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Abstract: Coastal environmental assessment techniques have evolved into one of the most important
fields for the long-term development and management of coastal zones. So, the overall aim of the
present investigation was to provide effective approaches for making informed decisions about the
Gamasa coast sediment quality. Over a two-year investigation, sediment samples were meticulously
collected from the Gamasa estuary and littoral shelf. The inductively coupled plasma mass spectra
(ICP-MS) was used to the total concentrations of Al, Fe, Ti, Mg, Mn, Cu, P, V, Ba, Cr, Sr, Co, Ni, Zn, Pb,
Zr, and Ce. Single elements environmental pollution indices including the geoaccumulation index
(Igeo), contamination factor (CF), and enrichment factor (EF), as well as multi-elements pollution
indices comprising the potential ecological risk index (RI), degree of contamination (Dc), and pollution
load index (PLI) were used to assess the sediment and the various geo-environmental variables
affecting the Mediterranean coastal system. Furthermore, the Dc, PLI, and RI were estimated
using the random forest (RF) and Back-Propagation Neural Network (BPNN) depending on the
selected elements. According to the Dc results, all the investigated sediment samples categories were
considerably contaminated. Cr, Co, Ni, Cu, Zr, V, Zn, P, and Mn showed remarkable enrichment in
sediment samples and were originated from anthropogenic sources based on the CF, EF, and Igeo

data. Moreover, the RI findings revealed that all the samples tested pose a low ecologically risk.
Meanwhile, based on PLI, 70% of the Gamasa estuary samples were polluted, while 93.75% of littoral
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shelf sediment was unpolluted. The BPNNs -PCs-CD-17 model performed the best and demonstrated
a better association between exceptional qualities and CD. With R2 values of 1.00 for calibration
(Cal.) and 1.00 for validation (Val.). The BPNNs -PCs-PLI-17 models performed the best in terms of
measuring PLI with respective R2 values of 1.00 and 0.98 for the Cal. and Val. datasets. The findings
showed that the RF and BPNN models may be used to precisely quantify the pollution indices (Dc,
PLI, and RI) in calibration (Cal.) and validation (Val.) datasets utilizing potentially toxic elements of
surface sediment.

Keywords: contamination factor; RF; geoaccumulation index; enrichment factor; degree of contamination;
BPNNs; potential ecological risk index

1. Introduction

Rapid economic and population growth has been accompanied by an increase in envi-
ronmental contamination worldwide. Because of increased metal discharges from diverse
sources, coastal and estuarine ecosystems are currently facing elevated metal pollution
pressures. Potentially toxic elements (PTEs) contamination in the coastal environment
has become one of the most critical environmental challenges and has received massive
attention from researchers and governmental/nongovernmental associations due to its
toxicity and persistence in the aquatic environment [1–5]. The mobility of potentially toxic
elements in the aquatic environment is mostly governed by sediment compositions and
human activities that may alter environmental parameters such as redox potential, pH, and
biological activities [6]. Pollutants in the coastal environment mainly derive from continen-
tal sources entering the sea via rivers and their estuary [7]. PTEs in estuarine sediments can
come from natural causes, including erosion, early diagenesis, and river transport, as well
as anthropogenic contamination such as atmospheric deposition, wastewater discharge,
aquaculture, agricultural activities, and industrial waste discharge [5,8–12].

Over time, estuary and coastal regions have been the focus of human settlement,
resulting to the development of several large coastal cities around the world [13]. The
coastal environment is dynamic and complicated due to the human activities, economy,
ecology, and morphology that interact in it. The environmental assessment processes of
coastal ecosystems have emerged as a significant field for the sustainable development
and management of coastal zones. The purpose of maintaining the coastal resources is
considered among the main pillars of continuous investment of coastal zones. Beach
sediments are significant resources that must be reserved because their deterioration and
pollution results in financial losses that affect the economic value of these beaches. Because
of their abundance, toxicity, and potential ecological risk, assessment of heavy metals
pollution in aquatic environment sediments using ecological risk assessment methodologies
is crucial for the management of coastal zones [14,15].

The Nile Delta coast stretches about 280 km from the Mediterranean coast of Egypt.
Several authors have been focused on the distribution of potential toxic metals in sedi-
ments along Egypt’s Mediterranean coast and their environmental impact. For example,
Okbah et al. [16] concluded that the Mediterranean coast recorded the highest concentra-
tion of metals in the Delta region, and the Egyptian Mediterranean coast sediments were
enriched by Cr, Pb, and Ni; Soliman et al. [17]; stated that 15% and 35% of sediment sam-
ples exceeded the probable effect level in Cr and Ni respectively; El-Gamal and Saleh [18]
mentioned that the Mediterranean delta coastal sediments were contaminated by Mo, Cd,
and Ni particularly in El-Burullus and Rosetta sediments; Abdallah and Badr-ElDin [19]
assessed the anthropogenic activities on sediment of Eastern Harbor at Alexandria City
coast, and reported that about 86% of studied sediment were highly contaminated and the
sediment was rich in Cd, Pb, As, and Hg; and Khaled et al. [20] evaluated the degree of
contamination of potential toxic metals in sediments along Alexandria Coast and found that
Cd and Pb were moderately enriched and contaminated the sediment. The Mediterranean
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Sea coastal environment of Egypt is subjected to severe putting ashore of pollutants from
numerous anthropogenic activities [18]. More than 50% of Egypt’s population lives in the
Nile Delta region [21]. Agriculture, fishing/aquaculture, industry, and recreation beaches
are the main anthropogenic activities in the Nile Delta and its shores. About 70% of Egyp-
tian industrial production and commercial activities are produced in the Nile Delta [22].
However, the status of the PTEs in the coastal environment has not been evaluated along
the whole Mediterranean Sea coast of Egypt that extends over 1200 km, from El-Salloum
west to Rafah east. As a result, evaluation techniques have become necessary to appraise
the coastal sediment potential toxic elements concentrations, particularly in areas that have
not been investigated previously.

Gamasa beach is regarded as one of the most important public resort beaches on the
Nile Delta coast. It is situated on an accretionary and dynamic concave shoreline [23]. In
the past decades, the Gamasa coast has been subjected to intensive development activities
that threaten and impact the coastal environment. The direct possible environmental
hazards resulting from such activities are sand encroachment and coastal erosion; indirect
environmental hazards are contamination of coastal water and surface sediments by organic
and inorganic pollutants. The Gamasa drain flows from south to north and pours into the
Mediterranean Sea. Its end is crooked and protected by eastern and northern jetties. Data
about trace elements in surface sediments of the Gamasa coastal zone and their ecological
impacts and sources are very rare.

The prediction of pollution indices is a critical challenge in managing the ecosystem at
a safe level. Various deterministic models have already been used in this area throughout
the last few decades [24]. However, because real natural ecosystems are typically too
sophisticated for these state-of-the-art models, their statistical efficiency is typically low.
RF and ANNs may offer quick and robust techniques for developing models to estimate
various pollution indices. ANNs and RF can generalize non-linear patterns within a specific
dataset and solve complex issues [25]. These data-driven solutions can be utilized to solve
severely nonlinear issues [26,27]. They have been effectively used to evaluate the accuracy
of the water pollution constituent prediction [28].

There are a lack of data on the efficiency of ANNs and RF models combined with
elements for estimating CD, PLI, and RI of surface sediment of estuary and coastal areas.
Recently, a few attempts have been made to appraise the efficacy of ANNs, PLSR, and MLR
approaches for quantifying pollution indices for sediments [27,29]. The results of studies
conducted on the potential of using multivariate and ANNs models were promising and
encouraged the use of such approaches in the field of precise estimating sediments quality
directly from the potentially toxic elements data in Lake Qaroun under different conditions.
The results showed the efficiency of the three tested models (ANNs, PLSR, and MLR) to
predict PLI and RI revealing that the ANN is the best model to predict these parameters
based on spectral reflectance indices as input parameters. For instance, the determination
coefficient values of the ANN model of calibration datasets for predicting PLI and RI were
0.999, they were 0.897 and 0.853, respectively, for the validation dataset [27]. Saleh et al. [29]
found that the calibration and validation models presented the best performance to predict
the PLI, RI, and Dc based on the selected 21 elements: R2 = 0.948–0.991 for PLSR, and
R2 = 0.760–0.998 for MLR. The proposed models can be used with different datasets,
especially since we followed the leave-one-out validation (LOOV) approach with validation
to measure the model behavior [27].

This research study aimed to provide effective tools for making informed decisions on
surface sediment to ensure effective management, identify pollution sources, and provide
a clear image of how sampling procedures might be modified.

