, temperature, nutrients,
substrate), including climate change [1,52]. In Japan, the periodic intrusion of the warm
Tsushima Current along the coast produces mass mortality of Ecklonia and Eisenia species
in rocky habitats, which are replaced by tropical species (Sargassum ilicifolium) on the
small spatial scale for a short time [6]. Similar to the situation in Japan, kelp beds are
rapidly disappearing from the coastlines of the Korean peninsula and are replaced by the
whitening of CCA [7,59,60]. Considering that the increase in the annual mean surface water
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temperature around Korea is about three-times higher than that of the global trend over
the last five decades, the physiological interaction in the benthic community by thermal
effect may be closely related to the contraction of kelp and expansion of CCA [61].

These changes bring risks to entire benthic habitats and ecosystem structures. Al-
though Dokdo is less impacted by anthropogenic activity because of its geological setting,
changes in oceanographic characteristics under climate change can threaten its benthic
ecosystems [1,7,8]. Thus, the assessment of community metabolisms in kelp beds and
whitening areas is important to gain a better understanding of their ecological functioning
and, hence, to aid in the conservation of pristine conditions at Dokdo and, more broadly,
the understanding of carbon cycles around open ocean islets.

The Dokdo Islets remain relatively pristine because of long-term limited human access
and are, therefore, an excellent location to monitor environmental changes. Recently, the
coastal ecosystems in the north Pacific have been altered by climate change [1,56], but
quantitative assessment of the changes remains limited in benthic communities. Our results
suggest that the trophic status of rocky habitats can be determined from their vegetation,
which in the case of kelp beds, can act as both a carbon source and sink over small horizontal
scales. The present study was implemented when the growth of macroalgae was low, and,
thus, further long-term research is needed to assess fully the ecological functioning of rocky
habitats and the biogeochemical cycles of organic carbon in coastal waters during different
seasons and across the year. In addition, work such as that described in this paper needs to
be undertaken at replicate sites and with replication within habitats, for statistically robust
inferences to be drawn.

5. Conclusions

In the present study, for the first time, in-situ AEC measurements were used to estimate
the NEM, GPP, and R in the typical benthic habitats (kelp bed and bare rocky bottom) of
the Dokdo Islets. In-situ P–I relationships were also assessed to gain a better understanding
of the major factors controlling organic carbon cycles in the euphotic waters of the islets.
Our results indicate that O2 flux variations, over multiple time scales (from 15 min to
1 day), are driven by local flow rates and irradiance. The O2 fluxes have a strong positive
linear relationship with local flow. The P–I curves indicate that the rates of photosynthetic
activities are significantly higher in the kelp beds (KB) than in the relatively unvegetated
bottom habitats (BR) dominated by CCA. The photosynthesis light response of kelp was
more efficient than that of CCA. The NEM of the benthic communities at Dokdo may be
determined primarily by the nature of the vegetation, as CCA-dominated habitats have
consistently reduced metabolism parameters relative to kelp beds. The trophic states
were assessed as net autotrophic on the kelp bed, but net heterotrophic on the bare rocky
bottom. Application of these in-situ AEC methods can be expected to provide robust
benthic metabolism rates for kelp beds, as well as for CCA mats in hard-bottom habitats.
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characteristics of kelp bed (KB) and bare rocky bottom (BR) habitats (locations, water depth, bottom
water salinity and temperature, photosynthetically active radiation [PAR], mean flow velocity [U],
and dissolved oxygen [O2]). The parenthesized values of O2 are the daily mean and standard error.
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