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Abstract: Two modal decomposition techniques, including proper orthogonal decomposition (POD)
and dynamic mode decomposition (DMD), were used to identify the wake patterns past single and
two crossing cylinders in 60◦ and 90◦ arrangements with gap ratio G = 4. The flow was simulated
using direct numerical simulations (DNS) for Reynolds numbers Re = 100. From modal analysis, the
flow’s spatial scale decreased with increasing modal frequency. Two main modes were identified in
the wake of the cylinders, namely spatially antisymmetric and symmetric modes. Antisymmetric and
symmetric modes were related to the cylinders’ vortex shedding and shedding vortices’ shift motion,
respectively, whose frequencies were odd and even multiples of the cylinders’ lift force frequency. In
addition, a low-frequency mode concerning the shadowing effect of the downstream cylinder (DC)
in 90◦ arrangement was found in the wake of the DC centre.

Keywords: low-dimensional models; vortex dynamics; wakes

1. Introduction

Vortex-induced vibration (VIV) of a circular cylinder has always been of interest to
researchers due to its engineering applications [1,2]. In particular, if the self-oscillation
frequency of a downstream structure is close to the vortex shedding frequency from the
upstream circular cylinder, the structure will be destroyed by resonance [3–5]. Therefore,
the relationship between wake morphologies and flow frequencies is worth studying.

The vortex shedding from a single circular cylinder is dependent on the flow direc-
tion [1,2] and Reynolds number Re. Different arrangements of multiple circular cylinders
also affect the morphologies of the wake vortices. For two circular cylinders, parallel
(including tandem, side-by-side, and staggered) and crossing arrangements make the flow
past the cylinders more complex [4–10]. For instance, if two circular cylinders are perpen-
dicular to each other, i.e., the so-called cruciform arrangement, the morphologies of the
gap flow between two cylinders and vortex shedding are determined by the flow direction,
gap-to-diameter ratio (defined as G), and Reynolds number Re [8].

Flows around circular cylinders are spatiotemporally coupled results, and it is not easy
to separate the single-frequency flows from them. Modal decomposition technologies [10],
including proper orthogonal decomposition (POD, [11]) and dynamic mode decomposition
(DMD, [12]) have been proved to be powerful methods for solving this problem and have
been widely used to analyse single cylinder wake obtained via particle image velocimetry
(PIV) experiments [13–15] and numerical simulations [16–21].

For multiple cylinders in different arrangements, Zhang et al. [22] conducted a com-
prehensive comparison on identifying coherent structures in wake flow behind two side-
by-side circular cylinders of different diameters obtained by PIV. Sakai et al. [23] employed
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POD and DMD to analyse the experimental and numerical flow around two circular cylin-
ders in tandem and side-by-side arrangements. Sirisup and Tomkratoke [24] performed
POD on the flow around two staggered circular cylinders obtained by using direct numer-
ical simulations (DNS). Wang et al. [25] analysed the flow around two square cylinders
in tandem arrangement with different G spacing ratios based on POD and DMD. Noack
et al. [26] proposed a variant DMD algorithm, called recursive DMD (RDMD), to analyse
the wake past three rotating cylinders in staggered arrangements calculated by DNS, and
the modal results were compared with those obtained by original POD and DMD methods.

The above investigations mainly employed POD and DMD in analysing the parallel
cylinder flows. However, little attention was paid to the modal patterns around the crossing
point of two crossing cylinders, and the physical relevance between POD and DMD modes’
spatial patterns and cylinders’ lift force is not clear. Therefore, the main objective of our
study was to explore the relationship between flow morphologies and their corresponding
frequencies. To this end, we employ POD and DMD to analyse the wake past a single
circular cylinder and two crossing circular cylinders with the crossing angles β = 60◦ and
90◦ and G = 4 (see Figure 1). This study can provide a reference for VIV in standard
three-dimensional cylinder configurations (for example, heat exchanger pipes, underwater
trusses, etc.).
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Figure 1. Sketch of single- and two-crossing circular cylinders configurations.