In this regard, the specific objectives of the present study were to (i) evaluate the
present circumstance of PTEs in surface sediments of the Gamasa estuary and littoral shelf;
(ii) assess the ecological risks of PTEs by calculating (CF), (EF), (Igeo), (Dc), (PLI), and (RI);
(iii) recognize the potential pollution provenance of PTEs using CA and PCA techniques;
(iv) deduce the correctness of applying the BPNNs and RF models in quantifying the Dc,
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PLI, and RI of bottom sediments; and finally, debate the possibility of using the RF and
BPNNs models as beneficial approaches for making informed-decisions concerning the
ecological risk of anthropogenic metals in sediments.

2. Materials and Methods
2.1. Study Site Description

The Gamasa coast is characterized by a bar-built estuary created from a shallow bay
conserved from the sea by a sand bar. The Gamasa shoreline extends for 28 km along the
Nile Delta coast. The study area was located between latitudes of 31◦26′15” and 31◦27′00”
N and longitudes of 31◦32′20” and 31◦34′33” E (Figure 1). The Gamasa littoral shelf is a
significant portion of the Egyptian Mediterranean coast because it is immediately influenced
by freshwater discharge from the Gamasa estuary, which is derived from the River Nile. It
receives an assortment of effluents from domestic, industrial, and agricultural activities.
The Gamasa drain receives about 13.1 × 106 m3/day of untreated sewage, agricultural, and
industrial wastewater, such as Talkha fertilizer’s factory wastewater [30].
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The current geomorphology of the Nile Delta’s shore is the consequence of two
opposing actions: delta advance and Mediterranean Sea attack via marine processes,
followed by human activities as coastal protection constructions. Over the last century,
the Nile Delta has experienced significant erosion and a massive retreat in shoreline,
particularly at El-Burullus, the Rosetta, and Damietta headlands, and many conservation
works have been performed around the Nile Delta coast to protect the eroding lands. The
creation of the Nile Delta and its ancient branches is intimately tied to the geology of the
beach sands alongside the Mediterranean shore [31].

2.2. Sample Gathering, Automated Inspection, and Quality Control

Over two years, sediment samples were gathered from the Gamasa estuary and
littoral shelf of the Mediterranean Sea coast (Figure 1) using a stainless steel Peterson Grab
sampler [32]. A fishing boat was used to reach different sampling points in the estuary and
littoral shelf. A hand-held GPS (Garmin/eTrex Vista HCx/personal navigators) was used to
identify the sampling location’s position. For each location, three samples of sediment were
taken. In order to avoid contamination from the metallic sampler, samples were gathered
from the focus point of the grab sampler. The sampler was decontaminated between
stations, carefully rinsed with site water and distilled water. Then it was suspended over a
plastic container and washed from the top to down using a squirt bottle with 10% nitric
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acid [33]. Before bringing the gathered materials to the laboratory, they were immediately
sealed in polyethylene bags with identifying labels, which were then pre-washed before
use. Subsamples for geochemical analysis were oven dried at 70 ◦C following natural
drying at ambient temperature and filtered through a 2.0 mm sieve to achieve a consistent
weight. Afterwards, samples were ground using an agate mechanical mill (Retsch RM200,
Retsch, GmbH, Haan, Germany) and kept in glass containers while geochemical tests
were performed. The metal concentrations were measured using ICP-MS (ICAP TQ ICP-
MS Thermo Fisher Scientific Inc., Waltham, MA, USA). Using a SpeedWave microwave
digestion apparatus, the sediment was transformed into a solution according to the US EPA
3052 method [34]. In a measuring flask, the digested solution was filtered, and deionized
water was used to dilute it to a volume of 50 mL. Along with the investigated samples, blank
samples (control) and one reference sample were digested. Quality control was carried out
using replicated samples and the standard sediment reference components (GBW07333)
supplied by China’s 2nd Institute of Oceanography. All chemical reagents were analytical
grade and ultrapure. Ultrapure water was used to make all the solutions. A Millipore
apparatus system produced ultrapure water (Milli-Q) with 18.2 MΩ·cm resistivity. To
avoid contamination, the test vessel and any used glass were properly cleaned and steeped
in dilute nitric acid for at least 24 h before being drenched and rinsed with deionized water.
The procedures were carried out in labs at the University of Sadat City that are accredited
(ISO/IEC 17025/2017).

2.3. Pollution Assessment Indices

The environmental pollution assessment indices were determined to evaluate the
potentially toxic elements contamination degree in the Gamasa estuary and littoral shelf
surface sediments. The CF, EF, and Igeo approaches were applied to estimate a single ele-
ment, and RI, PLI, and Dc were used to evaluate the combined hazard of several elements.

The contamination factor (CF) was determined according to [35] to quantify the
contamination of sediments with trace metals. The contamination factor was classified
according to the categories listed in Table 1.

The contamination degree (Dc) was suggested by [35] for applying in the processes
of the sediment contamination total assessment. It is calculated by the equation found in
Table 1; four levels of contamination are listed in Table 1, depending on the values of the
contamination level.

The enrichment factor (EF) is a robust technique to differentiate between human and
natural sources of trace elements in sediments [36,37]. It is usually used to assess the danger
of heavy metal contamination in air aerosols, sediments, soil, and solid wastes, as well as to
quantify the degree of fluctuation in their concentrations caused by human activity [38–40].
In order to determine the EF, we used the equation in Table 1. According to enrichment
factors, seven distinct types of contamination may be distinguished (Table 1).

The geoaccumulation index (Igeo) proposed by Müller [41] is a useful tool to identify
whether the sediment has been contaminated by anthropogenic heavy metals or not [42].
The Geoaccumulation index was calculated using the equation mentioned in Table 1.
According to the geoaccumulation index results, the sediment contamination level may be
classified to a scale varying from <1 to >5 to seven classes that were provided in Table 1.

The pollution load index (PLI) is great for comparing the overall pollution status at
various sites (Table 1). For all elements at each sample, the PLI was calculated as the nth
root of the CF multiplications [43,44]. The PLI of the Gamasa estuary and littoral shelf was
calculated as the nth root of the PLI multiplications of the estuary and littoral shelf samples.

The Potential ecological risk index (RI) was applied to assess the ecological risk of
heavy metals in sediments [35,45,46]. Four factors are considered: concentration, contami-
nant type, the toxicity level, and the sensitivity of the water body to metal contamination in
sediments. Table 1 contains the formulae used to determine the RI. The toxic response factor
for Mn, Cr, Co, Ni, Cu, Zn, and Pb are 1, 2, 5, 6, 5, 1, 5, respectively [35,47,48]. According to
Håkanson [35], the RI is classified into four classes that are described in Table 1.
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Table 1. The pollution indices equations and their classifications: potential ecological risk index (RI),
degree of contamination (Dc), pollution load index (PLI), contamination factor (CF), enrichment
factor (EF), and geoaccumulation index (Igeo).

Pollution
Indices Equation Indices

Criteria Classes Reference

CF

CF = Mx
Mb

Mx: the potential toxic metal concentration in
sediment samples.

Mb: the concentration in the unpolluted “baseline” sediment
(background value).

≤1 Low CF
[35]1 < CF ≤ 3 Moderate CF

3 < CF ≤ 6 Considerable CF
6 < CF Very high

Dc

Dc = ∑i=n
i=1 CF

CF: the contamination factor of each analyzed element
in the sample.

i: the number of analyzed elements.

<8 Low Dc

[35]
8 < Dc < 16 Moderate Dc
16 < Dc < 32 Considerable Dc

Dc > 32 Very high Dc

EF

EFx = (Cx /CAl ) sample
(Cx /CAl ) background

(Cx/CAl) sample: the metal to Al ratio in the tested sample.
(Cx/CAl) background: the value of the metal to Al ratio in the

natural background.

<1 No enrichment

[49]

1–3 Minor enrichment
3–5 Moderate enrichment
5–10 Moderately severe enrichment

10–25 Severe enrichment
25–50 Very severe enrichment
>50 Extremely severe enrichment

Igeo

Igeo = log2

(
Cn

1.5Bn

)
Cn: the measured concentration of heavy metal n in the

sampled sediment.
Bn: the geochemical background of the element that is

adapted from the literature.

Igeo ≤ 0 Unpolluted

[41]

0 < Igeo ≤ 1 Unpolluted to Moderately
polluted

1 < Igeo ≤ 2 Moderately polluted

2 < Igeo ≤ 3 Moderately to strongly
polluted

3 < Igeo ≤ 4 Strongly polluted
4 < Igeo ≤ 5 Strongly to extremely polluted

5 < Igeo Extremely polluted

PLI PLI = (CF1 × CF2 × CF3 × . . . × CFn)1/n 1 > PLI Unpolluted
[44]1 < PLI Polluted

RI

RI = ∑ Er
Er = Tr× CF

Er: the potential ecological risk factor of an individual element.
Tr: the toxic response factor.
CF: the contamination factor.

