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Abstract: This paper investigates swarm control for unmanned surface vessels subject to multiple
constraints. These constraints can be summarized as model parameter uncertainty, the unavailability
of velocity measurements, time-varying environmental disturbances, input saturation and output
constraints. Firstly, to recover unmeasured velocity information, to identify unknown vehicle dy-
namics and to estimate time-varying environmental disturbances, a neural adaptive state observer
is designed for each vessel. Secondly, to avoid complex calculations, a second-order linear tracking
differentiator is employed to generate a smooth reference signal and to extract the time derivative
of the kinematic control law. Thirdly, to solve the input saturation, an auxiliary dynamic system is
introduced. Fourthly, the barrier Lyapunov function is used to achieve connectivity preservation,
collision avoidance and swarm control. Meanwhile, by using the estimated velocities of vessels,
an output feedback controller is designed. The stability of the closed-loop system is proved. The
simulation results show the effectiveness of the proposed swarm control strategy.

Keywords: swarm control; unmanned surface vehicles; multiple constraints; neural adaptive state
observer; output feedback controller

1. Introduction

In recent years, the swarm control of multiple unmanned surface vehicles (USVs) has
attracted extensive attention. The purpose of swarm control is to drive multiple agents to
accomplish tasks uniformly, which is very different from the traditional control based on
a single object [1]. Swarm control can be applied to a variety of tasks, such as arranging
a group of USVs to form a safe area to protect other vessels [2,3], tracking floating pollu-
tants [4], monitoring environment [5,6], etc. However, USVs will be affected by multiple
constraints in operation. These constraints can be summarized as model parameter uncer-
tainty, unavailability of velocity measurements, time-varying environmental disturbances,
input saturation, and output constraints. These problems will reduce the performance
of the system, and even lead to instability. Therefore, it is necessary to analyze these
constraints and to design a swarm control strategy.

In applications, in addition to position information, velocity information is also very
important. Generally, position information can be easily obtained by GNSS equipment,
while velocity information may not be accurately computed by the GNSS receiver. In the
high-speed operation of USVs, it is more difficult to obtain velocity information that is
sufficiently timely for use in a control algorithm. Meanwhile, velocity obtained from
position measurements by numerical differentiation techniques are often unfeasible due
to inevitable measurement noises [7]. Therefore, it is significant to study output feedback
schemes independent of the velocity measurement [8].

Some control strategies without velocity information have been proposed in the litera-
ture [9–13] such as the back-stepping observer approach [9], high-gain observer [10–12],
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passive nonlinear observer [13], etc. These control schemes have a common premise, that is,
it is assumed that the vessel model parameter is known. However, due to imprecise mea-
surements and external disturbances, accurate model parameters often cannot be obtained.
In general, the hydrodynamic parameters of USVs are also time varying. It is emphasized
that external disturbances and uncertainties can make the entire system unstable [14]. This
increases the difficulty of measurement. In order to deal with uncertain dynamics, neural
network (NN) approaches have been considered due to their inherent advantages including
excellent approximation and learning performance [1,7,15–22].

Due to the power and response speed constraints of the vehicle’s actuator, and the
output constraints of the propeller, the vessel’s control forces and moment cannot be
infinite. Therefore, the amplitude of the control signal is usually limited to a certain range.
Moreover, due to the requirements of different operational scenarios (e.g., acceleration
from stationary to maximum speed, high sea state operation, etc.), the ship will have input
saturation constraints. Otherwise, control input overshoot may occur, which will affect the
performance of the control system and even lead to system instability. In [23], an adaptive
steering control for uncertain ship dynamics with input constraints was designed. In [24],
a dynamic surface control scheme was proposed for a class of uncertain strict-feedback
nonlinear systems subject to input saturation. Furthermore, auxiliary dynamic systems
have been used extensively for nonlinear systems design due to their efficiency and design
flexibility [16,25–27].

In addition to input constraints, another challenge to swarm control for USVs is output
(position) constraints. Prevailing collision avoidance approaches can be divided into two
methodologies, potential functions [28–32] and prescribed performance functions [27,33–36].
Potential function approaches introduce a potential energy function that increases with
the decrease in the distance between USVs. Then, a control low based on the gradient
potential energy function is designed to minimize the potential energy of the system [28–32].
However, this method requires the design of another potential energy function in the
Lyapunov function. Thus, there may be a conflict when choosing parameters that must
simultaneously ensure the stability criteria are met and provide the required collision
avoidance behavior. For the second method, the barrier Lyapunov function (BLF) is an
effective way to prevent the violation of constraints for many practical systems. Many
successful applications of this approach exist in the literature [27,33–36].

Motivated by the aforementioned observations, this work investigates the swarm
control of USVs considering model uncertainties, the unavailability of velocity measure-
ments, time-varying environmental disturbances, input saturation and output constraints.
In summary, the main contributions are as follows.

1. A neural adaptive state observer is designed to recover velocity information and to
estimate composite disturbances including model uncertainty and time-varying envi-
ronmental disturbances.

2. An auxiliary dynamic system is introduced to deal with input saturation. A modi-
fied BLF is provided to achieve connectivity preservation, collision avoidance and
swarm control.

3. In combination with the observer, an output feedback controller is proposed for the
follower USVs based on a second-order linear tracking differentiator, an adaptive law,
a modified BLF and graph theory. Meanwhile, the stability of the closed-loop system
is proved via Lyapunov theory.

This paper is organized as follows. A table of notations and some variables used in
the paper is presented (Table 1). Section 2 describes some preliminaries and mathematical
modeling. Section 3 provides the neural adaptive state observer design. Section 4 presents
the output feedback controller design and analyzes the stability by the Lyapunov method.
Section 5 compares the results of simulations to verify the effectiveness of the proposed
scheme. Section 6 concludes this paper.
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Table 1. Notations and variables used in this paper.

