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Abstract: To improve the safety and reliability of offshore structures subject to wave loading, the
active vibration control problem is always one of significant issues in the field of ocean engineering.
This paper deals with the near–optimal control problem of offshore structures with a nonlinear
energy sink (NES) mechanism. By taking the dominant vibration mode of the offshore structure
with the NES into account, a nonlinear dynamic model of the steel–jacket structure subject to wave
loading is presented first. Then, using the parameter perturbation approach to solve a nonlinear
two–point boundary value problem, an NES–based optimal controller with the form of infinite series
sum is presented to suppress the vibration of the offshore structure. Third, an iteration algorithm is
provided to obtain the near–optimal controller. Simulation results demonstrate that the NES–based
near–optimal controller can mitigate the oscillation amplitude of offshore structures significantly.
Moreover, the NES–based optimal controller outperforms the one based on active tuned mass damper.

Keywords: offshore structure; optimal control; nonlinear energy sink; feedforward

1. Introduction

Offshore structures are generally located in a complex marine environment and suffer
a variety of external loads such as wind, waves, earthquakes and currents [1–4]. It is known
that these loads may cause the offshore structures to experience continuous vibrations,
which affects the service life of the platform and even threaten the lives of staff. To suppress
the vibrations and guarantee the safety of the offshore structures, passive and/or active
control of offshore structures has aroused more and more attention, and several control
schemes, such as nonlinear and robust control [1,5], optimal control [6], sampled-data
control [7,8], delayed dynamic output feedback control [9], sliding mode control [9,10], and
networked control [11,12], have been reported. A more detailed review of the vibration
control of offshore structure can be found in [13–16], and the references therein. Most
recently, for a floating-type platform, an active-tuned heave-plate mechanism is presented
and then an event-triggered robust control scheme is developed for those platforms subject
to deception attacks.

Note that the aforementioned active control strategies are mainly based on a tuned mass
damper and a tuned liquid damper device. In fact, these mechanisms are extensively used
to reduce the vibration of offshore structures in a passive and/or active manner. It is not
difficult to find that such devices are generally treated as a linear component and are made
use of for vibration absorbers. In other words, such dynamic vibration absorbers are the
strength of linear damping systems. It is believed that the linear characteristics of the system
are simple to realize. However, the damping effects of the system may be limited to some
degree. Therefore, a natural question is that, in order to further improve the performance of
the offshore structures, are there any other devices with nonlinear characteristics for vibration
suppression? To answer this question is our main motivation in this study.
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In recent years, as one of the novel types of nonlinear dynamic vibration absorbers,
nonlinear energy sink (NES) has attracted much attention in passive and/or active struc-
tural vibration areas [17–21]. Contrary to the classic dynamic vibration absorber, i.e, the
tuned mass damper (TMD), NES has no fixed frequency because of the introduced non-
linear rigidity. In fact, it is found that the NES mechanism has better robustness against
detuning and the potential ability of resonance capture cascading [22,23]. Thus, vibration
suppression via a nonlinear vibration system can be further realized. It has been demon-
strated that the NES is effective in suppressing the vibration of structure systems, and
different types of NES, such as hysteretic NES [24], tuned bistable NES [25], and lever-type
NES [26] have been proposed. In addition, NES–based vibration absorbers have been
investigated and applied in several practical systems. For example, the flywheel system
vibration reduction [27], nonlinear fluid-conveying pipe [28], panel flutter suppression [29],
coupled oscillators [30], vibration suppression of nonlinear beams [31], and so on. Most
recently, the NES mechanism is introduced to mitigate the vibration of offshore wind
turbine towers [32,33]. Specifically, an NES is introduced as a passive device to control the
vibration of offshore structures subject to wave loading [34], where a comparative analysis
of the damping performance of NES and TMD has been made. It is shown that compared
with the TMD, the NES can achieve better damping effects on the offshore structure. Due
to the robustness of the vibration frequency and efficiency of vibration damping, there is a
great development and utilizing prospect of the active control of the offshore structure.