RI < 150 Low ecological risk

[35]150 < RI < 300 Moderate ecological risk
300 < RI < 600 Considerable ecological risk

600 < RI Very high ecological risk

2.4. Data Analyses

The data of potential toxic metals in the surface sediment samples were analyzed
statistically using PAST v.4.07 (Natural History Museum, University of Oslo, Oslo, Norway).
The Shapiro–Wilk test was performed to determine if the data of the current investigation
were normally distributed or not. Metal content values in various sediment samples were
processed using descriptive statistical parameters (maximum, minimum, and mean). The
normality test results (p < 0.05) revealed that the data of the sediment deviated from the
normal distribution. The Kruskal–Wallis test was run to determine whether element con-
centrations were equal between various sampling stations. To find relationships between
the geochemical features of sediment samples we used the Pearson correlation coefficient.
Furthermore, significance thresholds of 0.05 and 0.001 p-value were detected. Multivari-
ate statistical techniques such as cluster analysis (CA) and principal component analysis
(PCA) were also employed to assess their links and possible causes [50]. In terms of metal
concentration, CA (Ward’s method) was used to examine the similarities and variations
between varying sampling sites [51]. Commonly used statistical methods (e.g., Pearson’s
correlation, CA, and PCA) are effective tools for identifying contamination sources which
have been reported by several investigations in sediment contamination [12,29,52].

2.5. Random Forest

RF can be used to determine the link between a single dependent variable and a
number of independent variables. It is built on the foundation of regression trees or
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multiple classes. It separates a certain dataset into numerous nodes within a homogenous
subset termed a regression tree (ntree), and then uses recursive fractioning to average the
outputs of all trees. Each tree is stretched to its maximum size using a bootstrap sample
from the training dataset without influencing the selection of the input variables at each
node. In the regression phase of each tree, RF uses randomization by picking a random
subset of variables (mtry) for estimating the split at each node [53]. The leave-one-out
validation (LOOV) approach was used to enhance the model’s two parameters (mtry and
ntree) and lower the root mean squared error of the validation (RMSEV). The ntree rating
was evaluated between 1 and 25, while the mtry rating was examined with various feature
counts. After the model was trained with optimal parameters, all features were classified,
and the best features were chosen based on variable important statistics [54]. The outcomes
were gathered for all iterations, and several options for the ideal feature interaction were
assessed to determine the best one with the least RMSEV.

2.6. Back-Propagation Neural Network (BPNN)

The BPNN is one of the most popular artificial neural networks [55]. It is composed
of three different layers: (a) the input layer includes the neural network’s fundamental
data, (b) the hidden layer acts as an intermediary layer between the independent input
layer and the dependent output layer, and (c) the output layer produces the outputs of
the inputs that were provided. The artificial neural network (ANN) is a sort of machine
learning procedure that employs numerous layers to derive high-level properties from
primitive input. The network has two hidden layers, with the nodes number controlled by
the accuracy of the regression. The “activation” nodes are represented by the hidden layers,
which are commonly denoted by weight. The last layer depicts the resulted layer, which
displays the expected value of the quantified parameter. Artificial neural networks, which
are generalized mathematical models that include a group of neurons or nodes coupled by
weighted connections, may be used to represent pattern recognition and prediction [56,57].

With at least 1000 iterations, the neural network was trained. On the training dataset,
the validation procedure with the LOOV method was performed to define the number
of neurons in the concealed layer. To efficiently construct the method, the parameter of
restricted memory Broyden–Fletcher–Goldfarb–Shanno (lbfgs) was served as a weight
optimizer [58]. Glorfeld et al. [59], developed a method to explore the most useful feature
to increase the predictive power of the regression model and reduce the dimensionality of
the data.

M =
∑nH

j=1

[(
|I| Pj / ∑

np
k=1 |I| Pj,k

)
|O|j

]
∑

np
i=1

(
∑nH

j=1

[(
|I| Pi,j / ∑

np
k=1 |I| Pi,j,k

)
|O|j

]) (1)

where M is the important measure for the input variable, np is the number of input variables,
nH is the number of hidden layer nodes, |I| Pj is the absolute value of the hidden layer
weight corresponding to the pth input variable and the jth hidden layer, and |O|j is the
absolute value of the output layer weight corresponding to the jth hidden layer.

2.7. Model Evaluation

Statistical indicators such as determination coefficient (R2) and root mean square
error (RMSE) were employed to evaluate regression models as described by [60,61]. All
parameters are explicated as follows: Fact is the actual value that was estimated from
laboratory calculations, Fp is predicted or simulated value, Fave is the average value, and N
is the total number of data points.

Root mean square error:

RMSE=

√
1
N ∑N

i=1

(
F act − F p

)2 (2)
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Coefficient of determination:

R2 =
∑
(

F act − F p
)2

∑(F act − F ave)
2 (3)

2.8. Analytical Dataset and Software

For training and validation, a total of 36 samples with 17 features were applied.
The training dataset was divided based on the leave-one-out cross-validation (LOOCV)
procedure for training, and validation. In each trial, LOOCV eliminates one sample for
validation and utilizes the remaining data for training. This strategy can reduce over-fitting
and offer a more accurate evaluation of the predictive power of a model [62,63]. The
feature selection, model establishment, and data analysis were implemented using Python
3.7.3. The RF and BPNN modules from the Scikit-learn library version 0.20.2 were used for
regression tasks. The software was run on a PC with Intel Core i7-3630QM, 2.4 GHz CPU,
and 8 GB RAM.

3. Results and Discussion
3.1. Elements in Sediment

The statistical description of the potentially toxic elements contents, including the min-
imum value, maximum value, and mean, is presented in Table 2. The PTEs concentration
averages at various sampling sites are presented in Tables S1 and S2 of the Supplementary
Materials. Among the 17 elements studied, Al, Fe, and Mg concentrations were higher in
sediment samples from the estuary and littoral shelf; while Pb, Co, and Cu concentrations
were lower in the estuary and littoral sediment samples. The findings showed that depend-
ing on the sample site location, bottom sediments accumulated components from similar
provenance and ways. Our findings are in agreement with the results documented by other
investigators who tested metal contents in surface sediment samples from the Egyptian’s
Mediterranean coastal environment. The high percentage of Fe and low concentration of
Co and Cu in the littoral sediment of the Egyptian Mediterranean shore were also reported
by Soliman et al. [17]; El Baz and Khalil [64]; and Khaled et al. [20]. The average concen-
tration of all elements did not change significantly between the two tested years, except
for a substantial increase in the mean content of Cu, Pb, Zr, and Ce in estuary samples.
Meanwhile, mean concentrations of Zn and Ba elements in estuary samples were falling
in addition to Cr in littoral sediments. Estuary samples had the greatest contents of Mn,
P, Cu, Cr, Zn, Ba, and Pb, which might be attributed to anthropogenic activities such as
agricultural effluents and untreated wastewater discharged into the estuary. The estuary
is a zone between the river and the marine that provides a variety of critical ecosystem
activities and services [65]. Anthropogenic contaminants such as fertilizers and possibly
toxic elements tend to act as receptors and sinks in estuarine zones [66–68]. Combining
urban activities with agricultural chemicals can increase the percentage of harmful metals
and metalloids in the estuary [68,69]. The Gamasa drain branching from the Damietta
branch receives amounts of untreated sewage, agricultural, and industrial wastewater [30].
The elevated levels of Al and Fe in the sediments suggested that a terrigenous substance
contaminated them spontaneously [67].

Generally, the present study’s findings were similar to those of previous Mediterranean
investigations made in Egypt and other countries as presented in Table 3, or even lower or
higher in other circumstances. Manganese recorded average concentration in the present
study (3700 and 2300 ppm) in the estuary and coastal shelf, higher than results recorded
in other Mediterranean coastal sediments of Egypt and other countries. The lead element
average concentration (5.0 ppm) was, in general, lower than their concentration in the
sediments of the Mediterranean coast of Egypt and other states except for some coastal
sediments of Spain (5.7 ppm). The fluctuation in PTEs concentrations can be due to point
sources of contamination obtained at sampling stations, such as river mouths or excavated
sediment from port locations [70,71].
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Table 2. Statistical description of elements concentrations (ppm), except Al, Fe, Ti, Mn, P, and Mg in %.