Variable Definition

A \ B Set of elements belonging to A but not belonging to B
|·| Absolute value of a scalar
‖·‖ Euclidean norm
Rm×n m× n dimensional Euclidean space
(·)T Transpose of a matrix
(·)−1 Inverse of a matrix
⊗ Kronecker product of matrix
A ∈ Rn×n Adjacency matrix defined as A = [aij]n×n with aij = aji
di Defined as di = ∑n

j=1 aij
D ∈ Rn×n Degree matrix defined as D =diag{d1, d2, . . . , dn}
diag{di} A block-diagonal matrix with di being the ith diagonal element
L ∈ Rn×n Laplacian matrix defined as L = D −A
B ∈ Rn×n Information exchange matrix defined as B = L−A0
λmin(·) Minimum of eigenvalues of a matrix
λmax(·) Maximum of eigenvalues of a matrix
In n× n dimensional identity matrix
0n n× n dimensional zero matrix

2. Preliminaries and Mathematical Modeling
2.1. Algebraic Graph Theory

Graph theory is used to describe the communication topology of n follower USVs and
a virtual leader vehicle (denoted by 0). A directed graph G = (V , E) consists of a vertex
set V = {0, 1, 2, . . . , n} and the set of edges E ⊆ {(i, j) ∈ V × V}. If (i, j) ∈ E , node j is an
adjacent node of node i. Ni = {j ∈ V , (i, j) ∈ E} represents the set of all adjacent nodes of
node i, as can be seen in [37].

Consider a directed graph G composed of n nodes; the adjacency matrix A = [aij]n×n
represents the link relationship between nodes, where aij = 1, if (i, j) ∈ E ; aij = 0, otherwise.
If aij = aji, the graph is undirected; otherwise, it is directed. The Laplacian matrix is defined
as L = D −A, where D= diag{d1, d2, . . . , dn} with di = ∑n

j=1 aij.
In particular, a diagonal matrix A0 =diag{ai0} is defined as a leader adjacency matrix,

where ai0 = 1, if and only if the ith USV receives information from the virtual leader vehicle;
ai0 = 0, otherwise. Finally, the information exchange matrix is defined as B = L+A0.

Assumption 1. The graph G is directed, and there is at least one spanning tree from root node to
the leader node, i.e., B is a positive definite matrix.

2.2. Barrier Lyapunov Function

Consider a continuous system

ẋ = f (x), x ∈ D, (1)

where D is an open region containing the origin. If a continuously differentiable, positive
definite function V(x) satisfies limx→∂D− V = +∞, and V(x(t)) ≤ b, ∀t ≥ 0, where
x(0) ∈ D, b > 0 is a constant. Then, V(x) is a barrier Lyapunov function, see [33,38].

A barrier Lyapunov function candidate is as follows

V =
1
2

ln
k2

k2 − z2 , (2)

where k > 0 is a constant, −k < z < k.
The following lemma formalizes a result on the use of a BLF candidate for con-

straint satisfaction.
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Lemma 1. For any positive constant k, and any z ∈ R satisfying −k < z < k, we have

ln
k2

k2 − z2 <
z2

k2 − z2 . (3)

Proof. Let p1 = z2

k2−z2 − ln k2

k2−z2 , we have

p1 =
z2

k2 − z2 − ln(1− z2

k2 − z2 ). (4)

As −k < z < k, one has z2 < k2. Then, we have the inequalities as follows:

0 ≤ z2

k2 − z2 <
k2

k2 − z2 = 1− z2

k2 − z2 , (5)

0 ≤ z2

k2 − z2 <
1
2

, (6)

Let p2 = z2

k2−z2 , p3 = − ln(1− p2) + p2. The derivative of p3 is

ṗ3 =
2− p2
1− p2

> 0. (7)

This shows that p3 is continuously increasing and the minimum of p3 is p3min = 0.
Thus, we have ln k2

k2−z2 < z2

k2−z2 .

2.3. Neural Network

For any real continuous function f (ς) : Rn → Rk on a sufficiently large compact set Ω,
there exists a radial basis function neural network (NN) such that

f (ς) = WTh(ς) + ε, (8)

where input vector ς ∈ Ω ⊂ Rn. W = [ω1, ω2, . . . , ωl ]
T ∈ Rk×l represents the output

weight vector, satisfying ‖W‖ ≤W∗ with W∗ > 0 being a positive constant. The NN node
number l > 1. h(ς) = [h1(ς), . . . , hl(ς)]

T. Since the neural function is bounded, there exists
a positive constant hmax > 0 such that ‖h(ς)‖ ≤ hmax. ε ∈ Rk is the approximation error,
satisfying ‖ε‖ ≤ ε∗ with ε∗ > 0 being a positive constant, see [22].