In this paper, an active NES mechanism is introduced to control the marine structure in
the presence of wave loading. First, based on the active NES mechanism, a nonlinear vibra-
tion model of the offshore platform is established. Then, NES-based optimal control scheme
under finite horizon is proposed. Third, using parametric perturbation approach [35], a
numerical algorithm is developed to design the near-optimal controller. Simulation results
are provided to demonstrate the effectiveness of NES-based optimal controller and the
superiority over the TMD-based optimal controller for the offshore structure.

The rest of the paper is organized as follows: the next section formulates the optimal
control problem, where a nonlinear dynamic model of the offshore structure with an NES is
presented, and a quadratic performance index functional under finite horizon is given. In
Section 3, an NES–based optimal control scheme is developed, and a numerical algorithm
is derived to compute the near–optimal controller. In Section 4, simulation results are
given to show the effectiveness and advantages of the presented control scheme. The main
conclusions are summarized in Section 5.

2. Problem Formulation

The offshore structure with an active NES mechanism considered in this paper is depicted
in Figure 1, where the first vibration mode of the offshore structure equipped with an NES is
adopted to describe dynamic characteristics of the structure vibration system. By Newton’s
second law of motion, the dynamic equation of the offshore structure can be expressed as{

m1 ẍ1 = −c2(ẋ1 − ẋ2)− k2(x1 − x2)
3 − u(t)− c1 ẋ1 − k1x1 + w(t)

m2 ẍ2 = c2(ẋ1 − ẋ2)− k2(x2 − x1)
3 + u(t)

(1)

where m1, c1 and k1 are the mass, damping, and stiffness of the first vibration mode of the
platform, respectively; m2, c2, and k2 represent the mass, damping and stiffness of the NES,
respectively; x1 and x2 represent displacements of the structure and the NES, respectively;
u(t) is the control input, and w(t) is the external wave load acting on the structure.

Let
z1(t) = x1(t), z2(t) = ẋ1(t), z3(t) = x2(t), z4(t) = ẋ2(t)

and denote
z(t) = [z1(t) z2(t) z3(t) z4(t)]T
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Then from (1), one yields the state space model of the structure as

ż(t) = Az(t) + Bu(t) + H f (z(t)) + Dw(t) (2)

where f (z) = (z1 − z3)
3 and

A =


0 1 0 0
− k1

m1
− c1+c2

m1
0 c2

m1
0 0 0 1
0 c2

m2
0 − c2

m2


B =

[
0 − 1

m1
0 1

m2

]T

D =
[

0 1
m1

0 0
]T

H =
[

0 − k2
m1

0 k2
m2

]T

(3)

Suppose that the wave propagation is unidirectional, and the wave force w(t) comes
from the direction of x-axis. As stated in [36], w(t) can be expressed as

w(t) =
∫ d

0
φ(s)ς(ω, s, t)dz (4)

where ω is the wave frequency, s is the vertical coordinate, φ(s) is the shape function, d
denotes the water depth, and ς(s, t) represents the wave force per unit length along the
structural members. Based on Morison equation, it can be computed as [36]

ς(ω, s, t) =
1
2

ρCdD̃

√
8
π

συ(ω, s)υ(ω, s, t) +
1
4

ρπCmD̃2υ̇(ω, s, t) (5)

where Cd the drag coefficient and Cm the inertia coefficient, ρ the fluid density, D̃ the
diameter of the cylinder, υ(ω, s, t) the water particle velocity, υ̇(ω, s, t) the water particle
acceleration, and συ(ω, s) the standard deviation of the velocity at location s.

Figure 1. An NES-based offshore structure.

Denote

∇(ω, s) =
ω cosh(kz)
sinh(kd)

, 4(ω, s) =
−jω2 cosh(kz)

sinh(kd)
(6)
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where k represents the wave number satisfying ω2 = gk tanh(kd), g is the acceleration of
gravity, and j =

√
−1. Then, it follows from the linear wave theory that [36]

υ(ω, s, t) = ∇(ω, s)η(t) (7)

υ̇(ω, s, t) = 4(ω, s)η(t) (8)

σv(ω, s) =
[∫ ω

0
|4(ω, s)|2Sη(ω)dω

]1/2
(9)

where η(t) represents the wave elevation, in this paper, it is determined by JONSWAP
wave spectrum as [36]

Sη(ω) =
5H2

s
16ω0

(ω0

ω

)5
exp

[
−1.25

(ω0

ω

)4
]

