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Abstract: In this work, the flow around the NACA0018 airfoil with a wide range of attack angles was
investigated based on the open-source computational fluid dynamics (CFD) platform OpenFOAM.
Two numerical methods, Reynolds-averaged Navier–Stokes (RANS) and the detached eddy simula-
tion (DES), were employed. Under the premise of a grid convergence analysis, the computed lift and
drag coefficients were validated by the available experimental data. The pressure distribution, the
complex flow mechanisms of the airfoil under the attached flow regime, the mild separation flow
regime, and the post-stall flow regime, combined with the shedding vortex structures, streamlines,
and vorticity distributions, are discussed. From the numerical results, it can be seen that the DES
computation presents a better accuracy in the prediction of the lift and drag coefficients, with a
deviation less than 10% at the largest angle of attack. Meanwhile, it also presents remarkable im-
provements in capturing the local flow field details, such as the unsteady separated flow and the
shedding vortex structures.

Keywords: airfoil; high incidence; NACA0018; OpenFOAM; RANS method; DES method

1. Introduction

The issue of flow around airfoils at high incidences plays an important role in the
research of ship and offshore structures, such as evaluating ship maneuverability and
propulsion performance, optimizing wind turbine designs, etc. However, the flow field
characteristics of airfoils at high incidences are rather complicated, due to the transition
and pressure-induced separation. The flow features are highly related to the Reynolds
number, the angle of attack, as well as the shape of the airfoil. Hence, it is important to
explore the flow features around airfoils at high incidences.

Several research studies have been performed by using the experimental approach,
aimed at exploring the flow mechanisms governing the complex flow around airfoils at high
incidences. Jacobs and Sherman [1], Goett and Bullivant [2], and Sheldahl and Klimas [3]
investigated the effect of the Reynolds number on the characteristics of an airfoil section.
Nakano et al. [4] explored the flow separation and reattachment around an airfoil and the
velocity field across the boundary layers over the airfoil surface. Timmer [5] measured the
aerodynamic characteristics of an airfoil to serve as input to estimate the performance of
vertical axis wind turbines. Boutilier et al. [6] studied the shear layer development over
an airfoil using a combination of flow visualization, velocity field mapping, and surface
pressure fluctuation measurements. Gim and Lee [7] studied the tip vortex structures
around an airfoil with and without an endplate. Greenblatt et al. [8] examined pitching
airfoils under relatively free stream oscillatory conditions (in a water tunnel and a wind
tunnel, separately).
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Concerning the high expenses and complex facilities of the experimental approach, the
numerical approach, mainly referring to the computational fluid dynamics (CFD) method,
has been widely adopted in this issue. Several research studies have used the Reynolds-
averaged Navier–Stokes (RANS) method. Hassan et al. [9] investigated the accuracy of
different turbulence models in predicting the aerodynamic characteristics of an airfoil.
Raj [10] analyzed the flow over an airfoil at different Mach numbers and attack angles.
Suvanjumrat [11] compared different turbulence models in the solution of the flow field
around an airfoil. Yılmaz et al. [12] analyzed different airfoils at various attack angles
and examined the effects of the symmetrical and asymmetrical profiles. Wang et al. [13]
conducted a numerical study for a vertical axis wind turbine with different thicknesses
or cambers of airfoils. Aqilah et al. [14] discussed the significant effect of mesh quality on
the solution of the flow around an airfoil. Zidane et al. [15] explored the structure and
behavior of the transitional separation bubbles on the airfoil at different Reynolds numbers.
Li et al. [16] analyzed the effect of camber, the rotating axis position of the flap, the angle of
attack, and flap thickness on the flow characteristics of a two-element wing sail. Overall, it
was shown that the RANS method is suitable for the solution of attached flow, as well as a
slightly separated flow, while it is hard to capture the large-scale flow separation for the
airfoil at high incidences.