Define Ŵ as an estimate of W, and let the estimation error be denoted by W̃ = Ŵ −W.
The optimal weight vector W is rewritten as

W = arg min
Ŵ∈Rm×n

{
sup
ς∈Ω

∣∣∣ f (ς)− ŴTh(ς)
∣∣∣}, (9)

In this paper, we choose hi(ς) as a Gaussian function, as follows

hi(ς) = exp

{
− (ς− ci)

T(ς− ci)

d2
i

}
, (10)

where ci = [ci1, ci2, . . . , cin]
T is the center of the receptive field, and di is the width of the

Gaussian function.
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2.4. USVs Modeling

Consider a group of USVs consisting of a virtual leader vehicle (subscript 0) and n
follower USVs (subscripts 1, 2, . . . , n). The 3-degree-of-freedom (DOFs) kinematics and
dynamics equations of the ith USV can be expressed in vector form as [39]

η̇i = Ri(ψi)υi, (11)

Miυ̇i + Diυi = τi + di, (12)

where Ri(ψi) is the rotation matrix, given as

Ri(ψi) =

 cos(ψi) − sin(ψi) 0
sin(ψi) cos(ψi) 0

0 0 1

, (13)

with properties: |Ri(ψi)| = 1 and RT
i (ψi)Ri(ψi) = I3. ηi := [xi, yi, ψi]

T is the position
and yaw angle in the earth-fixed frame XEOEYE (see Figure 1). υi := [ui, vi, ri]

T is the
velocity vector in the body-fixed frame XBOBYB. The system inertia matrix Mi ∈ R3×3

is positive definite and constant. The damping matrix Di ∈ R3×3 is also defined as
symmetric and positive. The control input τi := [τi1, τi2, τi3]

T is the control input, which
is produced by the a propeller and a rudder, etc. di := [di1, di2, di3]

T is a time-varying
environmental disturbance.

Figure 1. Earth-fixed frame and body-fixed frame.

In this paper, the input saturation can be described as

τi =


τi,max, if τic > τi,max

τic, if τi,min ≤ τic ≤ τi,max ,
τi,min, if τic < τi,min

(14)

where τi,max ∈ R3 and τi,min ∈ R3 are the maximum and minimum control forces and
moment of the ith vehicle, respectively. τic = [τic1, τic2, τic3]

T is calculated by the controller.
The main goal of this paper is to design an output feedback controller for each USV

to track the reference signal (ηd) subject to model uncertainties and input constraints only
using position measurements. Specifically, it is to achieve the following objectives.

(1) Formation objective: the ith USV is driven to a formation pattern with relative
position and heading, and we have:

lim
t→+∞

‖ηi − ηd − µi‖ ≤ σi, (15)

where ηi := [xi, yi, ψi]
T. ηd := [xd, yd, ψd]

T is the desired reference point. µi := [xiµ, yiµ, ψiµ]
T

represents the expected offset of the vehicle’s position and heading relative to the desired
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reference point, which is the position of the virtual leader. To maintain the USVs in a fixed
formation, µi is a constant vector. σi > 0 is a constant.

(2) Collision avoidance: the position for ith USV must remain within the set

Ωηi = {|ηi − µi| < kic}, (16)

where kic =
kib

λmin(H)
+ ηd + µi, see Section 4.3 for details.

Assumption 2. The reference signal ηd is smooth and differentiable everywhere. Its first derivative
η̇d and second derivative η̈d exist and are bounded.

Assumption 3. The coincident disturbances, which mainly include model uncertainties and time-
varying environmental disturbances, are bounded.

Assumption 4. The position of each USV is available.

Assumption 5. The initial positions of USVs are meeting the maximum collision avoidance
distance, i.e., zi1(0) ∈ Ωzi1 , i = 1, . . . , n. USVs are always within the communication range.

2.5. Environmental Disturbances Modeling

Unmodeled external forces and moments due to wind, ocean currents, and second
waves are lumped together into an earth-fixed slowly varying bias term di ∈ R3 [13,40].
A widely used bias model for USVs is the first-order Markov process. In this paper,
the environmental disturbances are modeled as

di = −RT
i b, (17)

where b represents a first-order Markov process, given as

ḃ = −T−1b + Ebϑb, (18)

where T ∈ R3×3 is a diagonal matrix of positive bias time constants, Eb ∈ R3×3 is a
diagonal matrix scaling the amplitude of ϑb, and ϑb ∈ R3 is a vector of zero-mean Gaussian
white noise.

Remark 1. The USV in this paper has a low speed and the part above the waterline (i.e., super-
structure) is small, and only calm sea conditions are considered in this paper. Therefore, the impact
of sea wind on the USV is ignored. Because the draft of the USV is very shallow, the ocean current
has little impact on it. Therefore, the impact of the ocean current on the USV is not considered.
The wave disturbance consists of a low-frequency part and high-frequency part. The oscillation
motion caused by the high-frequency part shall not enter the feedback control circuit. In this paper,
only the low-frequency part is considered during the control process.

3. Neural Adaptive State Observer Design

In engineering applications, the parameters Mi and Di cannot always be measured
accurately. Under such circumstances, according to Equations (11) and (12), an approximate
model for the dynamics of the ith USV can be written as

η̇i = Riυi, (19)

Miυ̇i = τi − fi(υi), (20)
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where MT
i = Mi is the nominal inertial matrix, which is positive definite. A new variable

ςi is used as the input vector of the NN. ςi = [ηT
i , ηT

i (t− td), ηT
i (t− 2 td), τT

i ]
T, and td is a

positive constant. In Equation (8), the fi(υi) = [ fi1, fi2, fi3]
T is written as

fi(υi) = WT
i hij(ςi) + εi, (21)

where Wi = [Wi1, Wi2, Wi3]
T ∈ Rm×3. j = 1, 2, . . . , m represents the jth neuron. εi ∈ R3 is

the approximation error, satisfying ‖εi‖ ≤ εi,max with εi,max ∈ R being a positive constant.
hij(ςi) ∈ Rm×1, which satisfies

∥∥hij(ςi)
∥∥ ≤ hij,max with hij,max ∈ R being a positive constant.