γ̄β (10)

with Hs the significant wave height, ω0 the peak frequency, 0 ≤ γ̄ ≤ Hs is the coefficient of
peakedness, and

β = exp

[
−
(

ω−ω0√
2θω0

)2
]

where θ = 0.09 for ω > ω0 and θ = 0.07 for ω ≤ ω0.
Suppose that the jth component ηj(t) of the wave elevation is approximated by [6]

ηj(t) = aj cos(−ωjt + ς j) (11)

where aj and ωj are amplitude and frequency of the wave, respectively, and 0 ≤ ς j ≤ 2π
represents the random phase angle. Then, from [6], one obtains

η(t) =
m

∑
i=1

ηi(t) (12)

where m represents a positive integer.
Denote

M =

[
M0 I
G M0

]
, N = Π

[
H N0

]
(13)

where M0 and N0 represent the m×m and 1×m null matrices, respectively, I is the m×m
identity matrix, the matrices G, H and Π are given as

G = −diag{ω2
1, ω2

2, · · · , ω2
m}

H =
[

1 1 · · · 1
]
, Π =

m
∑

j=1
∇(ωj)

(14)

with ∇(ωj) =
∫ d

0 φ(s)ς(ωj, s, t)dz. Then, the wave force w(t) can be formulated as an
output of following exosystem [6,15]:

ξ̇(t) = Mξ(t), w(t) = Nξ(t) (15)

where ξ(t) =
[

η1(t) · · · ηm(t) η̇1(t) · · · η̇m(t)
]T .

Remark 1. Generally, the active tuned mass damper is applied to control the vibration of the offshore
structure. In this case, the dominant characteristics of the structure are determined by a linear
system subject to parametric perturbations and external disturbance. In this paper, a nonlinear
energy sink is introduced to suppress the vibration of the offshore structure. Correspondingly, the
offshore structure is modeled as a nonlinear system subject to external wave force, which can be
observed from (2).
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Remark 2. The exosystem (15) provides a scheme to approximately compute the wave force on the
offshore steel jacket structure. In other words, the dynamic characteristics of the wave force can be
described by the exosystem, which can be used to analyze and simulate the wave force conveniently.
For example, in this paper, due to the given dynamic properties of the wave, a feedforward mechanism
can be adopted to design an active controller to enhance the performance of the structure.

In this paper, a near-optimal control law u∗(t) with feedforward components is de-
signed for the nonlinear system (2) such that the following finite horizon quadratic perfor-
mance index is to be minimized:

J(u(t)) =
1
2

zT(t f )Q f z(t f ) +
1
2

∫ t f

0
[zT(t)Qz(t) + ru2(t)]dt (16)

where Q f and Q are 4× 4 semi-positive definite symmetric matrices, and r > 0.

3. Design of NES-Based Near-Optimal Controller

In this section, an NES-based near-optimal control scheme with feedforward compo-
nents is developed, and an iteration algorithm is provided to design the near-optimal controller.

3.1. NES-Based Optimal Controller Design

By optimal control theory, one obtains the quadratic optimal control law as

u(t) = −r−1BTλ(t) (17)

where 4× 1 Lagrange multiplier vector λ(t) satisfies the following boundary value problem as{
ż(t) = Az(t)− r−1BBTλ(t) + H f (z(t)) + DNξ(t), z(0) = z0
λ̇(t) = −[AT + HT f T

z (z(t))]λ(t)−Qz(t), λ(t f ) = Q f z(t f )
(18)

where fz(z(t))) =
∂ f (z(t))

∂z
.

In general, it is not easy to obtain the analytical solution of the above nonlinear two-
point boundary value problem. To numerically solve this problem and design the optimal
control law, in this paper, a parameter perturbation approach [35] is adopted.

Introduce a small parameter κ, 0 ≤ κ ≤ 1, and construct two-point boundary value
problems with the parameter κ as follows:{

ż(t, κ) = Az(t, κ)− r−1BBTλ(t, κ) + DNξ(t) + κH f (z(t, κ), κ), z(0, κ) = z0
λ̇(t, κ) = −[AT + κHT f T

z (z(t, κ), κ)]λ(t, κ)−Qz(t, κ), λ(t f , κ) = Q f z(t f , κ)
(19)

Correspondingly, from (17), one obtains

u(t, κ) = −r−1BTλ(t, κ) (20)

Note that as κ = 0, the nonlinear boundary value problem (19) reduces to a linear one,
and as κ = 1, it is equivalent to the original problem (18), and the control law (20) reduces
to the one in (17).