The paper is organised as follows. Section 2 presents the numerical simulation method-
ology, and Section 3 studies the lift force coefficient of cylinders, and cylinder wake’s spatial
and spectral features. The modal analysis of the wake is presented in Section 4. Finally, the
crucial results are summarised in Section 5.

2. Overview of Numerical Simulation

The governing equations for simulating the incompressible viscous fluid flow are the
three-dimensional continuity and Navier–Stokes (NS) equations:

∂ui
∂xi

= 0, (1)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p
∂xi

+
1

Re
∂2ui

∂xj∂xj
, (2)

where xi (x1 = x, x2 = y, x3 = z) represents the Cartesian coordinates, ui is the fluid velocity
in the xi direction (u1 = Ux, u2 = Uy, u3 = Uz), t is time, and p is pressure. The Reynolds
number Re is defined as Re = U∞D/ν, where ν is the kinematic viscosity of the fluid. In
this study, the fluid velocity was U∞ = 1 m/s in the x direction, the cylinder diameter
was D = 1 m, the fluid kinematic viscosity was chosen as ν = 0.01 m2/s, and the Reynolds
number was Re = 100. All cases are summarized in Table 1.
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Table 1. Cases in the study.

Case Objective

Single cylinder For spectral analysis
β = 60◦, G = 4, Re = 100 For spectral analysis
β = 90◦, G = 4, Re = 100 For spectral analysis

β = 90◦, G = 0.5, Re = 500 For comparison only

The computational domain was a rectangular box with a length of 42D and a width and
height of 40D (see Figure 2a,b). The length of the cylinders spanned the entire computational
domain. The non-dimensional gap between the two crossing cylinders was defined as
G = S/D, where S is the spacing between two cylinders (see Figure 2c,d). The upstream
cylinder (UC) is a transversal cylinder with the centre of (0, 0, 0) for the studied three
configurations. For the crossing configurations, the centre of the downstream cylinder (DC)
was (5, 0, 0), and the crossing angle β was defined as DC’s inclination angle concerning the
line of (x/D, z/D) = (5, 0).
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cylinders in 60◦ (a,c) and 90◦ (b,d) arrangements with G = 4.

The boundary conditions of the computational domain were specified as follows. A
uniform velocity was given on the left boundary, and the pressure gradient in the stream-
wise direction was zero. On the right boundary, the velocity gradient in the streamwise
direction and the pressure were set to zero. To avoid the influence from two ends of the
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cylinders, the velocity component and the pressure gradient in the normal direction of the
other four boundaries were set to zero. Moreover, no-slip boundary condition was applied
on the cylinder surfaces.

The effect of the mesh density on the numerical results was investigated by performing
the simulations on three meshes of different densities for two cylinders in cruciform
arrangement (β = 90◦) with G = 0.5 at Re = 500. The computational domain was discretised
by the snappyHexMesh mesh generator. Figure 2 shows the computational mesh near the
cylinders. The mesh information is listed in Table 2, and the comparisons of mean drag
coefficient CD within |L/D| < 3 (L is cylinder length) and mean streamwise velocity Ux
(averaged over time) along the x axis from x/D = 2 to 12 between coarse, medium, and fine
meshes are present in Figure 3.

Table 2. Coarse, medium, and fine mesh used for mesh convergence analysis.

Mesh Number Thickness of First Layer Mesh Number of Boundary Layer Nodes

Coarse 9 million 0.004D 48
Medium 14 million 0.002D 96

Fine 22 million 0.001D 192
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Figure 3. Comparison of mean drag coefficient (a) and mean streamwise velocity along the x axis (b)
between the coarse, medium, and fine meshes.

The sectional drag coefficient was defined as CD = 2FD/(ρDU2
∞dL), where FD is the

sectional drag force calculated by integrating the pressure and shear stress along the section
circumference parallel to the inflow direction. Each cylinder was divided into 400 blocks
along the cylinder’s spanwise direction, so that dL was the cylinder length divided by 400.
It is clear from Figure 3a that the CD of UC calculated by the medium mesh and that of DC
calculated by the fine mesh was closer to the results obtained from Mesh 1 in [8]. For the
wake region, the Ux obtained from the medium mesh was similar to that of the fine mesh
(Figure 3b).