Elements
First Year (n = 54) Second Year (n = 54) Across Two Years (n = 108)

Estuary Littoral Estuary Littoral Estuary Littoral
Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean

Al

(%
)

3.69 7.71 4.95 4.20 4.90 4.47 3.69 7.57 4.96 4.17 4.95 4.47 3.69 7.71 4.95 4.17 4.95 4.47
Fe 2.34 5.12 3.24 3.14 4.49 4.04 2.39 5.14 3.25 3.26 4.47 4.03 2.34 5.14 3.25 3.14 4.49 4.03
Ti 0.47 0.86 0.60 0.71 0.79 0.76 0.46 0.84 0.60 0.72 0.79 0.76 0.46 0.86 0.60 0.71 0.79 0.76
Mn 0.24 0.51 0.37 0.18 0.28 0.23 0.28 0.50 0.37 0.18 0.29 0.23 0.24 0.51 0.37 0.18 0.29 0.23
Mg 1.01 1.97 1.48 1.81 2.10 1.95 1.33 1.83 1.47 1.86 2.29 1.98 1.01 1.97 1.48 1.81 2.29 1.96
P 0.12 0.16 0.14 0.06 0.08 0.07 0.10 0.17 0.13 0.06 0.08 0.07 0.10 0.17 0.14 0.06 0.08 0.07

V

(p
pm

)

115 163 130 162 250 202 116 151 130 182 234 205 115 163 130 162 250 203
Cr 115 162 138 142 290 232 101 159 138 170 273 222 101 162 138 142 290 227
Co 13.0 27.0 20.7 18.0 24.0 21.8 11.0 35.0 21.3 17.0 26.0 21.5 11.0 35.0 21.0 17.0 26.0 21.6
Ni 22.0 38.0 29.3 28.0 39.0 33.0 22.0 35.0 29.4 30.0 36.0 33.4 22.0 38.0 29.3 28.0 39.0 33.2
Cu 19.0 33.0 27.4 11.0 16.0 12.8 20.0 34.0 28.5 8.00 15.0 11.9 19.0 34.0 28.0 8.00 16.0 12.3
Zn 97.0 132 113 36.0 59.0 46.6 75.0 129 107 31.0 65.0 46.1 75.0 132 110 31.0 65.0 46.4
Sr 191 263 223 242 294 269 184 270 223 241 300 270 184 270 223 241 300 269
Ba 266 501 399 202 301 253 217 520 395 189 293 252 217 520 397 189 301 252
Pb 5.00 30.0 16.3 2.00 6.00 4.88 6.0 30.0 17.0 3.00 6.00 5.13 5.00 30.0 16.7 2.00 6.00 5.00
Zr 149 258 185 240 383 319 139 274 192 221 389 321 139 274 189 221 389 320
Ce 17.0 42.0 28.6 23.0 72.0 52.6 16.0 47.0 29.0 31.0 75.0 52.6 16.0 47.0 28.8 23.0 75.0 52.6

Table 3. Comparison of potentially toxic element averages (ppm) in surface sediment of the current investigation with other studies in the Mediterranean Sea region.

Region Country Al Fe Ti Mn Mg P V Cr Co Ni Cu Zn Sr Ba Pb Zr Ce Reference

Estuary

Eg
yp

t

49,500 32,500 6000 3700 14,800 1400 130 138 21.0 29.3 28.0 110 223 397 16.7 189 28.8 Present
studyLittoral shelf 44,700 40,300 7600 2300 19,600 700 203 227 21.6 33.2 12.3 46.4 269 252 5.00 320 52.6

Mediterranean coast - 13,256 - 381.0 - - - 82.74 8.24 25.93 8.46 22.19 - - 13.17 - - [17]
Alexandria - 93,145 - 469.19 - - - 58.25 39.2 71.2 41.71 75.31 92.93 - - [72]
Abu-Qir Bay 9424 15,904 - 233.37 - - 22.66 - - - 13.64 50.93 8.2 - - [73]
Eastern Harbor 2167 - - - - - - 9.86 - - - - 81.1 - - [19]
Mediterranean coast - 13,256 - 381.0 - - - 82.74 8.24 25.93 8.46 22.19 13.17 - - [16]
Mediterranean coast - 17,175 - 553.2 - - - - - - 11.3 27.2 - - 14.75 - - [64]
Rosetta coast - 109,560 - 553 510 1539 375 0.18 69.8 481 24.6 183 - - 384 - - [74]

Rades-Hamam Lif
Coast

Tu
ni

s - - - - - - - 30.14 - 22.71 24.37 72.78 - - 35.78 - - [75]
Gulf of Gabès - 5827 - 85.67 - - 25.24 31.97 2.4 8.21 7.05 44.20 - - 8.31 - - [76]

Tetouan coast Morocco 33,800 39,700 – 362.86 - - - 128.39 23.24 50.28 14.88 84.26 - - 41.11 - - [77]

Algeciras Bay

Sp
ai

n - 28,129 - 534 - - 36.0 112.0 11.0 65.0 17.0 73.0 - - 24.0 - - [78]
Mediterranean coastline - - - - - - - 15.07 - 7.73 3.29 30.6 - - 5.7 - - [71]

Sabratha Libya - 2084 - 36.21 - - - - 5.59 22.65 17.3 26.55 - - 11.69 - - [79]

Mediterranean coastline Lebanon - - - 247 - - 58.2 49.5 3.36 27.2 - 128 - - 98.26 - - [80]
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3.2. Pollution Assessment Indices
3.2.1. Contamination Factor (CF)

The CF proposed by [35] is the first step to understand the level of contamination and
toward risk assessment of PTEs in surface sediments of the Gamasa estuary and littoral
shelf. Table 4 presents the CF descriptive statistical data obtained from the investigated
sediment samples. The contamination factors for Al, Mg, Ni, Sr, Ba, and Ce are low
contamination levels (CF < 1), meaning that the Gamasa estuary and littoral shelf sediment
samples are unpolluted by those elements. Moreover, there is no contamination by Fe in
estuary samples and no contamination in littoral shelf sediments by Zn, Pb, P, and Cu. The
estuary samples were moderately contaminated (1 < CF ≤ 3) by Ti, P, V, Cr, Co, Cu, Zn,
Pb, and Zr; and Fe, Ti, V, Cr, Co, and Zr were middlingly polluted in the shelf sediments
samples. In contrast, the Mn had very high contamination (6 < CF) in estuary sediment
samples and considerable pollution (3 < CF ≤ 6) in shelf investigated samples.

Table 4. The statistical analysis of contamination variables (CF) in sediment samples.

El
em

en
ts First Year (n = 54) Second Year (n = 54) Across Two Years (n = 108)

Estuary Littoral Estuary Littoral Estuary Littoral
Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean

Al 0.46 0.96 0.62 0.52 0.61 0.56 0.46 0.94 0.62 0.52 0.62 0.56 0.46 0.96 0.62 0.52 0.62 0.56
Fe 0.67 1.46 0.93 0.90 1.28 1.15 0.68 1.47 0.93 0.93 1.28 1.15 0.67 1.47 0.93 0.90 1.28 1.15
Ti 0.94 1.72 1.20 1.42 1.58 1.51 0.91 1.68 1.20 1.44 1.58 1.52 0.91 1.72 1.20 1.42 1.58 1.51
Mn 4.00 8.50 6.17 3.00 4.67 3.76 4.65 8.39 6.20 3.07 4.91 3.78 4.00 8.50 6.18 3.00 4.91 3.77
Mg 0.44 0.86 0.64 0.79 0.91 0.85 0.58 0.80 0.64 0.81 0.99 0.86 0.44 0.86 0.64 0.79 0.99 0.85
P 1.09 1.45 1.26 0.55 0.72 0.63 0.87 1.52 1.23 0.57 0.73 0.64 0.87 1.52 1.24 0.55 0.73 0.64
V 1.11 1.57 1.25 1.56 2.40 1.95 1.12 1.45 1.25 1.75 2.25 1.97 1.11 1.57 1.25 1.56 2.40 1.96
Cr 1.35 1.91 1.63 1.67 3.41 2.73 1.19 1.87 1.63 2.00 3.21 2.61 1.19 1.91 1.63 1.67 3.41 2.67
Co 0.76 1.59 1.22 1.06 1.41 1.28 0.65 2.06 1.26 1.00 1.53 1.27 0.65 2.06 1.24 1.00 1.53 1.27
Ni 0.44 0.76 0.59 0.56 0.78 0.66 0.44 0.70 0.59 0.60 0.72 0.67 0.44 0.76 0.59 0.56 0.78 0.66
Cu 0.76 1.32 1.10 0.44 0.64 0.51 0.80 1.36 1.14 0.32 0.60 0.48 0.76 1.36 1.12 0.32 0.64 0.49
Zn 1.37 1.86 1.60 0.51 0.83 0.66 1.06 1.82 1.50 0.44 0.92 0.65 1.06 1.86 1.55 0.44 0.92 0.65
Sr 0.51 0.70 0.60 0.65 0.78 0.72 0.49 0.72 0.59 0.64 0.80 0.72 0.49 0.72 0.59 0.64 0.80 0.72
Ba 0.53 1.00 0.80 0.40 0.60 0.51 0.43 1.04 0.79 0.38 0.59 0.51 0.43 1.04 0.79 0.38 0.60 0.51
Pb 0.31 1.88 1.02 0.13 0.38 0.31 0.38 1.88 1.06 0.19 0.38 0.32 0.31 1.88 1.04 0.13 0.38 0.31
Zr 0.90 1.56 1.12 1.45 2.32 1.94 0.84 1.66 1.17 1.34 2.36 1.94 0.84 1.66 1.14 1.34 2.36 1.94
Ce 0.24 0.60 0.41 0.33 1.03 0.75 0.23 0.67 0.41 0.44 1.07 0.75 0.23 0.67 0.41 0.33 1.07 0.75