Suppose that at κ = 0, the functions z(t, κ), λ(t, κ), u(t, κ), f (z(t, κ), κ), and fz(z(t, κ), κ))
are infinitely differentiable with respect to κ, and at κ = 1, the following Maclaurin series
are convergent [35] :

ϕ(t, κ) = ∑∞
j=0

κ j

j!
ϕ̃(j)(t), ϕ ∈ {z, u, λ}

ϑ(z(t, κ), κ)) = ∑∞
j=0

κ j

j!
ϑ̃(j)(z̃(t)), ϑ ∈ { f , fz}

(21)
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where

ϕ̃(j)(t) =
∂j ϕ(t, κ)

∂κ j |κ=0, ϑ̃(j)(z̃(t)) =
∂jϑ(z(t, κ), κ)

∂κ j |κ=0

Substituting (21) into (19) and comparing the coefficients of κ j, j = 0, 1, 2, · · · , one yields{
˙̃z(0)(t) = Az̃(0)(t)− r−1BBTλ̃(0)(t) + DNξ(t), z̃(0)(0) = z0
˙̃λ(0)(t) = −ATλ̃(0)(t)−Qz̃(0)(t), λ̃(0)(t f ) = Q f z(0)(t f )

(22)

and 
˙̃z(j)(t) = Az̃(j)(t)− r−1BBTλ̃(j)(t) + jH f̃ (z̃(j−1)(t)), z̃(j)(0) = z0

− ˙̃λ(j)(t) = ATλ̃(j)(t) + Qz̃(j)(t) + jHT f̃z(z̃(j−1)(t))λ̃(j−1)(t)
λ̃(j)(t f ) = Q f z(j)(t f ), j = 1, 2, · · ·

(23)

Correspondingly, the control-related sequences are obtained as

ũ(j)(t) = −r−1BTλ̃(j)(t), j = 0, 1, 2, · · · (24)

Note that the obtained two-point boundary value problems (22) and (23) subject to
z̃(j)(t) and λ̃(j)(t) can be solved iteratively. Consequently, the optimal control law of the
platform system is in the form as

u(t) = −r−1BT
∞

∑
j=0

λ̃(j)(t) (25)

In what follows, two cases, i.e., j = 0 and j = 1, 2, · · · are discussed respectively. First,
the case of j = 0 is taken into account. Let

λ̃(0)(t) = X1(t)z̃(0)(t) + X2(t)ξ(t) (26)

where X1(t) is a 4× 4 matrix satisfying the Riccati matrix differential equations as

−Ẋ1(t) = X1(t)A− ATX1(t)−Q + r−1X1(t)BBTX1(t), X1(t f ) = Q f (27)

and X2(t) is a 4× 2m matrix to be determined.
From (24) and (26), one yields

ũ(0)(t) = −r−1BT [X1(t)z̃(0)(t) + X2(t)ξ(t)] (28)

Further, from (22), one obtains

˙̃z(0)(t) = S(t)z̃(0)(t) + (DN − r−1BBTX2(t))ξ(t) (29)

and
− ˙̃λ(0)(t) = [Q + ATX1(t)]z̃(0)(t) + ATX2(t)ξ(t) (30)

where
S(t) = A− r−1BBTX1(t) (31)

Note from (26), (29), and (30), together with (15) and (27), it is easy to obtain that the
matrix X2 satisfies the following equations as

−Ẋ2(t) = X2(t)M + ST(t)X2(t) + X1(t)DN, X2(t f ) = Q0 (32)

with Q0 the 4× 2m null matrix.
Clearly, by solving matrix differential Equations (27) and (32), one can obtain the

matrices X1(t) and X2(t), respectively. Then, by (28) and (29), the initial values of control
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and state variables ũ(0)(t) and z̃(0)(t) can be solved. Further, by solving two-point boundary
value problems (23), for j = 1, 2, · · · , ũ(j)(t) and z̃(j)(t) can be computed. For this, let

λ̃(j)(t) = X1(t)z̃(j)(t) + g̃(j)(t), j = 1, 2, · · · (33)

where g(j)(t) is a 4× 1 nonlinear compensation vector to be determined, and g̃(0)(t) = g0
with g0 representing a 4× 1 null vector.