Let η̂i = [x̂i, ŷi, ψ̂i]
T represent an estimation of ηi, and υ̂i = [ûi, v̂i, r̂i]

T represent an
estimate of υi. Define the position estimation error as η̃i = η̂i − ηi. We design a neural
adaptive state observer (NASO) as

˙̂ηi = Riυ̂i − Koi1η̃i, (22)

Mi ˙̂υi = τi − ŴT
i hij(ςi)− Koi2RT

i η̃i, (23)

where Koi1 ∈ R3×3 and Koi2 ∈ R3×3 are positive definite diagonal gain matrices. Ŵi =
[Ŵi1, Ŵi2, Ŵi3]

T is an estimate of Wi. We design a weight adaptive update law for Ŵi as

˙̂Wik = γikhij(ςi)pik − kiwŴik, k = 1, 2, 3 (24)

where pik = η̃T
i Ri = [pi1, pi2, pi3], and γik > 0 and kiw > 0 are constants.

Define the velocity estimation error as υ̃i = υ̂i − υi. Based on the above analysis,
the dynamic error estimation equations of the NASO can be written as

˙̃ηi = Riυ̃i − Koi1η̃i, (25)

Mi ˙̃υi = −W̃T
i hij(ςi)− Koi2RT

i η̃i + εi, (26)

To facilitate the stability analysis of the NASO, a new variable Xi = [η̃T
i , υ̃T

i ]
T is defined.

Equations (25) and (26) then become

Ẋi = AiXi + Bi

(
−W̃T

i hij(ςi) + εi

)
, (27)

η̃i = CiXi, (28)

where Ai, Bi and Ci are defined as:

Ai =

[
−Koi1 Ri

−Koi2M−1
i RT

i 03

]
, Bi =

[
03

M−1
i

]
,

Ci =
[

I3 03
]
.

(29)

For convenience, a variable χi = TiXi is introduced with Ti =diag{RT
i , I3}. Then, (27)

can be written as

χ̇i = (Ai0 + riST)χi + Bi

(
−W̃T

i hij(ςi) + εi

)
, (30)

where ri is the yaw rate, ST =diag{ST, 03}, and S and Ai0 are defined as:

S =

 0 −1 0
1 0 0
0 0 0

, Ai0 =

[
−Koi1 I3

−Koi2M−1
i 03

]
. (31)

Similarly, Equation (24) is written as

˙̂Wik = γikhij(ςi)sik − kiwŴik, k = 1, 2, 3 (32)
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where sik = χT
i CT

i = [si1, si2, si3].
Using this notation, we can show that the following theorem holds:

Theorem 1. The NASO estimation error is bounded; if the NASO is defined using Equations (27)
and (28), the weight adaptive update law is defined using Equation (32), the parameters satisfy
kiw − γikh2

ij,max > 0 and there exist positive definite symmetric matrices Qi, Pi ∈ R6×6 such that
the linear matrix inequalities (LMIs) are satisfied:

AT
i0Pi + Pi Ai0 + PiBiBT

i Pi + Qi

+ FiFT
i + ri,max(ST

T Pi + PiST) ≤ 0,
(33)

AT
i0Pi + Pi Ai0 + PiBiBT

i Pi + Qi

+ FiFT
i − ri,max(ST

T Pi + PiST) ≤ 0,
(34)

where Fi = CT
i − PiBi; ri,max is the upper bound of ri, satisfying ‖ri‖ ≤ ri,max with ri,max ∈ R

being a positive constant.

Proof. We choose the Lyapunov function Vio as

Vio =
1
2

χT
i Piχi +

1
2

3

∑
k=1

1
γik

W̃T
ikW̃ik, (35)

The time derivative of Vio is

V̇io =
1
2

χT
i

(
Pi Ai0 + AT

i0Pi + riPiST + riST
T Pi

)
χi

+ χT
i PiBi

(
−W̃T

i hij(ςi) + εi

)
+

3

∑
k=1

1
γik

W̃T
ik

˙̃Wik

(36)

Let λi =
1
2 χT

i
(

Pi Ai0 + AT
i0Pi + riPiST + riST

T Pi
)
χi + χT

i PiBi
(
−W̃T

i hij(ςi) + εi
)
, then

V̇io =λi +
3

∑
k=1

1
γik

W̃T
ik

˙̃Wik

=λi +
3

∑
k=1

1
γik

W̃T
ik(

˙̂Wik − Ẇik)

=λi +
3

∑
k=1

W̃T
ikhij(ςi)sik −

3

∑
k=1

kiw
γik

W̃T
ikŴik

=λi + W̃T
i hij(ςi)χ

T
i CT

i −
3

∑
k=1

kiw
γik

W̃T
ikŴik

(37)

Substituting Equations (33) and (34) into (37), then

V̇io ≤
1
2

χT
i

(
Pi Ai0 + AT

i0Pi + riPiST + riST
T Pi

)
χi

+ χT
i FiW̃T

i hij(ςi) + χT
i PiBiεi −

3

∑
k=1

kiw
γik

W̃T
ikŴik

(38)
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Using Young’s inequality [41], we have

χT
i FiW̃T

i hij(ςi) ≤
1
2

χT
i FiFT

i χi +
h2

ij,max

2
W̃T

i W̃i

χT
i PiBiεi ≤

1
2

χT
i PiBiBT

i Piχi +
1
2

ε2
i,max

−W̃T
ikŴik = −W̃T

ik(W̃ik + Wik)

≤ −
∥∥W̃ik

∥∥2
+

(
1
2

∥∥W̃ik
∥∥2

+
1
2
‖Wik‖2

)
≤ −1

2

∥∥W̃ik
∥∥2

+
1
2
‖Wik‖2

(39)

Substituting Equation (39) into (38), then

V̇io ≤
1
2

χT
i

(
Pi Ai0 + AT

i0Pi + riPiST + riST
T Pi + FiFT

i + PiBiBT
i Pi

)
χi

+
h2

ij,max

2
W̃T

i W̃i +
1
2

ε2
i,max +

3

∑
k=1

kiw
2γik

(
−
∥∥W̃ik

∥∥2
+ ‖Wik‖2

)
(40)

Substituting Equations (33) and (34) into (40), then

V̇io ≤−
1
2

λmin(Qi)‖χi‖2 −
3

∑
k=1

1
2γik

(
kiw − γikh2

ij,max

)∥∥W̃ik
∥∥2

+
3

∑
k=1

kiw
2γik
‖Wik‖2 +

1
2

ε2
i,max

≤− ai1Vio + ai2

(41)

As a result of the above control low, V̇io ≤ −ai1Vio + ai2 and this results in the ulti-
mately uniformly bounded regulation of the state.