In contrast, the large eddy simulation (LES) method was proven to be capable of
capturing large-scale flow separation. Breuer and Jovičić [17] investigated the separation
flow past an airfoil at high attack angles. Mary and Sagaut [18] simulated the turbulent flow
past an airfoil near the stall. Yuan et al. [19] investigated the flow past an airfoil, to clarify the
viscous features of laminar separation and the transition flow followed by the complicated
behavior of the flow reattachment. Li et al. [20] simulated the flow around an airfoil with
high attack angles and discussed the vortex diffusion after flow separation. Breuer [21]
investigated the effect of inflow turbulence on the flow around an airfoil with a laminar
separation bubble. However, due to the high-computational resource consumption in the
resolution of the near-wall flow, the LES method is too expensive for practical applications.

The hybrid RANS/LES method has been greatly developed in recent years to resolve
the complex flow in practical applications (with affordable computational expenses). The
method applies the RANS method for the attached flow in the boundary layer, and adopts
the LES method for the separated flow regime, balancing the efficiency of the RANS method
and the accuracy of the DES method. The widely used hybrid RANS/LES method and the
detached eddy simulation (DES) method were proposed by Spalart et al. [22]. However, the
original DES method revealed a defect of grid-spacing dependence; hence, it may behave
incorrectly at the boundary layer and result in modeled stress depletion (MSD). To address
the problem, two improved DES variants, delayed DES (DDES) [23] and improved DDES
(IDDES) [24], were developed to ensure the transition of the RANS model to the LES mode
was independent of grid spacing. Several research studies have been performed using the
DES-type method. Schmidt and Thiele [25] investigated the influence of transient flow
patterns on the quality of flow prediction. Li et al. [26] calculated pre-stall and post-stall
aerodynamic characteristics of airfoils with different flow separation patterns at the stall
regime. Probst et al. [27] and Im and Zha [28] discussed the effectiveness of different
numerical schemes in the simulation of an airfoil at the stall. Grossi et al. [29] investigated
the transonic flow over an airfoil within the buffet regime. Liang and Xue [30] investigated
the wing-tip vortex from a rectangular wing with a square tip. Gan et al. [31] simulated the
flow around a transonic wing flutter using a fully-coupled fluid/structure interaction (FSI)
with high-order shock-capturing schemes. Xu et al. [32] investigated the flow over airfoils
at a wide range of attacks. Yalçın et al. [33] explored the effects of two different length scale
definitions in the simulation of the flow around an airfoil. Wang et al. [34] discussed the
effects of the time step, spanwise lengths, and grid resolution on the prediction of flow
around an airfoil beyond stall. Patel and Zha [35] simulated the post-stall flow around an
airfoil to investigate the physics of flow separation. From the above research studies, it can
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be seen that the DES method is capable of predicting the unsteady flow with transition
and separation.

Although large amounts of numerical research studies have been performed, the
details and the corresponding discussions on the flow characteristics of airfoils under
different regimes are relatively limited. Moreover, the effectiveness of the existing numerical
approaches needs to be further explored, such as the difference between the RANS and
DES methods in a complex flow solution with remarkable separation. In this paper, the
flow around airfoils at high incidences was investigated based on the open-source CFD
platform OpenFOAM. Using a symmetrical airfoil (NACA0018) as the study object, a series
of numerical simulations were performed for a wide range of attack angles by using the
RANS and DES methods. The computed lift and drag coefficients were compared with
the available experimental data, to qualify the efficiency of the two numerical methods.
Further, the flow features of the vortex structure, streamlines, and vorticity distribution, as
well as the pressure distribution on the airfoil surface, are presented, to analyze the flow
mechanism of the airfoil under the attached flow regime, the mild separation flow regime,
and the post-stall flow regime. Based on the comparisons of the obtained flow field details,
the capabilities of the RANS and DES solvers in OpenFOAM—in the prediction of the flow
around airfoils at high incidences—were further assessed.

2. Numerical Method

For the adopted RANS method, the Spalart–Allmaras one-equation model was adopted
for turbulence modeling. The adopted DES formulation was also derived from the Spalart–
Allmaras one-equation model, and an improved variation of the original DES method,
DDES method, was used in the study. In the Spalart–Allmaras one-equation model, the
eddy viscosity vt is defined with a modified turbulence viscosity ṽ, vt = ṽ fv1, and the
transport equation is given by:

D
Dt (ρṽ) = ∇·(ρDṽṽ) + Cb2

σvt
ρ|∇ṽ|2+

Cb1ρS̃ṽ(1− ft2)−
(

Cw1 fw − Cb1
κ2 ft2

)
ρ ṽ2

d̃2 + Sṽ
(1)