It follows from (24) and (33) that

ũ(j)(t) = −r−1BT [X1(t)z̃(j)(t) + g̃(j)(t)], j = 1, 2, · · · (34)

and from (23), one obtains

˙̃z(j)(t) =S(t)z̃(j)(t)− r−1BBT g̃(j)(t) + jH f̃ (z̃(j−1)(t)), j = 1, 2, · · · (35)

and

˙̃λ(j)(t) =[Ẋ1(t) + X1(t)S(t)X1(t)]z̃(j)(t) + ˙̃g(j)(t)− r−1X1(t)BBT g̃(j)(t)

+ jX1(t)H f̃ (z̃(j−1)(t)), j = 1, 2, · · · (36)

Note from (33) and (36), one yields

− ˙̃λ(j)(t) =[Q + ATX1(t)]z̃(j)(t) + AT g̃(j)(t)

+ jHT f̃ T
z (z̃

(j−1)(t))λ̃(j−1)(t), j = 1, 2, · · · (37)

Then from (36) and (37), together with (27), one yields

− ˙̃g(j)(t) =ST(t)g̃(j)(t) + jX1(t)H f̃ (z̃(j−1)(t)) + jHT f̃ T
z (z̃

(j−1)(t))X1(t)z̃(j−1)(t)

+ jHT f̃ T
z (z̃

(j−1)(t))g̃(j−1)(t), j = 1, 2, · · · (38)

By iteratively solving two-point boundary value problems (35) and (38), one can obtain
z̃(j)(t), g̃(j)(t), and ũ(j)(t). Further, from (25), one can compute the optimal control law u(t).

Now, a Proposition is given to present the existence and uniqueness of the optimal
control law of the offshore structure system (2).

Proposition 1. Consider the quadratic optimal control problem of the nonlinear offshore structure (2)
subject to (16). There exists an optimal control law as:

u(t) = −r−1BT [X1(t)z(t) + X2(t)ξ(t) + g∗(t)] (39)

where X1(t) and X2(t) are unique solutions of the Riccati Equation (27) and Lyapunov Equation (32),
respectively, and

g∗(t) =
∞

∑
j=0

g̃(j)(t)
j!

(40)

with g̃(j)(t) satisfying the differential Equations (29), (35) and (38), j = 0, 1, 2, · · · , and g̃(0)(t) = g0.

Remark 3. It should be pointed out that, in this paper, to obtain the optimal control law of the
nonlinear offshore structure, the solution of nonlinear two-point boundary value problem (18) is
required. To solve this problem, a small perturbation parameter, κ, is introduced. Based on such a
parameter, the original nonlinear two-point boundary value problem is transformed into a series new
solvable two-point boundary value problems with κ. Specifically, as κ = 0, the obtained boundary
value problem is a linear one and can be computed as an initial iteration value.
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Remark 4. As can been seen from (39), the control law u∗(t) is composed of Kz(t)z(t), Kξ(t)ξ(t),
and Kg(t)g∗(t), where

Kz(t) = −r−1BTX1(t), Kξ(t) = −r−1BTX2(t), Kg(t) = −r−1BT (41)

The last two terms are feedforward control terms. In fact, the term Kξ(t)ξ(t) is introduced to
suppress the effects of wave-induced vibration on the offshore structure, and Kg(t)g∗(t) is utilized
to compensate the nonlinear characteristics of the structure thereby improving the performance of
the structure.

For the sake of comparison, a tuned mass damper (TMD)-based optimal controller is
provided below. A dynamic model of the structure equipped with a TMD mechanism is in
the form as

ż(t) = Āz(t) + B̄u(t) + D̄w(t) (42)

where Ā, B̄, and D̄ are matrices related to the structural parameters of offshore structure
and the TMD. An optimal control law is given as

u(t) = −r−1B̄T [Y1(t)z(t) + Y2(t)ξ(t)] (43)

where Y1(t) and Y2(t) are unique solutions of the following differential equations

−Ẏ1(t) = Y1(t)Ā− ĀTY1(t)−Q + r−1Y1(t)B̄B̄TY1(t), Y1(t f ) = Q f (44)

and
−Ẏ2(t) = Y2(t)M + S̄T(t)Y2(t) + Y1(t)DN, Y2(t f ) = Q0 (45)

with S̄(t) = Ā− r−1B̄B̄TY1(t).