Then, Equation (41) can be written as

V̇io(t) ≤ −ai1Vio(t) + ai2, (42)

where ai1 = min
{

λmin(Qi)
λmax(Pi)

, kiw − γikh2
ij,max

}
> 0, and ai2 = ∑3

k=1
kiw
2γik
‖Wik‖2 + 1

2 ε2
i,max,

0 < ai2 ≤ ai2,max with ai2,max ∈ R being a positive constant.
The coefficients in the observer design process are determined by Equation (42). Since

the observer design process needs to meet the Lyapunov theory, the selection of parameters
needs to meet Equation (42).

Then, Equation (42) becomes

Vio(t) ≤
[

Vio(0)−
ai2
ai1

]
e−ai1t +

ai2
ai1

, (43)

From Equation (43), when t → ∞, Vio → ai2
ai1

. Thus, the signals in closed-loop are

bounded. Then, the states χi are bounded. Noticing TT
i = T−1

i ,
∥∥TT

i

∥∥ ≤ 1 and using
Xi = TT

i χi, the estimation error signal Xi is bounded.
This completes the proof.

4. Output Feedback Controller Design

Firstly, a neural network adaptive state observer is designed, which can reconstruct
the velocities and estimate the coincidence disturbances. Secondly, an ADS is designed to
deal with the problem of input saturation. Thirdly, in order to solve the problem that the
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first-order filter is sensitive to noise in the traditional dynamic surface control technology,
a second-order linear tracking differentiator (SOLTD) is introduced. Then, an output
feedback controller is designed, as shown in Figure 2.

Figure 2. The structure diagram of swarm control for USVs.

4.1. Auxiliary Dynamic System

In this subsection, an auxiliary dynamic system (ADS) is introduced to solve the input
saturation problem, as can be seen in Figure 2. For ADS, the system input is the deviation
(∆τi), the output is the velocity tracking error compensation (βi1) for ith USV. The ADS is
designed as

β̇i1 = −Li1βi1 + M−1
i ∆τi (44)

where Li1 ∈ R3×3 is a positive definite diagonal matrix. ∆τi = τi − τic, ‖∆τi‖ ≤ ∆τi,max,
∆τi,max > 0 is a constant.

4.2. Output Feedback Controller Design

In this subsection, an output feedback controller for multiple USVs is designed using
dynamic surface control technology. The design process is divided into the following steps.

Step 1: According to the communication topology between USVs, the first tracking
error of the ith USV in the earth-fixed frame is defined as

zi1 = ∑
j∈Ni

aij
(
ηi − ηj − µij

)
+ ai0(ηi − ηd − µi), (45)

where Ni, aij and ai0 are defined in Section 2.1. ηi, ηd and µi are explained in Equation (15),
ηj has similar definition, µij = µi − µj.

For the time derivative of zi1, we obtain

żi1 = aidRiυi − ∑
j∈Ni

aijRjυj − ai0η̇d, (46)

where aid = di + ai0, di and ai0 are defined in Section 2.1.
The kinematic control low (αi) of the ith USV is designed as

αi =
RT

i
aid

{
−Ki1zi1 − κiazi3 + ∑

j∈Ni

aijRjυ̂j + ai0η̇d

}
(47)

where Ki1 ∈ R3×3 is a positive definite diagonal matrix. κia = 2aid +
di
2 > 0 is a constant.

zi3 = [zi3,1, zi3,2, zi3,3]
T with zi3,l =

zi1,l
k2

ib,l−z2
i1,l

, l = 1, 2, 3, zi1 = [zi1,1, zi1,2, zi1,3]
T. Define a

compact set Ωzi1 = {zi1 | −kib < zi1 < kib}, where kib = [kib,1, kib,2, kib,3]
T. Similarly, Rj is

the rotation matrix of jth USV. υ̂j is the velocity vector estimation value.
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To avoid the calculation of the time derivative of αi, and considering the noise sensi-
tivity of the first-order low-pass filter, a SOLTD is introduced as follows{

υ̇ir = υd
ir

υ̇d
ir = −ι2i (υir − αi)− 2ιiυ

d
ir

(48)

where ιi > 0 is a time constant, υir ∈ R3 is the output vector of SOLTD.
Step 2: The second tracking error of the ith USV in earth-fixed frame is defined as

zi2 = υ̂i − υir − βi1. (49)

Using the Equations (23) and (44), the time derivative of zi2, we have

Mi żi2 = −Koi2RT
i η̃i − Ŵihij(ςi) + τic −Mi(υ

d
ir − Li1βi1) (50)

The dynamic equation of the ith USV is designed as

τic = −Ki2zi2 + Ŵihij(ςi) + Mi(υ
d
ir − Li1βi1). (51)

where Ki2 ∈ R3×3 is a positive definite diagonal matrix.
Substituting Equations (47) and (51) into (46) and (50), we obtain

żi1 =− Ki1zi1 − kiazi3 + aidRi(−υ̃i + βi1 + ẑi2

+ qi) + diRjυ̃j,
(52)

Mi żi2 = −Ki2zi2 − Koi2RT
i η̃i, (53)

where qi = υir − αi, ‖qi‖ ≤ qi,max, qi,max > 0 is a constant.