3.2.2. Enrichment Factor (EF)

The sediment enrichment factor (EF) is a frequently used parameter for assessing the
impact of anthropogenic activities in sediments by distinguishing between natural and
human sources of a single element [80,81]. Accordingly, EF values less than one suggest
that the element mostly came from natural processes or crustal materials, whereas EF
values greater than one indicates that the sources are more likely to be anthropogenic [82].
When the enrichment factor is normalized against the tested element’s background value,
the anthropogenic contamination prognosis becomes better [83]. The common elements
employed as normalized elements in the enrichment factor calculation are aluminum (Al),
manganese (Mn), titanium (Ti), and iron (Fe) [84,85]. Al was used as a normalizing element
in this investigation because of its low mobility [86]. Table 5 represents the descriptive
statistical data of EF obtained from the Gamasa estuary and littoral shelf sediment samples.
The mainstream PTEs in tested sediment samples showed a wide range, from no enrichment
to severe enrichment. According to EF results, the sediment samples of the Gamasa estuary
were not enriched (EF < 1) by Ce and had minor enrichment (1 < EF < 3) by Fe, Ti, Mg, P, V,
Cr, Co, Ni, Cu, Zn, Sr, Ba, Pb, and Zr. However, there was severe enrichment (10 < EF < 25)
by Mn. The shelf samples registered the following: no enrichment for Ba, Cu, and Pb;
minor enrichment for Fe, Ti, Mg, P, Co, Ni, Zn, Sr, and Ce; moderate enrichment (3 < EF < 5)
for V, Cr, and Zr; and moderately severe enrichment (5 < EF < 10) for Mn. The variation
in enrichment suggests that anthropogenic sources such as industrial activity, sewage
disposal, agricultural activity, and residential and urban wastes, rather than natural sources,
contribute more to enrichment in the area under investigation [87]. Municipal wastewater
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discharges, sewage sludge, and fossil fuel burning are the essential anthropogenic sources
of environmental manganese [88,89].

Table 5. The statistical description of enrichment factor (EF) in studied sediment samples.

El
em

en
ts First Year (n = 54) Second Year (n = 54) Across Two Years (n = 108)

Estuary Littoral Estuary Littoral Estuary Littoral
Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean

Al 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fe 1.06 1.87 1.49 1.63 2.43 2.08 1.05 1.78 1.50 1.72 2.46 2.08 1.05 1.87 1.50 1.63 2.46 2.08
Ti 1.50 2.54 2.01 2.53 3.02 2.72 1.57 2.63 2.00 2.48 3.04 2.73 1.50 2.63 2.00 2.48 3.04 2.73
Mn 4.52 18.0 11.1 5.46 8.30 6.77 4.94 17.8 11.2 5.66 8.18 6.79 4.52 18.0 11.2 5.46 8.30 6.78
Mg 0.70 1.32 1.09 1.36 1.75 1.53 0.80 1.39 1.10 1.39 1.90 1.55 0.70 1.39 1.10 1.36 1.90 1.54
P 1.52 2.60 2.15 0.99 1.37 1.14 1.34 2.69 2.10 1.02 1.24 1.14 1.34 2.69 2.13 0.99 1.37 1.14
V 1.50 2.62 2.12 2.73 4.60 3.51 1.54 2.73 2.13 3.03 4.34 3.55 1.50 2.73 2.13 2.73 4.60 3.53
Cr 1.48 4.08 2.90 2.93 6.44 4.94 1.54 4.08 2.88 3.40 6.13 4.72 1.48 4.08 2.89 2.93 6.44 4.83
Co 0.91 3.08 2.15 1.93 2.68 2.31 0.99 4.22 2.27 1.84 2.83 2.28 0.91 4.22 2.21 1.84 2.83 2.29
Ni 0.62 1.35 1.00 0.92 1.48 1.19 0.59 1.53 1.01 0.97 1.31 1.20 0.59 1.53 1.01 0.92 1.48 1.20
Cu 0.91 2.88 1.94 0.72 1.23 0.92 1.08 2.89 2.02 0.54 1.10 0.86 0.91 2.89 1.98 0.54 1.23 0.89
Zn 1.59 3.83 2.84 0.96 1.51 1.18 1.42 3.81 2.68 0.81 1.69 1.18 1.42 3.83 2.76 0.81 1.69 1.18
Sr 0.73 1.14 1.00 1.12 1.44 1.29 0.72 1.18 1.00 1.15 1.41 1.30 0.72 1.18 1.00 1.12 1.44 1.29
Ba 0.85 2.19 1.42 0.74 1.08 0.91 0.67 2.26 1.41 0.73 1.08 0.91 0.67 2.26 1.41 0.73 1.08 0.91
Pb 0.39 4.09 2.01 0.24 0.71 0.55 0.50 4.09 2.06 0.36 0.69 0.58 0.39 4.09 2.04 0.24 0.71 0.56
Zr 1.24 2.68 1.89 2.56 4.44 3.49 1.35 3.40 1.98 2.32 4.55 3.52 1.24 3.40 1.94 2.32 4.55 3.51
Ce 0.52 0.80 0.65 0.62 1.95 1.36 0.50 0.83 0.66 0.77 1.97 1.36 0.50 0.83 0.66 0.62 1.97 1.36

3.2.3. Geoaccumulation Index (Igeo)

Geoaccumulation index (Igeo) descriptive statistical results of the Gamasa estuary and
Mediterranean shelf sediment samples are detailed in Table 6. The Igeo negative value
of PTEs, indicates that the investigated site is virtually unpolluted due to the gradual
gathering of potentially toxic elements. The trend of investigated sediment samples has Igeo
values ranging between unpolluted and moderately to strongly polluted. The sediment
samples from the estuary and shelf were unpolluted (Igeo < 0) by Al, Fe, Mg, P, Co, Cu,
Ni, Sr, Ba, Pb, and Ce. In contrast, those samples were moderately (1 < Igeo < 2) to
strongly polluted (2 < Igeo < 3) by Mn. In addition, the estuary samples were unpolluted to
moderately polluted (0 < Igeo < 1) by Zn and Cr, and the shelf samples by Ti, V, Cr, and Zr.

3.2.4. Multielement Pollution Indices (Dc, PLI, RI)

Table 7 shows the descriptive statistical results of Dc, PLI, and RI in the Gamasa estuary
and littoral shelf surface sediment samples. According to the findings of Dc detailed in
Table 8, all the investigated sediment samples obtained from the Gamasa estuary and
coastal shelf were considerably contaminated by tested the elements. The PLI outcomes
(Table 8) showed that 70% of the Gamasa estuary samples is polluted and 93.75% of littoral
shelf sediment is unpolluted. Finally, the results of the prospective ecological risk index
revealed that all tested samples were classified as low ecological risk (RI < 150). The RI
results are compatible with those of Soliman et al. [17], who confirmed that the sediment
of the Mediterranean coast at the Gamasa district is classified as a low ecological risk
according to RI.
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Table 6. The statistical description of geoaccumulation index (Igeo) in studied sediment samples.