3.2. Computation of NES-Based Near-Optimal Controllers

Note from (39) and (40) that the optimal control law u∗(t) is the sum of infinite series.
Consequently, it is impossible to obtain its analytic value. In this situation, by taking finite
terms of the series, a near-optimal control law can be obtained. For this, for a given positive
integer `, denote

g(`)(t) = ∑`
j=0

g̃(j)(t)
j!

, u(`)(t) = ∑`
j=0

ũ(j)(t)
j!

(46)

Then, one yields
g(j)(t) = g(j−1)(t) +

g̃(j)(t)
j!

u(j)(t) = u(j−1)(t) +
ũ(j)(t)

j!
, j = 1, 2, · · · , `

(47)

which provide iterative formulae to compute near-optimal control law u(`)(t). Corre-
spondingly, under the control of u(`)(t), the closed-loop system of the offshore structure is
in the form as

ż(`)(t) =Az(`)(t) + Bu(`)(t) + H f (z(`)(t)) + Dw(t), z(`)(0) = z0 (48)
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and the system performance index of the `-th iteration is given as

J(`) :=J(u(`)(t))

=
1
2
(z(`)(t f ))

TQ f z(`)(t f ) +
1
2

∫ t f

0

[
(z(`)(t))TQz(`)(t) + r(u(`)(t))2

]
dt (49)

which can be utilized to compute the stopping criterion for the iterations.
Now, Algorithm 1 to compute the near-optimal control law is presented as follows.

Algorithm 1: An iterative algorithm.

Step 1. Given a small enough number ε > 0. Set j = 0 and ϑ(0) = J(0).
Step 2. Solve Equations (27) and (32) to obtain X1(t) and X2(t), respectively.
Step 3. Solve Equations (29) and (28) to obtain the initial iteration values of z̃(0)(t)
and ũ(0)(t), set u(0)(t) = ũ(0)(t), g(0)(t) = g0. Then compute z(0)(t) by (48) and
J(0) by (49), respectively.

Step 4. Let j := j + 1, and solve Equations (35), (38) and (34) to obtain the j-th
iterative values of z̃(j)(t), g̃(j)(t), and ũ(j)(t), respectively.

Step 5. Solve (47) to obtain u(j)(t) and g(j)(t). Then compute z(j)(t) by (48) and J(j)

by (49), respectively.

Step 6. Compute ϑ(j) := | J
(j)−J(j−1)

J(j) |. If ϑ(j) > ε, then go to Step 4; If ϑ(j) ≤ ε, the

j-th iteration values of u(j)(t) and z(j)(t) are near-optimal control law and
near-optimal state, respectively, and then complete the iteration.

4. Simulation Results

In this section, a nonlinear energy sink (NES)-based near-optimal controller is designed.
Then, the controller is applied to offshore structures with regular waves and irregular
waves, respectively, to show the effectiveness of the proposed control scheme. Moreover,
the NES-based controller is compared with the TMD-based optimal controller to show the
superiority of the proposed scheme.

4.1. Parameters of Offshore Structure with the NES

In Figure 1, the equivalent diameter of the structure D̃ = 3.66 m, the structure length
L = 249 m, the drag coefficient Cd = 1.4, and the inertia coefficient Cm = 2, the sea wa-
ter density ρ = 1024 kg·m−3. The parameters of the offshore structure with the NES
are set as m1 = 7,825,307 kg, c1 = 641,150.15 N·s·m−1 , k1 = 328,32,059.81 N·m−3, and
m2 = 391,270 kg [34]. By optimizing the two parameters of c2 and k2 of the NES, in this
paper, let c2 = 400,000 N·s·m−1 and k2 = 10,250,000 N·m−3. Then one obtains the matrices
A, B, D and H of (3) as