4.3. Stability Analysis

Theorem 2. Consider a closed-loop system subject to model parameter uncertainties, velocity
measurements not being available, time-varying environmental disturbances, input saturation
and output constraints. Let the USV dynamics be given by Equations (19) and (20), NASO by
Equations (22) and (23), weight adaptive update law by Equation (24), ADS by (44), and kinematic
and dynamic equations by Equations (47) and (51). Suppose that the closed-loop system satisfies
Assumptions 1–5. Then, the following statements hold.

(i) All signals in the closed-loop system are uniformly ultimately bounded.
(ii) All USVs track the reference signal with a bounded tracking error.
(iii) The output position of each USV satisfies output constraints.

Proof. Consider the above closed-loop system, and the Lyapunov function Vi is chosen as

Vi =
1
2

n

∑
i=1

{
2Vio +

3

∑
l=1

ln
k2

ib,l

k2
ib,l − z2

i1,l
+ zT

i2Mizi2 + βT
i1βi1

}
(54)

For the time derivative of Vi, we obtain

V̇i =
n

∑
i=1
{V̇io + zT

i3żi1 + zT
i2Mi żi2 + βT

i1 β̇i1}

=
n

∑
i=1
{V̇io − zT

i3Ki1zi1 − kiazT
i3zi3 + zT

i3[aidRi(−υ̃i

+ βi1 + ẑi2 + qi) + diRjυ̃j]− zT
i2Ki2zi2

− zT
i2Koi2RT

i η̃i − βT
i1Li1βi1 + βT

i1M−1
i ∆τi}

(55)
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Using Young’s inequality [41], we have

−zT
i3aidRiυ̃i ≤

aid
2

zT
i3zi3 +

aid
2
‖υ̃i‖2

zT
i3aidRiβi1 ≤

aid
2

zT
i3zi3 +

aid
2
‖βi1‖2

zT
i3aidRizi2 ≤

aid
2

zT
i3zi3 +

aid
2
‖zi2‖2

zT
i3aidRiqi ≤

aid
2

zT
i3zi3 +

aid
2

q2
i,max

zT
i3diRjυ̃j ≤

di
2

zT
i3zi3 +

di
2

∥∥υ̃j
∥∥2

−zT
i2Koi2RT

i η̃i ≤
λmax(Koi2)

2

(
‖zi2‖2 + ‖η̃i‖2

)
βT

i1M−1
i ∆τi ≤

λmax(M−1
i )

2

(
‖βi1‖2 + ∆τ2

i,max

)

(56)

Substituting Equation (56) into (55), we obtain:

V̇i ≤
n

∑
i=1
{V̇io − λmin(Ki1)

3

∑
l=1

ln
k2

ib,l

k2
ib,l − z2

i1,l

−
(

λmin(Ki2)−
aid + λmax(Koi2)

2

)
‖zi2‖2

−
(

λmin(Li1)−
aid + λmax(M−1

i )

2

)
‖βi1‖2

+
λmax(Koi2)

2
‖η̃i‖2 +

aid + di
2
‖υ̃i‖2

+
aid
2

q2
i,max +

λmax(M−1
i )

2
∆τ2

i,max}

≤
n

∑
i=1
{V̇io − bi1

3

∑
l=1

ln
k2

ib,l

k2
ib,l − z2

i1,l
− bi2‖zi2‖2

− bi3‖βi1‖2 + bi4‖η̃i‖2 + bi5‖υ̃i‖2 + bi6}

≤
n

∑
i=1
{V̇io − bi1

3

∑
l=1

ln
k2

ib,l

k2
ib,l − z2

i1,l
− bi2‖zi2‖2

− bi3‖βi1‖2 + λmax(Ai1)‖χi‖2 + bi6}.

(57)

where we select appropriate parameters Ki1, Ki2, Koi2 and Li1 to meet:

bi1 = λmin(Ki1) > 0, (58)

bi2 = λmin(Ki2)−
aid + λmax(Koi2)

2
> 0, (59)

bi3 = λmin(Li1)−
aid + λmax(M−1

i )

2
> 0, (60)

bi4 =
λmax(Koi2)

2
> 0, (61)

bi5 =
aid + di

2
> 0, (62)

and bi6 = aid
2 q2

i,max +
λmax(M−1

i )
2 ∆τ2

i,max, Ai1 =diag{bi4, bi5}.
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Substituting Equation (40) into (57), we obtain

V̇i ≤
n

∑
i=1
{ − ai1Vio − bi1

3

∑
l=1

ln
k2

ib,l

k2
ib,l − z2

i1,l
− bi2‖zi2‖2

− bi3‖βi1‖2 + λmax(Ai1)‖χi‖2 + ai2 + bi6}

≤
n

∑
i=1
{ −

(
ai1 −

λmax(Ai1)

λmin(Pi)

)
Vio

− bi1

3

∑
l=1

ln
k2

ib,l

k2
ib,l − z2

i1,l
− bi2‖zi2‖2

− bi3‖βi1‖2 + ai2 + bi6}
≤ −ci1Vi + ci2

(63)

As a result of the above control low, V̇i ≤ −ci1Vi + ci2 and this results in the ultimately
uniformly bounded regulation of the state.

Then, Equation (63) can be written as

V̇io(t) ≤ −ci1Vio(t) + ci2, (64)

where ci1 = min
{

ai1 − λmax(Ai1)
λmin(Pi)

, 2bi1, 2bi2
λmax(Mi)

, 2bi3

}
> 0, and ci2 = ∑n

i=1{ai2 + bi6},
0 < ci2 ≤ ci2,max with ci2,max ∈ R being a positive constant.