Here,

fv1 = χ3

χ3+C3
v1

, χ = ṽ
v , Cw1 = Cb1

κ2 + 1+Cb2
σvt

ft2 = Ct3 exp
(
−Ct4χ2), fw = g

[
1+C6

w3
g6+C6

w3

]
, g = r + Cw2

(
r6 − r

)
r = ṽ

S̃κ2d2 , fv2 = 1− χ
1+χ fv1

, S̃ = |ω|+ ṽ
κ2d2 fv2

(2)

where ρ is the fluid density, d is the distance to the closest solid surface.
d̃ in the DDES model, different from the original DES model, is defined by:

d̃ = max[LRANS − fd, max(LRANS − LLES, 0)] (3)

The RANS length scale is defined by LRANS = d, while the LES length scale is defined
by LLES = ΨCDES∆, where ∆ is the local grid scale, defined as ∆ = 3

√
∆x× ∆y× ∆z. Ψ is the

low Reynolds number correction function:

Ψ2 = min

102,
1− 1−Cb1

Cw1κ2 f ∗w
[ ft2 + (1− ft2) fv2]

fv1max(10−10, 1− ft2)

 (4)

The delay function is given by:

fd = 1− tan h
[
(8rd)

3
]

(5)
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Here, when fd = 0, the RANS model is recovered, and when fd = 1, the DES model is
recovered. The rd parameter is given by:

rd = min
(

v + vt

|∇u|κ2d2 , 10
)

(6)

The model constants are given in Table 1; for more details on the SA-DDES model,
refer to [23,36].

Table 1. Constants in the SA-DDES model.

σvt Cb1 Cb2 Cw2 Cw3 Cv1 Cs CDES Ck Ct3 Ct4 f*
w

2/3 0.1355 0.622 0.3 2.0 7.1 0.3 0.65 0.07 1.2 0.5 0.424

3. Case Description
3.1. Study Object and Working Condition

The symmetry airfoil NACA0018 was selected as the study object, and the profile is
given in Figure 1. The chord length of C = 0.154 m was adopted, which is in accordance
with the published wind tunnel test [3]. Differently, the flowing medium was set to water
with ρ = 997.561 kg/m3 and µ = 8.89 × 10−4 Pa·s. The details of the studied working
condition are summarized in Table 2.
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Figure 1. Profile of the NACA0018 airfoil.

Table 2. Study object and working conditions.

Terms Values

Airfoil profile NACA0018
Chord length C (m) 0.154

Spanwise length S (m) 0.1
Reynolds number Re 1,000,000

Angle of attack α (deg) 5, 10, 15, 20, 25, 30, 35, 40

For the sake of analysis, the non-dimensional lift and drag coefficients, CL and CD,
were adopted in the following, computed by:

CL = L/
(

0.5ρAU2
0

)
(7)

CD = D/
(

0.5ρAU2
0

)
(8)

where L and D denote the lift and drag acting on the airfoil. A is the area of the airfoil,
A = C × S. U0 is the velocity of free inflow.

3.2. Computational Domain and Boundary Condition

A cuboid-shaped computational domain was adopted in the present numerical sim-
ulation, as shown in Figure 2. With the coordinate system defined at the center of the
airfoil profile, the dimension of the computational domain is defined as: −4.9C < X < 9.7C,
−4.9C < Y < 4.9C, and −0.5S < Z < 0.5S. As for the boundary condition, a uniform inflow
condition with zero gradients for the pressure field was applied for the inlet side. A uniform
outflow condition with the pressure field setting to the atmospheric pressure was applied
for the outlet side. The slip wall boundary condition was set on the top and the bottom
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sides. The symmetry plane boundary condition was set on the front and the back sides.
Moreover, the no-slip wall with zero velocity was set on the surface of the airfoil.
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Figure 2. Illustration of the computational domain and boundary conditions.