Although the two largest meshes showed similar convergence, we still picked up
the highest-density one as the target mesh to ensure accuracy. Finally, the mesh numbers
were 18 million, 22 million, and 22 million for the cases of single cylinder and two crossing
cylinders in 60◦ and 90◦ arrangements with G = 4, respectively. Based on the DNS, the time
step of the simulation was set to dt = 0.005 s.

3. Numerical Results

The numerical results in this section focus on the lift coefficients, wake morphologies,
and their spectra.

3.1. Lift Force Coefficient

Figure 4 shows the contours of sectional lift force coefficient CL = 2FL/(ρDU2
∞dL) along

the cylinders, where FL is the sectional lift force and its direction is perpendicular to the
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inflow direction. For the single cylinder, the lift force oscillated with time, and there was no
time shift of the lift force along the spanwise direction of the cylinder (Figure 4a). While,
for the two crossing cylinders, the lift force at the UC centre was always ahead of that at
two sides of the UC centre, and the amplitude of the lift force at the UC centre was higher
than that at two sides of the UC centre (see Figure 4b,c).
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Figure 4. Contours of sectional lift coefficient along the single cylinder (a), and UC (b,c) and DC (d,e)
for two crossing cylinders in 60◦ (middle) and 90◦ (right) arrangements.

For the DC in 60◦ arrangement, in addition to the increased lift force amplitude around
the DC centre, the lift force on two sides of DC centre had an insignificant time shift, which
can be seen in the dashed box in Figure 4d. However, for the DC in 90◦ arrangement,
the lift force at the DC centre was almost zero under the influence of UC. The lift force
characteristics of DC in 90◦ arrangement in the present work agree well with that of DC in
cruciform arrangement for Re = 150 [8], both of which are in the laminar regime.

A fast Fourier transform (FFT) was further performed on the sectional lift force coeffi-
cient to calculate lift force’s power spectral density (PSD), and the contours of the Strouhal
number StL = fLD/U∞ determined by the frequency of lift force fL is shown in Figure 5. It
is clear from Figure 5 that the lift force frequency is StL = 0.16 and was not related to the
inclination angle of DC. For the DC in 60◦ arrangement, there was a second high frequency
of StL = 0.32 at the cylinder centre.

3.2. Flow Field

Since the lift force is related to the vortex shedding from the cylinders [7,8], the
wake morphologies of the single and two crossing cylinders are presented by the λ2 iso-
surfaces [27] in Figure 6. λ2 is the second eigenvalue of the tensor Ψ2+ Ω2, where Ψ and Ω

are the symmetric and the anti-symmetric parts of the velocity-gradient tensor, respectively.
For the single cylinder of finite length, the lift force along the cylinder oscillated

simultaneously (Figure 4a), and the flow around the single cylinder was a two-dimensional
phenomenon [7]. From a global perspective, the wake vortices shedding from the single
cylinder were parallel to the cylinder, which is called parallel (P) mode (see Figure 6a).
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For the crossing cylinders, although the gap ratio between the two cylinders was G = 4,
the DC still affected UC’s flow patterns. Under the influence of the DC, the vortex shedding
near the centre of each cylinder lagged the vortex shedding from two sides of the centre of
the cylinder, forming inclined vortex morphology, i.e., K mode (see Figure 6b,c). The flow
field of two crossing cylinders had a typical three-dimensionality.

The vorticity magnitude |ω| = |5×U| = (ω2
x+ω2

y+ω2
z)1/2 contours on the xz and

xy planes are presented in Figures 7 and 8, respectively. For the gap flow, the gap ratio
G was sufficiently large in this study and the vortex shedding was also generated in the
gap between two crossing cylinders (Figures 7b,c and 8). However, the front surface of DC
delayed the vortex shedding from UC, and this delay resulted in the K mode wake vortices.
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Figure 8. Contours of instantaneous vorticity magnitude on the xy plane for the flow around the
single (a) and two crossing cylinders in 60◦ (b,c) and 90◦ (d) arrangements. The angle between the
plane shown in (b) and xy plane is 60◦, and the plane is parallel to DC in 60◦ arrangement. The
vorticity is normalized by U∞/D.