A =


0 1 0 0

−4.1956 −0.1330 0 0.0511
0 0 0 1
0 1.0223 0 −1.0223


B = 10−6 ×

[
0 −0.128 0 2.556

]T

D = 10−7 ×
[

0 1.278 0 0
]T

H =
[

0 −1.3099 0 26.1967
]T

(50)
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The stiffness kt , damping ct, and mass of a TMD are set as kt = 1,489,000 N·m−3,
ct = 204,000 N·s·m−1, and mt = 391,270 kg, respectively. The system parameters Ā, B̄ and D̄
of the offshore structure with the TMD in (42) are given as

Ā =


0 1 0 0

−4.3859 −0.1080 0.1903 0.0261
0 0 0 1

3.8056 0.5214 −3.8056 −0.5214


B̄ = 10−5 ×

[
0 −0.0128 0 0.2556

]T

D̄ = 10−6 ×
[

0 0.1278 0 0.2556
]T

(51)

4.2. Simulation of Regular and Irregular Wave Force

The significant wave hight Hs=10 m, the water depth d = 218 m, and the JONSWAP
spectrum is presented in Figure 2.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
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25
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35

40

45

50
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(

)

Figure 2. The JONSWAP spectrum.

In what follows, for the regular wave and irregular wave, NES–based optimal controllers
are designed, and the controlled performance of the structure is investigated respectively.

To obtain the regular wave force, set m = 1 in (12), and choose the peak frequency
ω0 = 0.6283 Hz. In this case, one yields the values M and N in (15) as

M =

[
0 1

−0.3948 0

]
, N = 104 ×

[
2.5082 0

]
(52)

The wave force on the structure is depicted in Figure 3. To yield irregular wave force,
set m = 6 in (12). Then the matrices G and Π in (13) can be obtained as

G =
[

G1 G2
]
, Π = −8.2635× 105 (53)

where

G1 = −diag{0.4329, 1.7317, 3.8964}
G2 = −diag{6.9269, 10.8232, 15.5855}

Further, by (15), one can obtain the irregular wave force, which is presented in Figure 4.
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Figure 3. The regular wave force on the structure.
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Figure 4. The irregular wave force on the structure.

4.3. Performance of Structure with NES-Based Near-Optimal Controllers

The weight matrices Q f , Q, and r in (16) are set as

Q f = Q = 107 × diag{5, 2, , 5, 1}, r = 5× 10−7 (54)

and the initial state of the offshore structure is set as z0 =
[

0.2 0.2 −0.2 −0.2
]T .

Set the error bound ε = 0.0005. By Proposition 1 and the iterative algorithm, one can
obtain the NES–based near–optimal controllers (NOC). It is computed that after 7 iterations,
one yields the near–optimal controller u(7) satisfying given error bound. Note that the
designed optimal controllers depend on the wave–related matrices M and N. The designed
NES–based near-optimal controllers are denoted u(j)

1 for regular wave case and u(j)
2 for

irregular wave case, j = 0, 1, 2, · · · , 7. Correspondingly, the system average performance
index values of different iteration times under u(j)

1 and u(j)
2 are represented by J(j)

1 and
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J(j)
2 , which are listed in Table 1, and the curves of J(j)

1 and J(j)
2 versus j are depicted in

Figures 5 and 6, respectively.

Table 1. System performance index values J(j)
1 and J(j)

2 for different iteration times j.

j 0 1 2 3 4 5 6 7

J(j)
1 3138.9 5745.7 4939.8 4709.5 4594.6 4553.5 4545.5 4535.5

J(j)
2 17,813 20,519 19,835 196,26 19,522 19485 19,478 19,470
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Figure 5. Performance index values of structure with u(j)
1 (t).

0 1 2 3 4 5 6 7

Iteration times

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

A
v
e
ra

g
e
 p

e
rf

o
rm

a
n
c
e
 i
n
d
e
x
 J

2(j
)

104

Figure 6. Performance index values of structure with u(j)
2 (t).

To show the effectiveness of the proposed NES-based near-optimal controllers, denote
u(7)

1 and u(7)
2 by NES–NOC–1 and NES–NOC–2, respectively. As the two controllers are

respectively applied to the offshore structure subject to regular waves and irregular waves,
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the displacement and velocity response curves of the offshore structure and the control force
are shown in Figures 7–12, where the displacement and velocity of the offshore structure
without controller are also depicted. The figures show that under the proposed controllers,
the displacement and velocity of the structure are attenuated significantly.
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Figure 7. Displacements of the structure with NES–NOC–1.
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Figure 9. Control force by NES–NOC–1.
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Figure 10. Displacements of the structure with NES–NOC–2.
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Figure 11. Velocities of the structure with NES–NOC–2.
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Figure 12. Control force by NES-NOC-2.