The discretization of the computational domain was performed by using the pre-
processing tools in OpenFOAM. At first, the computational domain was discretized with a
uniform hexahedral grid by using the blockMesh tool. Then, the grid refining, splitting, and
snapping were performed by using the snappyHexMesh tool. A series of mesh refinement
blocks were added to refine the grid spacing around the airfoil, especially the downstream
of the airfoil. On the surface of the airfoil, five layers of prismatic cells were adopted to
achieve a better resolution of the near-wall flow. The alignment of those cells was set in
accordance with the targeted non-dimensional distance from the wall Y+ ranging from
30 to 60. See Figure 3 for the grid generation of the computational domain and the region
around the airfoil.
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3.3. Other Setups in the Numerical Solution

The present numerical study was performed by using the psioFoam solver in Open-
FOAM. It is a pressure-based, coupled, unsteady solver, and solves the incompressible flow
by using the pressure implicit with splitting of operator (PISO) algorithm. The discretiza-
tion schemes adopted in the present study are given in Table 3, where φ is the volumetric
flux. For the temporal discretization, the first-order Euler scheme was used in the RANS
computation, and the second backward scheme was used in the DES computation. As for
the spatial discretization, the second-order Gauss integration scheme was used for diver-
gence and gradient schemes in the RANS and DES computations, and the surface normal
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gradient scheme was adopted for the Laplacian scheme, which is a corrected unbounded
second-order conservative scheme. Moreover, the first-order linear scheme was adopted
for the interpolation scheme.

Table 3. Discretization schemes adopted in the present study.

Terms RANS DES

Time Euler Backward

Divergence (φ, U) Gauss linearUpwind grad(U) Gauss LUST unlimitedGrad(U)
(φ, ṽ) Gauss limitedLinear 1 Gauss limitedLinear 1

Gradient
U Gauss linear cellLimited Gauss linear 1
ṽ Gauss linear cellLimited Gauss linear 1

Laplacian Gauss linear limited corrected 0.5 Gauss linear limited corrected 0.33

Interpolation linear linear

4. Convergence Study

A grid convergence study was performed with the methodology presented by
Stern et al. [37] to clarify the effect of grid spacing in the numerical solution. Typically, the
angle of attack α = 40 deg was selected as the study case. Three grids were generated based
on the refinement factor of

√
2. For the RANS and DES computations, the time step was set

to 1.0 × 10−3 s. To achieve the iterative convergence, the total simulated physical time was
set to 5 s for the RANS computations and 10 s for the DES computations. A workstation
with the CPU of Intel@ Xeon(R) Gold 5218 CPU@ 2.3 GHz (Intel Corp., Santa Clara, CA,
USA) with 64 GB RAM was adopted in the present numerical study, and 16 processors
were used for each computation. The computational details for the grid convergence study
are given in Table 4, where the computational time refers to the wall-clock time.

Table 4. Computational details for the grid convergence study.

Method Fine Grid SG1 Medium Grid SG2 Coarse Grid SG3

Grid number - 3.98 × 106 2.07 × 106 1.06 × 106

Computational
expense (h)

RANS 50–55 25–30 5–10
DES 60–65 40–45 15–20

The results of the grid convergence study are given in Tables 5 and 6. According to
the spatial discretization scheme, the theoretical order of accuracy PGest = 2 was adopted.
For the RANS computation, a relatively lower grid uncertainty was observed, with the
values of UG%SG1 ranging from 1.0% to 1.5% for CL and CD. As for the DES computation,
a lower grid uncertainty was presented for CL with the value of UG%SG1 approaching
0.5%. However, a relatively higher grid uncertainty was presented for CD, with the value
of UG%SG1 reaching 3.5%. The higher grid uncertainty in the DES computation was highly
related to the larger values of ε32%SG1, resulting from the irrational solution with the coarse
grid SG3. It suggests that the coarse grid would be unable to solve the important flow
features involved in the DES computation, as proposed by Muscari et al. [38]. A further
refined grid would be helpful to improve the uncertainty, while it is rather time-consuming
and unpractical. For another, the values of ε21%SG1 are at reasonably small magnitudes,
demonstrating the minor difference between the solutions with the grid of SG1 and SG2.
It can be concluded that the solution with the grid above the medium level would be less
affected by the grid spacing. Therefore, the grid with the medium level was adopted in the
following numerical studies, to balance the accuracy and efficiency of the computation.
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Table 5. Grid convergence analysis of the RANS computation.