El
em

en
ts First Year (n = 54) Second Year (n = 54) Across Two Years (n = 108)

Estuary Littoral Estuary Littoral Estuary Littoral
Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean

Al −1.71 −0.65 −1.33 −1.52 −1.30 −1.43 −1.71 −0.67 −1.33 −1.53 −1.28 −1.43 −1.71 −0.65 −1.33 −1.53 −1.28 −1.43
Fe −1.17 −0.04 −0.77 −0.74 −0.23 −0.39 −1.14 −0.03 −0.76 −0.69 −0.23 −0.39 −1.17 −0.03 −0.76 −0.74 −0.23 −0.39
Ti −0.67 0.20 −0.35 −0.08 0.07 0.01 −0.72 0.17 −0.35 −0.06 0.08 0.01 −0.72 0.20 −0.35 −0.08 0.08 0.01
Mn 1.42 2.50 2.00 1.00 1.64 1.31 1.63 2.48 2.01 1.03 1.71 1.32 1.42 2.50 2.00 1.00 1.71 1.31
Mg −1.77 −0.81 −1.24 −0.93 −0.72 −0.83 −1.38 −0.91 −1.23 −0.89 −0.59 −0.80 −1.77 −0.81 −1.24 −0.93 −0.59 −0.82
P −0.46 −0.04 −0.26 −1.46 −1.06 −1.25 −0.79 0.02 −0.31 −1.39 −1.03 −1.24 −0.79 0.02 −0.28 −1.46 −1.03 −1.25
V −0.44 0.06 −0.28 0.05 0.68 0.36 −0.43 −0.05 −0.27 0.22 0.58 0.39 −0.44 0.06 −0.27 0.05 0.68 0.38
Cr −0.15 0.35 0.11 0.16 1.19 0.84 −0.34 0.32 0.10 0.42 1.10 0.78 −0.34 0.35 0.10 0.16 1.19 0.81
Co −0.97 0.08 −0.34 −0.50 −0.09 −0.24 −1.21 0.46 −0.35 −0.58 0.03 −0.26 −1.21 0.46 −0.35 −0.58 0.03 −0.25
Ni −1.77 −0.98 −1.37 −1.42 −0.94 −1.19 −1.77 −1.10 −1.37 −1.32 −1.06 −1.17 −1.77 −0.98 −1.37 −1.42 −0.94 −1.18
Cu −0.98 −0.18 −0.47 −1.77 −1.23 −1.57 −0.91 −0.14 −0.42 −2.23 −1.32 −1.69 −0.98 −0.14 −0.44 −2.23 −1.23 −1.63
Zn −0.13 0.31 0.08 −1.56 −0.85 −1.21 −0.51 0.28 −0.02 −1.78 −0.71 −1.25 −0.51 0.31 0.03 −1.78 −0.71 −1.23
Sr −1.56 −1.10 −1.35 −1.22 −0.94 −1.07 −1.61 −1.06 −1.35 −1.22 −0.91 −1.06 −1.61 −1.06 −1.35 −1.22 −0.91 −1.07
Ba −1.50 −0.58 −0.94 −1.89 −1.32 −1.58 −1.79 −0.53 −0.98 −1.99 −1.36 −1.59 −1.79 −0.53 −0.96 −1.99 −1.32 −1.58
Pb −2.26 0.32 −0.94 −3.58 −2.00 −2.36 −2.00 0.32 −0.76 −3.00 −2.00 −2.26 −2.26 0.32 −0.85 −3.58 −2.00 −2.31
Zr −0.73 0.06 −0.44 −0.04 0.63 0.35 −0.83 0.15 −0.39 −0.16 0.65 0.35 −0.83 0.15 −0.42 −0.16 0.65 0.35
Ce −2.63 −1.32 −1.96 −2.19 −0.54 −1.11 −2.71 −1.16 −1.95 −1.76 −0.49 −1.06 −2.71 −1.16 −1.95 −2.19 −0.49 −1.08

Table 7. The statistical description of the degree of contamination (Dc), pollution load index (PLI), and potential ecological risk index (RI) in studied sediment samples.

Indices
First Year (n = 54) Second Year (n = 54) Cross Two Year (n = 108)

Estuary Littoral Estuary Littoral Estuary Littoral
Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean

Dc 17.4 25.4 22.1 17.8 22.5 20.5 18.4 26.0 22.2 18.3 22.1 20.4 17.4 26.0 22.2 17.8 22.5 20.4
PLI 0.83 1.15 1.01 0.86 1.02 0.95 0.86 1.16 1.01 0.88 0.99 0.94 0.83 1.16 1.01 0.86 1.02 0.94
RI 21.2 40.6 31.2 22.4 27.2 24.3 22.7 41.9 31.8 20.4 26.2 24.0 21.2 41.9 31.5 20.4 27.2 24.1

Table 8. Assessment of the studied sediments based on categories of contamination degree (Dc), potential ecological risk index (RI), and pollution load index (PLI).

Indices Classes Estuary Sediment Samples (%) Littoral Sediment Samples (%)
1st Year 2nd Year Across Two Years 1st Year 2nd Year Across Two Years

Degree of Contamination
(Dc)

Low 0 0 0 0 0 0
Moderate Dc 0 0 0 0 0 0

Considerable Dc 100% (30 samples) 100% (30 samples) 100% (60 samples) 100% (24 samples) 100% (24 samples) 100% (48 samples)
Very high Dc 0 0 0 0 0 0

Pollution Load Index
(PLI)

Unpolluted 30% (9 samples) 30% (9 samples) 30% (18 samples) 87.5% (21 samples) 100% (24 samples) 93.75% (45 samples)
Polluted 70% (21 samples) 70% (21 samples) 70% (42 samples) 12.5% (3 samples) 0 6.25% (3 samples)

Ecological Risk Index
(RI)

Low ecological risk 100% (30 samples) 100% (30 samples) 100% (60 samples) 100% (24 samples) 100% (24 samples) 100% (48 samples)
Moderate ecological risk 0 0 0 0 0 0

Considerable ecological risk 0 0 0 0 0 0
Very high ecological risk 0 0 0 0 0 0
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3.3. Correlation Matrix

Pearson’s correlation matrix was run to evaluate the rate of similarity and examine
the inter-relationships among the elements under investigation [90]. Tables 9 and 10 show
the Pearson’s correlation analysis findings for PTEs in the Gamasa estuary and littoral shelf
sediment samples across the two-year investigation. The results of estuary samples (Table 9)
reveal strong positive correlations between Fe, Ti, Mg, V, Sr, and Ce and Al (r = 0.9, 0.82,
0.62, 0.8, 0.81, and 0.94, respectively); Ti, Mg, V, Ni, Sr, and Ce with Fe (r = 0.83, 0.73, 0.63, 0.5,
0.91, and 0.89, respectively); and Co, Cr, Zn, Ba, and Pb with Mn (r = 0.63, 0.51, 0.67, 0.5, and
0.72, respectively). In contrast a negative correlation was found between Mn, Cr, Zn, and Pb
with Al (r = −0.69, −0.69, −0.63, and −0.83, respectively); and Mn, Cr, Zn, and Pb with Fe
(r = −0.51, −0.71, −0.6, and −0.73, respectively). Other significant relationships between
Cr and Co (r = 0.63), Cu (r = 0.66), Zn (r = 0.84), Ba (r = 0.73), Pb (r = 0.9), and Ce (r = −0.81)
were also found. The littoral shelf results (Table 10) showed no strong correlations between
the tested elements and Al, except with Cu and Ni (r = −0.6 and −0.5, respectively).
Moreover, significant correlation between selected elements were found: Fe with Ti, Mn, P,
Co, Zn, Sr, and Ba (r = 0.67, 0.59, 0.53, 0.53, −0.68, 0.63, and −0.73, respectively); Ti with
Mg, Zn, Ba, and Pb (r = 0.59, −0.62, −0.56, and −0.54, respectively); Mn with P, V, and Ba
(r = 0.83, 0.58, −0.76, respectively); and V with Ba, Pb, Zr, and Ce (r = −0.58, −0.67, 0.8,
and 0.6, respectively). Remarkable significant correlations between the above-mentioned
elements are thought to imply that they may have a typical accumulation manner or come
from the same contamination source. Because of its high resilience to weathering and
erosion, Al is among the well-protected elements. The obtained data of the correlation
matrix revealed that some elements have a significant correlation with Al. Such metals
may be created from natural sources, or they may be anthropogenic in origin and bind to
clay minerals [91,92]. In addition, several metals have a strong relationship with Fe. In
terms of the factors that control the distribution of PTEs, the findings suggest that clay
minerals and (oxy) hydroxides of iron perform a vital role in the distribution of PTEs in the
samples tested.

Table 9. Pearson’s correlation matrix of PTEs in surface sediments of estuary.