The coefficients in the controller design process are determined by Equation (64).
Since the controller design process needs to meet the Lyapunov theory, the selection of
parameters needs to meet Equation (64).

From the Equation (64), when t→ ∞, Vio → ci2
ci1

. Then, Equation (64) becomes

Vio(t) ≤
[

Vio(0)−
ci2
ci1

]
e−ci1t +

ci2
ci1

, (65)

According to the definition of the Lyapunov function Vi and Theorem 1, it can be

concluded that χi, W̃i, zi2, βi1 and ln
k2

ib,l
k2

ib,l−z2
i1,l

are bounded, where ln
k2

ib,l
k2

ib,l−z2
i1,l

implies that

zi1 always remains within the set Ωzi1 . Therefore, all signals in the closed-loop system are
uniformly ultimately bounded.

Therefore, conclusion (i) is valid.
We now prove (ii) of Theorem 2. The tracking error of the ith USV in the earth-fixed

frame is defined as δi = ηi − ηd − µi. According to the definition of zi1 in Equation (45),
we have

z1 = (H⊗ I3)δ, (66)

where z1 = [zT
11, zT

21, . . . , zT
n1]

T and δ = [δT
1 , δT

2 , . . . , δT
n ]

T. H is defined in Section 2.1.
According to Assumption 1, all eigenvalues of matrixH have positive real parts. Thus,

we obtain

‖δ‖ ≤ ‖z1‖
λmin(H)

(67)

According to Equation (63), the variable zi1 satisfies ‖zi1‖ ≤
√

ci2,max/bi1. Therefore, δ
is bounded. Thus, all USVs track the reference signal with a bounded tracking error. These
prove that ii) holds.

From the Lemma 1 and BLF candidate ln
k2

ib,l
k2

ib,l−z2
i1,l

, we obtain
∣∣zi1,l

∣∣ < kib,l , i.e., −kib,l <

zi1,l < kib,l .
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Using Equation (66) and δi = ηi − ηd − µi, we have

ηi ≤
kib

λmin(H)
+ ηd + µi (68)

Let kic = kib
λmin(H)

+ ηd + µi. That is, the output of each USV is always kept in set
Ωηi = {ηi | −kic < ηi < kic}. Therefore, conclusion iii) is valid.

This completes the proof.

5. Simulation Results

Simulations are carried out with Matlab 2018a. The simulations are run on a PC with
a dual-core 2.30 GHz Intel(R) Core(TM) i5-8300H CPU and 8 GB of RAM.

In this section, we simulate a USV swarm consisting of one virtual leader vehicle
(indexed by 0) and four follower USVs (indexed by 1, 2, 3, 4, 5, 6) to demonstrate the ef-
fectiveness of the proposed method. The directed communication graph is shown in
Figure 3.

Figure 3. Directed communication topology.

In simulations, the model of surface ship Cybership II is used [42]. The time-varying
environmental disturbances are modeled as a first-order Markov process [40]. The control
forces and moment are limited as τi1,max = −τi1,min = 2 N, τi2,max = −τi2,min = 2 N and
τi3,max = −τi3,min = 1.5 Nm. The constraint kib is set as kib = [0.6 m, 0.6 m, 0.2 rad]T.
The desired reference trajectory ηd is generated as Equation (69). Some parameters are set
as shown in Table 2.

ηd =



[
t

10
, 0, 0], 0 ≤ t < 50;

[5 sin(
1

50
(t− 50)) + 5,−5 cos(

1
50

(t− 50)) + 5,
1

50
(t− 50)],

50 ≤ t < 50 + 50π;

[−5 sin(
1

50
(t− 50− 50π)) + 5,−5 cos(

1
50

(t− 50− 50π)) + 15,

1
50

(t− 50− 50π)], 50 + 50π ≤ t < 50 + 100π;

[
1
10

(t− 50− 100π), 20, 0], 50 + 100π ≤ t ≤ 400;

(69)

Table 2. The parameters of six USVs.

µi Parameters/(m, m, rad) ηi Parameters/(m, m, rad)

µ1 [1.2, 0, 0]T η1 [1.4, 0.2, π/5]T

µ2 [0.6, 1.2, 0]T η2 [0.7, 1.0, π/5]T

µ3 [−0.6, 1.2, 0]T η3 [−0.7, 1.0, π/5]T

µ4 [−1.2, 0, 0]T η4 [−1.3, 0.2, π/5]T

µ5 [−0.6,−1.2, 0]T η5 [−0.5,−1.5, π/5]T

µ6 [0.6,−1.2, 0]T η6 [0.7,−1.5, π/5]T

5.1. Performance of Proposed Control Strategy

In this subsection, the simulation results are given to verify the performance of the
proposed control strategy. The parameters of environmental disturbance are selected as T =
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diag{10−3, 10−3, 10−3}, b(0) = [0, 0, 0]T, Eb = diag{10−5, 10−5, 10−5}, ϑb = [0.1, 0.1, 0.1]T.
The parameters of the observer are selected as Koi1 = diag{30, 30, 30}, Koi2 = diag{30, 30, 30},
γi = 1000 and ki = 0.2. The parameters of the controller are chosen as ιi = 0.001,
Ki1 = diag{0.6, 0.6, 0.6} and Ki2 = diag{1.1, 1.1, 1.1}.