SG1 SG2 SG3 ε21%SG1 ε32%SG1 RG PG CG UG%SG1

CL 1.334 1.318 1.349 −1.210 2.303 −0.525 - - 1.152
CD 1.156 1.151 1.186 −0.373 2.981 −0.125 - - 1.491

Table 6. Grid convergence analysis of the DES computation.

SG1 SG2 SG3 ε21%SG1 ε32%SG1 RG PG CG UG%SG1

CL 1.015 1.017 1.116 0.222 9.709 0.023 10.898 42.684 0.439
CD 0.802 0.819 0.886 2.095 8.468 0.247 4.030 3.042 3.501

5. Numerical Results
5.1. Lift and Drag Coefficients

Figures 4–11 plot the comparisons of the time histories of CL and CD obtained from
the RANS and DES computations, and the last 2 s of the computations were selected. From
the figures, it can be seen that CL and CD, obtained from the RANS and DES computations,
achieved stable values at small attack angles (α < 15 deg). At the angle of attack α = 15 deg,
obvious fluctuations were presented for CL and CD obtained from the DES computation,
which were not observed in the RANS computation. At the angle of attack α = 20 deg,
both computations presented remarkably irregular fluctuations, and the frequency of
fluctuations was relatively reduced for the DES computation. As the angle of attack
increased further, CL and CD, obtained from the RANS computation, tended to present
regular fluctuations, and the amplitudes of the fluctuations were enlarged with the increase
of the attack angles. Differently, the tendencies of CL and CD, obtained from the DES
computations, were still chaotic, and the amplitudes were relatively less affected by the
attack angles.
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Figure 4. Time histories of (a) CL and (b) CD at α = 5 deg.
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Figure 5. Time histories of (a) CL and (b) CD at α = 10 deg.
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Figure 6. Time histories of (a) CL and (b) CD at α = 15 deg.
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Figure 7. Time histories of (a) CL and (b) CD at α = 20 deg.
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Figure 8. Time histories of (a) CL and (b) CD at α = 25 deg.
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Figure 9. Time histories of (a) CL and (b) CD at α = 30 deg.
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Figure 10. Time histories of (a) CL and (b) CD at α = 35 deg.
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Figure 11. Time histories of (a) CL and (b) CD at α = 40 deg.

Figure 12 plots the comparison of the time-averaged CL and CD obtained from the
RANS and DES computations. The numerical results are also compared with the available
experimental data [3,5]. The time-averaged values of CL and CD take the averaged values
plotted in Figures 4–11. From the experimental data, it can be seen that CL presents a
monotonically increasing tendency at α < 15 deg, and the tendency is approximately linear.
After α > 15 deg, there is a remarkable decline/fluctuant in the tendency. Differently, CD
presents a small value at the small attack angles (α < 15 deg), and it is enlarged remarkably
after α > 15 deg. Hence, the angle of attack α = 15 deg is near the critical point of the
airfoil stall, and the condition of α > 15 deg is known as the post-stall regime. Moreover,
it is shown that a remarkable difference is observed between the experimental data from
Sheldahl and Klimas [3] and Timmer [5]. In particular, a stall hysteresis loop was observed
in the experimental data by Timmer [5]. The differences may derive from the differences in
test conditions, while limited information is published. It is shown that the RANS and DES
computations present rather different tendencies of CL and CD with the variations of the
attack angles, especially for the post-stall regime.
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Figure 12. Cont.
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Figure 12. Comparison of (a) CL and (b) CD between the numerical results and the experimental
data [3,5].

The deviations of CL and CD between the numerical results and the experimental data
are given in Tables 7 and 8. By comparing the numerical results and the experimental
data, it can be seen that for the smaller attack angles (α ≤ 15 deg), the RANS computation
presents better consistency with the experimental data and the deviation of CL is less than
5% for most attack angles. In contrast, the DES computation presents a higher deviation,
with the error reaching about 20%, especially for the angle of attack α = 15 deg. Moreover,
the deviation of CD is relatively higher due to the small magnitude before the stall, reaching
about 150% for the RANS computation and about 200% for the DES computation. As
the angle of attack increases further, the deviations of CL and CD between the RANS
computation and the experimental data are enlarged, reaching about 30% at the largest
angle of attack α = 40 deg. Differently, the deviations between the DES computation and
the experimental data are reduced, with the values reaching about 1% for CL and about 10%
for CD at the angle of attack α = 40 deg. Based on the comparison between the numerical
results and the experimental data, it can be concluded that the RANS computation has
higher accuracy in the prediction of the global loads before the airfoil stall, as well as the
critical point of the airfoil stall, while the DES computation presents a higher accuracy in
the prediction of the global loads after the airfoil stall.