Al Fe Ti Mn Mg P V Cr Co Ni Cu Zn Sr Ba Pb Zr Ce

Al 1.00
Fe 0.90 1.00
Ti 0.82 0.83 1.00
Mn −0.69 −0.51 −0.48 1.00
Mg 0.62 0.73 0.77 −0.14 1.00
P 0.47 0.16 0.43 −0.44 0.26 1.00
V 0.80 0.63 0.78 −0.58 0.55 0.68 1.00
Cr −0.69 −0.74 −0.38 0.62 −0.25 0.00 −0.31 1.00
Co −0.36 −0.26 0.02 0.51 0.23 0.11 0.02 0.63 1.00
Ni 0.29 0.50 0.38 0.14 0.68 −0.08 0.26 −0.21 0.26 1.00
Cu −0.40 −0.36 −0.04 0.38 0.19 0.23 0.08 0.66 0.75 0.26 1.00
Zn −0.63 −0.60 −0.32 0.67 0.00 0.04 −0.31 0.84 0.72 0.09 0.77 1.00
Sr 0.81 0.91 0.62 −0.51 0.54 −0.02 0.46 −0.83 −0.40 0.27 −0.59 −0.73 1.00
Ba −0.33 −0.27 −0.01 0.50 0.21 0.07 −0.08 0.73 0.81 0.18 0.65 0.77 −0.44 1.00
Pb −0.83 −0.73 −0.50 0.72 −0.25 −0.29 −0.53 0.90 0.64 0.00 0.68 0.87 −0.82 0.72 1.00
Zr 0.47 0.28 0.33 −0.26 0.16 0.32 0.33 −0.20 −0.05 −0.23 −0.31 −0.25 0.37 −0.15 −0.41 1.00
Ce 0.94 0.89 0.73 −0.72 0.46 0.34 0.69 −0.81 −0.47 0.16 −0.50 −0.75 0.89 −0.48 −0.90 0.47 1.00
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Table 10. Pearson’s correlation matrix of PTEs in surface sediments of littoral shelf.

Al Fe Ti Mn Mg P V Cr Co Ni Cu Zn Sr Ba Pb Zr Ce

Al 1.00
Fe −0.04 1.00
Ti −0.19 0.67 1.00
Mn 0.28 0.59 0.48 1.00
Mg −0.15 0.27 0.59 0.08 1.00
P 0.39 0.53 0.38 0.83 0.11 1.00
V −0.18 0.09 0.10 0.58 −0.03 0.56 1.00
Cr −0.36 0.23 0.24 0.43 0.12 0.16 0.36 1.00
Co −0.07 0.53 0.15 0.17 0.15 −0.05 −0.34 0.24 1.00
Ni −0.50 0.04 −0.27 −0.43 −0.16 −0.48 −0.12 −0.04 0.26 1.00
Cu −0.60 −0.33 0.04 −0.23 0.08 −0.42 0.18 −0.04 −0.28 0.11 1.00
Zn −0.20 −0.68 −0.62 −0.22 −0.73 −0.31 0.25 0.03 −0.40 0.10 0.41 1.00
Sr 0.13 0.63 0.39 −0.02 0.38 0.12 −0.41 −0.29 0.35 0.24 −0.40 −0.80 1.00
Ba −0.01 −0.73 −0.56 −0.76 −0.03 −0.69 −0.58 −0.08 −0.04 0.11 0.00 0.25 −0.24 1.00
Pb 0.18 −0.34 −0.54 −0.45 −0.27 −0.58 −0.67 0.03 0.34 0.18 −0.24 0.17 −0.09 0.71 1.00
Zr −0.31 −0.24 −0.21 0.33 −0.45 0.21 0.80 0.32 −0.29 −0.01 0.37 0.74 −0.75 −0.29 −0.35 1.00
Ce 0.01 −0.42 −0.49 0.21 −0.55 0.14 0.60 0.17 −0.19 0.05 0.09 0.73 −0.73 −0.04 −0.03 0.84 1.00

3.4. Multivariate Statistical Analysis
3.4.1. Cluster Analysis

A single correlation study is insufficient to understand the origins of elements. As
a result, CA and PCA have become popular methods for detecting element sources and
their properties in sediment [93,94]. Figure 2 depicts the dendrogram extracted from the
cluster analysis of elements in the Gamasa estuary and littoral shelf samples. The CA
outcomes for various investigated elements in estuary samples (Figure 2A) contain four
main clustering groups. The elements of Al and Fe forms the first group (cluster I), and the
second group (cluster II) is composed of Mg. The third group (cluster III) consists of Ti and
Mn. The fourth group (cluster IV) is subdivided into three sub-clusters; one group contains
P; another group is composed of Co, Pb, Ni, Cu, and Ce; while the last one contains Zn,
V, Cr, Sr, Zr, and Ba. In contrast, the littoral shelf cluster analysis (Figure 2B) indicates
three main clusters: (cluster I) Mg, Al, and Fe; (cluster II) Ti; (cluster III) and divided into
three subgroups. The three subgroups are composed of the following (1) Mn; (2) Zr, Ce,
Cu, Pb, Co, and Ni; and (3) Zr, V, Cr, Sr, Ba, and P. Despite the similarity in the presence of
harmful elements and fluctuations in their concentrations, as shown by the dendrogram,
the Euclidean distances between these two groups are vastly different. The smaller distance
indicates that they are closely connected.
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3.4.2. Principal Component Analysis

PCA analysis was performed to find similarities between observed parameters (PTEs)
and pinpoint the source of their origin (Figure 3). The PCA of estuary samples demonstrated
two significant elements explaining in total 99.195% of the variance. The first PC1 described
94.26% of the whole variance controlled by notable Al loading and Fe (loading 0.795 and
0.598, respectively), especially from samples No. E6, E8, E9, E10, E16, E18, E19, and E20.
The PC2 explained 4.935% of the total variance and composed mainly Mg, Mn, and Ti
(loading 0.172, 0.092, and 0.026, respectively). The shelf samples displayed the following
three principal components: (1) PC1 elucidated 75.151% of total variance and composed
mainly Fe, Mg, Mn, and Ti (loading 0.996, 0.068, 0.042, and 0.035, respectively); (2) PC2
explained 20.702% of total variance; (3) and PC3 elucidated 3.837% variance. The PCA
results revealed an elevated loading of Al and Fe in the basic components, as well as
significant increasing correlations with Al and Fe in other investigated elements in the same
components, meaning that these metals occur naturally in sediment or are derived from
anthropogenic sources and have a distribution pattern governed by clay minerals and iron
oxides. All the above-described findings suggest that the metals in investigated sediment
samples may come from a variety of sources (natural and anthropogenic). The findings
suggest that anthropogenic activity is the primary source of the potential environmental
hazardous elements Cu, Ni, Co, Mn, V, Zn, P, and Cr found in surface sediment samples
from the Gamasa estuary and coastal shelf.

1 

 

 

Figure 3. Principal component analysis for elements of (A) estuary and (B) littoral shelf
sediment samples.

3.5. Performance of Random Forest and Artificial Neural Networks Based on Several Elements to
Assess Pollution Indices

The RF and BPNN models were used in this study to forecast pollution indices
depending on a range of elements as seen Tables 11 and 12. The traditional mathematical
approaches discussed in this study can be utilized to provide approximate CD, PLI, and RI
forecasts for sediment samples [35,44]. The use of RF and BPNN as an alternate approach
for predicting these indices was assessed in the present research since it is rapid, simple, and
does not necessarily require multiple steps to calculate CD, PLI, and RI. ANNs have lately
shown outstanding performance as a regression approach, particularly when applied for
function determination and pattern recognition. In comparison to traditional approaches,
ANN can tolerate and interpret incomplete datasets, produce conclusions, and is less
vulnerable to outliers [25,95].
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Table 11. Results of validation models of random forest of the association between observed and
predicted of degree of contamination (CD), pollution load index (PLI), and potential ecological risk
index (R1) in two years.

Variable Parameters Sort by Lowest to Highest
Calibration Validation

R2 RMSE R2 RMSE

CD ntree = 2, mtry = 10 Pb, Ni, Ce, Cu, Cr, Mg, P, Ti, Fe, V, Ba, Co,
Sr, Al, Zr, Mn, Zn 0.92 *** 0.623 0.85 *** 0.655

PLI ntree = 5, mtry = 8 Ti, V, Cu, Mg, Sr, Fe, Ni, Co, P, Mn, Cr, Zr,
Ce, Pb, Al, Zn, Ba 0.95 *** 0.017 0.80 *** 0.026

RI ntree = 30, mtry = 5 V, P, Mg, Ti, Ni, Cr, Co, Fe, Cu, Ba, Zr, Sr,
Mn, Al, Ce, Zn, Pb 0.99 *** 0.714 0.90 *** 1.464

*** Statistically significant at p ≤ 0.001.

Table 12. Outcomes of calibration and validation models of ANN of the association between observed
and predicted for potential ecological risk index (R1), contamination degree (CD), and pollution load
index (PLI) in the two-year investigation.