The simulation results are shown in Figures 4–8. Figure 4 shows the trajectories of six
USVs under time-varying environmental disturbance and input saturation. It can be shown
that, after adjustment, the position and heading of six USVs can reach the present point,
maintain the desired relative position between each other, and realize the swarm control
of multiple USVs in a fixed formation, even if there is a position and heading deviation at
the initial time. Figure 5 describes the tracking errors of four USVs, including the position
and heading. It can be seen from Figure 5 that the tracking error is convergent. Figure 6
shows the control input of six USVs. According to the analysis of Figure 6, the control
input is limited within the range of input constraints. Therefore, the input saturation can
be realized using the ADS designed in this paper.
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Figure 4. Trajectories of six USVs.

Figure 5. Tracking errors of six USVs.
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Figure 6. Control input of six USVs.
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Figure 7. Velocity estimation performance of NASO with solid lines for the real states and dashed
lines for their estimation.
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Taking USV 1 as an example, the estimation effects of the observer are shown in
Figures 7 and 8. Figure 7 depicts the comparison effect between the real value and the
estimated value of the velocity. The solid lines and dashed line represent the real value
and estimated value, respectively. It can be seen from Figure 7 that the designed NASO
is effective and can realize the estimation of speed. Figure 8 describes the real values and
estimated values of the total unknown function acting on the first USV. It can be seen from
Figure 8 that the NASO is stable despite boundary estimate errors.

5.2. Comparison Group

To further illustrate the effectiveness of the proposed control strategy, a neural adaptive
dynamic surface control (NADSC) approach without ADS is considered, whose motion is
described by 

zi1 = ∑
j∈Ni

aij
(
ηi − ηj − µij

)
+ ai0(ηi − ηd − µi)

αi =
RT

i
aid

{
−Ki1zi1 − κiazi3 + ∑

j∈Ni

aijRjυ̂j + ai0η̇d

}
υ̇ir = υd

ir = −ι2i (υir − αi)

zi2 = υ̂i − υir

τic = −Ki2zi2 + Ŵihij(ςi) + Miυ
d
ir

(70)

where the parameters are set to be the same as the proposed controller.
The simulation results are shown in Figures 9–11. Figure 9 describes the tracking

error of six USVs without ADS. Compared with Figure 5, it can be concluded that the
tracking error fluctuates greatly at 0–10 s. Figure 10 shows the control input of six USVs
without ADS. Compared with Figure 6, it can be concluded that the control input fluc-
tuates greatly at 0–10 s. Figure 11 depicts the control inputs of six USVs without input
constraints. It can be seen from Figure 11 that the maximum control force and moment
is τi = [τi1, τi2, τi3]

T = [200 N, 200 N, 150 Nm]T. Compared with Figure 6, the maximum
control force and torque of the USV were exceeded.

To summarize, the proposed approach combining the NASO, ADS and LBF success-
fully handled the output feedback swarm control problem with satisfactory results.

Figure 9. Tracking errors of six USVs using NADSC without ADS.
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Figure 10. Control input of six USVs using NADSC without ADS.
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Figure 11. Control input of six USVs using NADSC without ADS and input constraint.

6. Conclusions

This paper investigated swarm control for USVs in the presence of model uncertainty,
the unavailability of velocity measurements, unknown environmental disturbances, input
saturation and output constraints. NASO is designed to estimate the unknown model
uncertainty, unmeasured velocity and unknown environmental disturbance. ADS is intro-
duced to mitigate the input saturation problem. An output feedback controller is designed,
which is composed of NASO, ADS, SOLTD and BLF. The stability of the system is proved
via the Lyapunov method. Finally, the effectiveness of the proposed control strategy is
verified in simulation. However, in the process of designing the output feedback controller,
we do not take the problem of obstacle avoidance into account. Then, this will be the focus
of our research.
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42. Skjetne, R.; Kokotović, P.V. Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory. Automatica
2005, 41, 289–298. [CrossRef]

http://dx.doi.org/10.1109/72.822511
http://dx.doi.org/10.1016/j.oceaneng.2018.08.020
http://dx.doi.org/10.1109/TCST.2006.872507
http://dx.doi.org/10.1016/j.automatica.2012.11.026
http://dx.doi.org/10.1109/TNNLS.2014.2360933
http://www.ncbi.nlm.nih.gov/pubmed/25494515
http://dx.doi.org/10.1016/j.oceaneng.2021.109158
http://dx.doi.org/10.1109/TVT.2020.3039220
http://dx.doi.org/10.3390/app10103372
http://dx.doi.org/10.1109/TCST.2007.908214
http://dx.doi.org/10.1016/j.robot.2011.03.003
http://dx.doi.org/10.1109/TITS.2014.2313313
http://dx.doi.org/10.1016/j.automatica.2015.01.043
http://dx.doi.org/10.1109/TIE.2019.2898599
http://dx.doi.org/10.1080/00207179.2011.631192
http://dx.doi.org/10.1109/TVT.2017.2760367
http://dx.doi.org/10.1109/TCYB.2018.2834919
http://dx.doi.org/10.1016/j.automatica.2019.03.022
http://dx.doi.org/10.1016/j.automatica.2014.10.127
http://dx.doi.org/10.1016/j.automatica.2017.07.028
http://dx.doi.org/10.1016/S0005-1098(98)00121-6
http://dx.doi.org/10.1109/TCST.2008.922584
http://dx.doi.org/10.1016/j.automatica.2004.10.006

	Introduction
	Preliminaries and Mathematical Modeling
	Algebraic Graph Theory
	Barrier Lyapunov Function
	Neural Network
	USVs Modeling
	Environmental Disturbances Modeling

	Neural Adaptive State Observer Design
	Output Feedback Controller Design
	Auxiliary Dynamic System
	Output Feedback Controller Design
	Stability Analysis

	Simulation Results
	Performance of Proposed Control Strategy
	Comparison Group

	Conclusions
	References