Table 7. Deviation of CL between the numerical results and experimental data.

α (deg). RANS ERR%
(Sheldahl)

ERR%
(Timmer) DES ERR%

(Sheldahl)
ERR%

(Tmmer)

5 0.406 26.257 16.354 0.412 25.107 15.049
10 0.959 1.648 1.273 0.895 8.252 7.902
15 1.048 1.378 4.855 0.819 22.948 25.665
20 0.783 19.328 22.523 1.122 −15.557 −10.981
25 0.861 14.839 11.534 1.058 −4.729 −8.794
30 1.162 −35.867 - 1.073 −25.457 -
35 1.206 −23.025 - 1.024 −4.469 -
40 1.320 −27.559 - 1.020 1.469 -

Table 8. Deviation of CD between the numerical results and experimental data.

α (deg). RANS ERR%
(Sheldahl)

ERR%
(Timmer) DES ERR%

(Sheldahl)
ERR%

(Tmmer)

5 0.016 −73.263 −63.781 0.015 −60.580 −51.792
10 0.024 −56.362 −14.068 0.023 −46.694 −7.015
15 0.061 −142.182 4.196 0.079 −213.138 −23.873
20 0.249 11.695 −72.966 0.313 −11.055 −117.528
25 0.464 −14.461 −93.758 0.412 −1.829 −72.376
30 0.752 −31.855 - 0.536 5.973 -
35 0.914 −22.661 - 0.668 10.357 -
40 1.157 −25.798 - 0.817 11.179 -
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5.2. Shedding Vortex Structures

Figures 13–20 present the comparisons of the transient vortex structures shedding
from the airfoil obtained from the RANS and DES computations. The vortex structures are
visualized with the isosurface of the second invariant of the rate of strain tensor Q, and the
isosurface is colored by the non-dimensional axial velocity Ux/U0. From Figures 13 and 14,
it can be seen that there are almost no vortex structures generated from the airfoil surface
under the small attack angles (α < 15 deg), and the near-wall flow is reduced along the airfoil
surface. Moreover, a minor difference is observed for the RANS and DES computations.
As shown in Figure 15, a slight disturbance of the near-wall flow appears in the RANS
computation at the angle of attack α = 15 deg, but a rather weak shedding vortex is
presented. Differently, a series of remarkable vortices were generated from the latter part
of the airfoil in the DES computation, and the vortex structures developed well along
the downstream.
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Figure 20. Q = 10,000 of the airfoil with α = 40 deg: (a) RANS; (b) DES.

From Figures 16–20, one can see that large-scale shedding vortices are presented in
the RANS and DES computations, as the angle of attack increases further (α > 15 deg). The
vortex structures present remarkable differences between the two numerical methods. In
the RANS computation, two large-scale shedding vortices were generated near the leading
and trailing edges of the airfoil, respectively. The vortex structures are relatively simple,
and obvious spanwise uniformity is observed. By contrast, more vortices in different scales
are observed in the DES computation, and the locations of the shedding vortices cover
the whole upper surface of the airfoil. The vortex structures are rather complicated and
present remarkable spanwise non-uniformity. In particular, the breakup of the large-scale
vortices is well captured by the DES computation, which is predicted unrealistically in the
RANS computation.
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In combination with the computed lift and drag coefficients, it can be concluded that
the variations of the global loads on the airfoil are highly related to the generation and
development of the shedding vortices. For the small angle of attack (α < 15 deg), there is no
obvious vortex structure around the airfoil. Correspondingly, the drag of the airfoil has a
rather small magnitude. At the angle of attack α > 15 deg, remarkable vortex structures
appear and result in a significant increase of the drag. Meanwhile, due to the generation
and development of the shedding vortices, the lift and drag coefficients present obvious
fluctuation tendencies. The fluctuations are regular for the RANS computation and are
chaotic for the DES computation, corresponding to the developments of the shedding
vortex structures, respectively.