Variable Parameters Sort by Lowest to Highest
Calibration Validation

R2 RMSE R2 RMSE

CD (18,22)
identity

Zr, Ba, Sr, Mg, Ti, Cu, Co, Cr, Pb, Al, Ce, V,
Fe, Zn, P, Ni, Mn 1.00 *** 0.0003 1.00 *** 0.0004

PLI (22,12) logistic Cr, Fe, Ba, V, Ti, P, Mn, Cu, Zr Ni, Mg, Sr,
Co, Ce, Al, Zn, Pb 1.00 *** 0.0047 0.98 *** 0.0078

RI (22,12) identity Ba, Fe, P, Zn, Ti, Sr, Cu, Ce, Mn, Ni, Zr,
Mg, V, Al, Cr, Co, Pb 1.00 *** 0.0001 1.00 *** 0.0004

*** Statistically significant at p ≤ 0.001.

The best proposed components (PCs), optimal parameters, and RF model outputs
for RMSE and R2 are shown in Table 9 for the calibration (Cal.) and validation (Val.)
datasets. Based on R2 (Table 11) and slope (Figure 4), the RF model produced a more
accurate evaluation of CD, PLI, and RI in both models of the Cal. and Val. The outcomes
of advanced models were optimized by including the best characteristics. The RF-PCs-
CD-17 model performed better in predicting CD and was constructed using two (ntree:
number of trees) and ten (ntree: number of trees); R2 and RMSE increased to 0.85 and 0.655,
respectively, using this model. For predicting PLI, the RF-PCs-PLI-17 model obtained a
high expectation at 5 ntree and 8 mtry; the performance increased to 0.80 and 0.026 for R2
and RMSE, respectively. To estimate RI, the RF-PCs-RI-17 model was built using 30 ntree
and 5 ntry; the R2 climbed to 0.90, while the RMSE reduced to 1.464. The suggested RF
models acquired great performance by tuning hyperparameters and choosing the optimal
indices. High performance was attained by the suggested RF models by following a set of
methods, which included tuning hyperparameters and choosing the optimum indices [96].

Figure 5 illustrates the neural network topologies developed after collecting senior
sediment characteristics. The figure depicted the optimal neural network topology based
on the versions selected. Each network’s architecture contains basic information about the
learned synaptic weights, the number of unseen neuron layers, the convergence stages,
and the total errors. The network architecture is created by combining a number of input
variables with a number of concealed neuron layers. For example, the model ANN-PCs-
CD-17 has hidden neuron layers (18,22), the model ANN-PCs-PLI-17 was required (22,12),
and the model ANN-PCs-RI-17 was selected (22,12). In Figure 6, advanced models of ANN-
PCs-CD-17, ANN-PCs-PLI-17, and ANN-PCs-RI-17 are shown. To achieve a reduced error
function, the training method required 554, 392, and 534 steps, respectively. The procedure
had a total error of around 6 × 10−6, 1.2 × 10−5, and 8 × 10−6, respectively. According to



J. Mar. Sci. Eng. 2022, 10, 816 17 of 24

Thawornwong and Enke [97], the network was trained using the back-propagation method
with early halting to keep over-fitting at a minimum.
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The best suggested components (PCs) based on the outputs were the premium integra-
tion to filter the topmost variables, as detailed in Table 12. These elements were provided
a high priority for assessing the sediment’s considered properties. The neural network
was trained using the super elements’ attributes for predicting the researched parameters.
Based on determination coefficient (R2) values (Table 12) and slope (Figure 6), the BPNN
model produced a more accurate evaluation of CD, PLI, and RI in both models of the
Cal. and Val. The ANN-PCs-CD-17 model performed the best and demonstrated a better
association between exceptional qualities and CD. The seventeen characteristics included
in this model are critical for predicting CD with R2, values of 1.00 for (Cal.) and 1.00 for
(Val.). The ANN-PCs-PLI-17 model performed the best in terms of measuring PLI with R2
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values for the Cal. and Val. of 1.00 and 0.98, respectively. The ANN-PCs-RI-17 model was
the most accurate in detecting RI (R2 = 1.00 for both Cal. and Val. datasets). The following
considerations optimized the learning curve of the ANN model in this study: number and
attributes of nominated features, selecting the most important parameters, and defining
iterations for neural networks to avoid model over-fitting. The model’s hyperparameter
optimization is a crucial aspect that influences the accuracy of water content prediction.
Hyperparameter selection has a significant impact on the performance of any ML model,
and it has various advantages: It has the potential to increase the performance of ML
algorithms [98] and enhance scientific studies’ repeatability and fairness [99]. Furthermore,
because it has direct control over the behaviors of training algorithms, it can perform a sig-
nificant role in refining the prediction model [100]. As Elsherbiny et al. [101] revealed, the
performance of the ANN algorithm for robust prediction was improved by following some
steps during training, including filtering super-features and tuning model hyperparameters.
These results are consistent with the proposed ANN model that used all sensitive features
to monitor environmental pollution indicators that significantly increase the model’s perfor-
mance. As for [102], the findings demonstrated ANN’s enormous potential for simulating
water quality factors. The training and test data had simulation accuracy of 0.8 to 0.9, as
determined by the Nash–Sutcliffe coefficient of efficiency. As a result, a trained ANN model
might possibly provide simulated values for desirable regions when measured data are
absent but water quality models are required. Ubah et al. [103] showed that the ANN
model can be a promising tool as the actual water quality data are very well-analyzed with
good prediction. The training model performance evaluation shows that the R2 values
ranges from 0.981 to 0.990, 0.981 to 0.988, 0.981 to 0.989, and 0981 to 0.989, for pH, TDS, EC,
and Na, respectively. The testing model performance shows that the R2 value ranges from
0.952 to 0.967, 0.953 to 0.970, 0.951 to 0.967, and 0.953 to 0.968, for pH, TDS, EC, and Na,
respectively. This indicates a good model for predicting water quality parameters using
ANN for irrigation purposes.
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4. Conclusions

The results of this study can be considered geo-environmental monitoring information
on the eastern side of the Nile Delta Mediterranean coastal area. Several types of indices
(single element indices such as CF, EF, and Igeo, and multi-element indices such as PLI, Dc,
and RI) were employed to assess the rate of contamination and ecological risk of seventeen
elements (Al, Mg, Cr, Cu, V, Sr, Ti, Zr, Ba, Ce, P, Mn, Fe, Ni, Pb, Co, and Zn) in surface
sediments of the Gamasa estuary and coastal shelf. The RF and BPNN models were utilized
to quantify the Dc, PLI, and RI. Al, Fe, and Mg concentrations were higher in sediment
samples from the estuary and littoral shelf among the 17 tested elements. The estuary and
littoral sediment samples were composed of a low concentration of Pb, Co, and Cu. The
elevated concentrations of Al and Fe in the sediments indicated that terrigenous material
had contaminated them. The CF results suggest that the Gamasa estuary and littoral shelf
sediment samples are unpolluted by Al, Mg, Ni, Sr, Ba, and Ce, and highly polluted by
Mn. The investigated sediment samples were considerably enriched by Cr, Co, Ni, Cu, Zr,
V, Zn, P, and Mn and originated from anthropogenic sources. The enrichment shows that
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anthropogenic sources, including sewage disposal, industrial and agricultural activity, as
well as residential and urban wastes, contribute more to enrichment in the study area than
natural sources. All the analyzed sediment samples were significantly contaminated by the
tested elements according to the findings (Dc). According to the PLI findings, 70% of the
Gamasa estuary samples is polluted, while 93.75 % of coastal shelf sediment is unpolluted.
The potential ecological risk index revealed that the examined samples were classified as
low ecological risk. The tested elements may be derived from natural sources, or they may
be anthropogenic in origin and bind to clay minerals and hydroxides of iron. As a result,
significant and essential actions must be taken to restrict sewage entry, treat sewage before
it enters the estuary, and manage the water quality and sediments in the estuary. Elements
in combination with RF and BPNN can be effective approaches for accurately estimating
CD, PLI, and RI in Cal. and Val. datasets. For example, The RF-PCs-CD-17 model was
better in predicting CD and was constructed using two (ntree: number of trees) and ten
(ntree: number of trees). R2 was increased to 0.85, using this model. The ANN-PCs-RI-17
model was the most accurate in detecting RI (R2 = 1.00 for the Cal. and 1.00 for the Val.). In
conclusion, the use of RF and BPNN techniques is recommended for assessing potentially
toxic elements of surface sediment of aquatic environment.
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38. Pekey, H. The distribution and sources of heavy metals in İzmit Bay surface sediments affected by a polluted stream. Mar. Pollut.
Bull. 2006, 52, 1197–1208. [CrossRef] [PubMed]

39. Abrahim, G.M.S.; Parker, R.J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments
from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2008, 136, 227–238. [CrossRef] [PubMed]
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