4.4. Comparisons between NES-Based Near-Optimal Controller and TMD-Based
Optimal Controller

To demonstrate the superiority of the NES-based control over the linear TMD–based
control, in this subsection, a TMD–based optimal controller is designed for the aforemen-
tioned offshore structure, which is equipped with an active TMD instead of the NES. The
weight matrices Q f , Q and R are set same values as the ones of the NES–based controller.

Solving differential Equations (44) and (45) yields the matrices Y1(t) and Y2(t), respec-
tively. Then, one yields TMD–based optimal controllers in the form (43). The obtained
controllers are denoted by TMD–OC–1 for the structure subject to regular waves and by
TMD–OC–2 for the system subject to irregular waves. When the TMD–OC–1 and TMD–
OC–2 are utilized the offshore structure subject to regular waves and the structure subject
to irregular waves, the displacement and velocity responses of the offshore structure are
presented by Figures 13–18, respectively. In these Figures, the curves of the control force, the
displacement and velocity of the structure without control and with NES–based controllers
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are also provided. Figures 13–18 show that TMD-based optimal controllers can remarkably
attenuate the wave-induced displacement and velocity responses of the structure. How-
ever, compared with the NES–based near optimal controllers and the TMD–based ones,
the former is better than the latter. In fact, the structure under the NES-based optimal
controllers presents better transient performance as well as steady-state performance than
that under the TMD–based optimal controllers. Moreover, the average control cost of the
former is smaller than that of the latter. In a word, the NES–based near-optimal controllers
outperform the TMD–based optimal controllers from the point of view of the performance
of the structure and the control cost.

0 10 20 30 40 50 60 70 80

Time (s)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

D
is

p
la

c
e
m

e
n
t 
o
f 
p
la

tf
o
rm

 (
m

)

No control

TMD--OC--1

NES--NOC--1

Figure 13. Displacements of the structure without control, with TMD–OC–1 and NES–NOC–1.
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Figure 14. Velocities of the structure without control, with TMD–OC–1 and NES–NOC–1.
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Figure 15. Control force by TMD–OC–1 and NES–NOC–1.
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Figure 16. Displacements of the structure without control, with TMD–OC–2 and NES–NOC–2.
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Figure 17. Velocities of the structure without control, with TMD–OC–2 and NES–NOC–2.
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Figure 18. Control force by TMD–OC–2 and NES–NOC–2.

5. Conclusions

The optimal control based vibration suppression issue of the offshore structure equipped
with a nonlinear energy sink (NES) has been addressed in this paper. By introducing an
active NES mechanism to the damping control system of the offshore structure, a nonlinear
system model of the offshore structure has been established. By using the parameter
perturbation approach, the optimal controller in the form of infinite series sum has been
presented, and an iteration algorithm has been developed to compute the near–optimal
controller for the offshore structure. Simulation results have shown that based on the NES,
the performance of the marine structure with the designed near–optimal controller has
been improved significantly. In fact, the key findings can be summarized as follows:

• The active NES mechanism can be used to attenuate the vibration of the offshore
structure. Based on the NES mechanism, the designed optimal controller can reduce
the displacement and velocity of the structure remarkably.
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• Compared with the tuned mass damper (TMD) mechanism, the NES-based near-
optimal controllers are better than the TMD-based optimal controllers to improve the
performance of the offshore structure.

Notice that in the nonlinear dynamic model of the offshore structure considered in
this paper, only the first dominant vibration mode is considered, while other vibration
modes are ignored. Furthermore, only the wave force is taken into account, while other
external disturbances on the structure are not considered. In addition, the parametric
perturbation and saturation issues of actuator are not taken into account. Therefore, there
still exist certain limitations of the vibration system modelling and controller design of the
offshore structure. In the future, related investigations regarding more general NES-based
dynamic models and effective active control schemes for the offshore structure can be
carried out continuously.
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