5.3. Streamlines and Vorticity Distribution

Figures 21–28 present the comparisons of the transient streamlines and vorticity
contours around the airfoil profiles obtained from the RANS and DES computations. The
mid-span section of Z = 0 was taken into account. Based on the streamlines and vorticity
contours, the attached flow regime, mild separation flow regime, and post-stall flow regime
were identified clearly. As shown in Figures 21 and 22, the attached flow was the dominant
feature for the flow around the airfoil at the small angle of attack (α < 15 deg). It is shown
that the local flow is smooth over the surface of the airfoil and no flow separation occurs.
Moreover, the flow feature is consistent for the RANS and DES computations.
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Figure 23. Streamlines on the mid-span section with α = 15 deg: (a) RANS; (b) DES.
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Figure 25. Streamlines on the mid-span section with α = 25 deg: (a) RANS; (b) DES.

As the angle of attack increases to α = 15 deg, the attached flow regime transforms into
the mild separation flow regime. From Figure 23, one can see that mild flow separation
occurs and an obvious separation bubble is formed near the trailing edge. Meanwhile,
an apparent difference is observed between the flow features captured by the RANS and
DES computations. For the RANS computation, the flow separation point is near the
mid-chord of the airfoil. The separation bubble is formed by a clockwise vortex shedding
from the separation point, and the local flow around the separation bubble is relatively
smooth. As for the DES computation, the separation point is located slightly ahead of that
in the RANS computation. The separation bubble has a larger scale, which is formed by a
couple of vortices, including a clockwise vortex shedding from the separation point and an
anticlockwise vortex generated near the trailing edge.
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At the larger angle of attack (α > 15 deg), the mild separation flow regime transformed
into the post-stall regime. It is shown that the flow separation on the upper surface of the
airfoil was intensified, and the distribution of separated flow changed remarkably with the
increase of the angle of attack. Remarkable differences appeared between the flow fields
from the RANS and DES computations. For the RANS computation, the separation point
moved forward to the leading edge at the attack angles α = 20 deg and 25 deg. Consequently,
a separation bubble covering the whole upper surface was formed, including a clockwise
vortex shedding from the separation point and an anticlockwise vortex generated near the
trailing edge. As the angle of attack increased further, another derived shedding vortex
appeared near the leading edge. Overall, the local flow fields around the airfoil were
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relatively regular in the RANS computation, which was dominated by vortices shedding
from the separation point and the trailing edge. In contrast, the local flow presented by the
DES computation was rather complicated. The flow separation region covered the whole
upper surface of the airfoil, and the separation bubble was formed by a series of chaotic
detached vortices. Different from the regular diffusion of vortices presented by the RANS
computation, the breakup of the large-scale shedding vortices was captured well by the
DES computation. From the streamlines and vorticity distributions, it can be seen that,
due to the generation and development of the shedding vortices, as well as the interaction
between the vortices in different directions, strong unsteady characteristics were observed
for the local flow around the airfoil at the larger angle of attack.

5.4. Pressure Distribution

Figure 29 presents the comparisons of the transient pressure distributions over the
airfoil surface obtained from the RANS and DES computations. Corresponding to the
streamlines and vorticity distributions discussed above, the mid-span section of Z = 0
was taken into account. The pressure on the surface of the airfoil is represented with the
non-dimensional pressure coefficient Cp = p/

(
0.5ρU2

0
)
, where p is the relative pressure.

From Figure 29a,b one can see that the discrepancies of the pressure distributions between
the RANS and DES computations were rather limited at the small attack angles (α < 15 deg),
coinciding with the obtained streamlines and vorticity distribution.

As the angle of attack increased to α = 15 deg, an obvious difference in the pressure
distribution between the RANS and DES computations was observed. According to the
above analysis of the flow field details, a mild flow separation appeared under the condition,
and the separation points in the RANS and DES computations were located at about
x/C = 0.5. From Figure 29c, it can be seen that the negative pressure on the upper surface
was reduced after the separated point. Meanwhile, due to the small recirculation flow
near the trailing edge (as shown in Figure 23), a small negative pressure region appeared
on the upper and lower surfaces near the trailing edge, and it was more distinct for the
DES computation. Overall, the DES computation presents a weaker negative pressure on a
major part of the upper surface, resulting in a lower lift than that of the RANS computation.

For the attack angles α = 20 deg and 25 deg, the difference in the pressure distribution
on the airfoil surface between the RANS and DES computations was more obvious, espe-
cially for the upper surface near the leading edge. Under the conditions, the separation
point of the RANS computation was about x/C = 0.15 for α = 20 deg and about x/C = 0.05
for α = 25 deg, while the separation point of the DES computation was approaching the lead-
ing edge. From Figure 29d,e it can be seen that the negative pressure on the upper surface
was reduced and presented a flat distribution for the RANS computation after the separated
point. Differently, the negative pressure on the upper surface was relatively irregular, in
accordance with the chaotic local flow field. Moreover, the DES computation presented a
stronger negative pressure on the upper surface. As a result, the lift obtained from the DES
computation was higher than that of the RANS computation. For the larger attack angles
α = 30 deg, 35 deg, and 40 deg, the incorrectly separated flow and the diffused vortices in
the RANS computation resulted in a stronger negative pressure on the upper surface of the
airfoil, which consequently led to a much higher lift and drag coefficients. In contrast, the
pressure distribution obtained from the DES computation was more reasonable, according
to the comparison of the lift and drag coefficients with the experimental data.
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Figure 29. Pressure distribution on the mid-span section of the airfoil at (a) α = 5 deg, (b) α = 10 deg,
(c) α = 15 deg, (d) α = 20 deg, (e) α = 25 deg, (f) α = 30 deg, (g) α = 35 deg, and (h) α = 40 deg.

6. Conclusions

In this paper, the flow around the airfoil NACA0018 at high incidences was investi-
gated by using the open-source CFD platform OpenFOAM. RANS and DES methods were
adopted to simulate the local flow fields around the airfoil, with the attack angles covering
the attached flow regime, mild separation flow regime, and post-stall flow regime. Under
the premise of a grid convergence analysis, the effectiveness of the numerical methods
was discussed based on the comparison between the numerical results and the available
experimental data. It is shown that the feasibility of the numerical methods highly depends
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on the flow regime. For the attached flow regime and mild separation flow regime, CL and
CD obtained from the RANS computation presented an agreement with the experimental
data, with the deviation less than 5% for most attack angles. As for the post-stall flow
regime, the DES computation had high accuracy, with the deviation reaching about 1% for
CL and about 10% for CD at the largest angle of attack α = 40 deg.

We discuss the obtained flow features of the shedding vortex structures, streamlines,
and vorticity distribution, as well as the pressure distribution, the flow mechanism of
the airfoil at high incidences, and the effectiveness of the adopted numerical methods.
It is shown that vortex structures are relatively simple and present obvious spanwise
uniformity in the RANS computation. In contrast, vortex structures with different scales are
captured by the DES computation, and the vortex structures present remarkable spanwise
non-uniformity. In particular, different from the regular diffusion of vortices presented by
the RANS computation, the DES computation reproduces the breakup and development of
large-scale shedding vortices. Based on the pressure distribution on the airfoil section, the
feature of the flow separation and its effect on the global loads were explored. Based on
the pressure distribution at high incidences, the unrealistic flow separation and shedding
vortices in the RANS computation resulted in a too-strong suction pressure on the upper
surface of the airfoil. Hence, CL and CD were remarkably overestimated. Differently,
the DES computation presented a more reasonable pressure distribution on the airfoil
surface. As a result, a good agreement was achieved between the DES computation and the
experimental data. From the numerical results, it can be seen that the adopted DES method
is better capable of predicting the flow around the airfoil at high incidences, especially for
the post-stall regime, with remarkable flow separation and large-scale shedding vortices.

This study focused on the effectiveness of RANS and DES methods in the numerical
solution of the flow around an airfoil at high incidences. Although the adopted DES
method presented satisfactory accuracy overall, an obvious deviation appeared near the
critical point of the airfoil stall. In the future, more systematic studies should be performed,
exploring the suitable turbulence model and the DES variant, to further improve the
prediction accuracy of the flow around the airfoil at high incidences.
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