For the 60◦ arrangement, the wake vortices from UC centre interacted with DC and
cause an asymmetric circulation distribution on the surface of the DC centre due to DC’s
inclination (Figure 7b). As a result, the lift force of DC centre increased (Figure 4d), and
the vortex shedding intensity near the DC centre was significantly higher than that of DC
ends (Figure 8b). Although there was a time shift in lift force (Figure 4d) and wake vortices
(Figure 8b) between two sides of DC in 60◦ arrangement, lift force and wake vortices of DC
were continuous along the DC.

For the DC in 90◦ arrangement, the lift force of DC centre was almost zero (Figure 4e)
and DC’s wake vortices were discontinuous at DC centre (Figure 7c). The symmetric wake
vortices around the DC centre in Figure 8d are related to the UC wake and DC’s blockage
effect [8].
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A series of probes spaced at 1D interval were inserted in the wake field to record the
wake velocity, as shown by lines 1 (y/D = 0, z/D = 0), 2 (x/D = 3, z/D = 0), 3 (x/D = 8,
z/D = 0), 4 (x/D = 8, z/y = tan60◦ for β = 60◦ case and x/D = 8, y/D = 0 for β = 90◦ case)
in Figure 6. Based on the wake velocity, the kinetic energy KE = 0.5(U2

x + U2
y + U2

z) in the
wake is obtained and the PSD of KE was calculated through FFT. Figure 9 presents the
energy evolution in the wake of the single cylinder along the x axis from x/D = 1 to 30,
and Figure 10 shows the flow frequencies along the spanwise direction of each cylinder at
different streamwise positions.
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It is clear from Figure 9 that there were two distinct spectral peaks of StKE = fKED/U∞ = 0.32
and 0.64, which were two and four times the lift force frequency StL = 0.16 in Figure 5a,
respectively. The free shear layers generated the shedding vortices on left and right
boundaries of a cylinder. Since the vortex shedding on one side corresponds to the peak lift
force and the next vortex shedding on the other side corresponds to the valley lift force,
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there were two vortex shedding phenomena in one lift force period, i.e., StKE = 0.32 = 2StL.
A complete vortex shedding period T was approximately 6.25 s.

Similarly, multiple spectral peaks could also be found in the wake of two crossing
cylinders, i.e., StKE = 0.16, 0.32, 0.48, and 0.64, where StKE = 0.16 and 0.48 are significant
only near the crossing point. However, the spectra and flow field cannot resolve the flow
morphologies corresponding to the above characteristic frequencies. Therefore, modal
decomposition methods were employed to solve this problem.

4. Modal Analysis
4.1. Methodology

The aim of reduced order model (ROM) is to identify the dominant modes in a dynamic
system. As data-driven analysis methods, POD [11] and DMD [12] allow us to extract the
domainant spatial and temporal features in the flow based on spatial orthogonality and
frequency independence, respectively. The algorithms of these methods are introduced
as follows.

4.1.1. POD

For a snapshot matrix X = [x1, . . . , xm], where the snapshot data xi with n meshes
are arranged as column vectors, the goal of POD is to seek m optimal basis ui that best
represent the flow field data. In a discrete dynamic system, the above problem is ultimately
transformed into a problem of solving the eigenvalues of spatial correlation matrix, namely
covariance matrix R = XXT of the snapshot matrix X. Finally, the eigenvalue decomposition
(EVD) of matrix R is equivalent to dealing with the singular value decomposition (SVD) of
the snapshot matrix X in the sense of least squares [28]:

X = UΣVT, (3)

where U = [u1, u2, . . . , um] is POD mode matrix, Σ = diag(σ1, σ2, . . . , σm) is energy matrix,
and V = [v1, v2, . . . , vm] is time evolution matrix. In addition, both mode vectors ui and
time vectors vi are unitary. Each mode’s time coefficient ai(t) (i = 1, 2, . . . , m) can then be
calculated by multiplying its singular values σi with the time vectors vi:

ai(t) = σivi
T, (4)

Modal energy σi is related to the contribution of each orthogonal mode (basis) to the
wake dynamic, namely each POD mode is ranked according to the degree to which it
captures the spatial features of the flow field. The relative energy of each mode and the
cumulative energy up to the ith modes are defined as

Ei =
σi

∑m
j=1 σj

, Ecum
i =

i

∑
k=1

Ek. (5)

4.1.2. DMD

In a discrete-time dynamic system, DMD assumes a constant linear operator A between
adjacent snapshots xi and xi+1, which can be denoted as

X′ = AX, (6)

where X = [x0, x1, . . . , xm−1] and X′ = [x1, x2, . . . , xm] are snapshot matrices. The best-fit
operator A is given by

A = X′X†, (7)

where X† denotes the Moore–Penrose pseudoinverse of matrix X. Equation (7) is equivalent
to minimising the error of ||X′ − AX†||F, where ||·||F is the Frobenius norm.
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Since the high-dimensional matrix A is generally too large (n × n), a projection algo-
rithm proposed by Tu et al. [29] is used to reduce the computational cost. Let X = UΣVT,
then the low-rank matrix Ã can be obtained

Ã = UTAU = UTXVΣ−1 (8)

If the eigenvector and eigenvalue matrix of matrix Ã are W and Λ, the DMD mode
matrix Φ is given by

Φ = UW, (9)

and the DMD eigenvalues are given by Λ. Each DMD mode’s growth/decay rate gi and
frequency fi can then be obtained based on the eigenvalue λi as

gi = In(Re(λi))/∆ts, (10)

fi = In(Im(λi))/(2π∆ts). (11)

The initial amplitude (energy) αi can be calculated by projecting the initial snapshot x0
onto a low-rank subspace, as shown in Kutz et al. [28]:

α = [α1, α2, . . . , αm]T = Φ†·x0, (12)

The original flow field data xj (j = 0, 1, . . . , m) can be reconstructed by r modes as

xj ≈ ỹj =
r

∑
i=1

φiai(t j), (13)

where ai
(
tj
)

is the time coefficient of DMD mode φi at time j.

4.2. Raw Data

In this paper, the vorticity magnitude was selected for modal decomposition. In
addition, the time-averaged vorticity was retained in the snapshot dataset because the
removal of mean flow would reduce the DMD to the temporal discrete Fourier transform
(DFT), which may lead to each mode being distributed at a constant frequency interval.

As seen from Figure 4, the lift force remained stable from 200 s onwards, and thus
vorticity data in the last 100 s (from 200 to 300 s, around sixteen vortex shedding pe-
riods) were chosen for modal decomposition. The snapshot data were output at the
time interval of ∆t = 2 dt = 0.01 s, corresponding to the maximum sampling frequency of
fmax = 1/∆t = 100 Hz.

4.3. Modal Convergence Analysis

The modal convergence is dependent on dataset’s sampling time interval ∆ts and
the coverage period Ts. According to the Nyquist–Shannon criterion [30], the sampling
frequency fs should be at least two times the flow frequency f to capture flow features in
the range of 0 to f, i.e.,

fs = 1/∆ts ≥ 2f. (14)

The modal convergence is determined by the root mean square error (RMSE) between
the snapshot data and DMD reconstruction result at time m + 1, i.e., the L2 norm of
xm+1 − ỹm+1:

||xm+1 − ỹm+1||2 =

√
n

∑
i=1

(x i, m+1 − ỹi, m+1

)2
. (15)

If all significant modes are contained, DMD can predict the next time flow field with
high accuracy.

In this study, different sampling time intervals ∆ts = 3, 4, 5∆t = 0.03, 0.04, 0.05 s (cap-
turing the modes in the frequency range of 0 ≤ St = fD/U∞ ≤ 33.3, 12.5, 10, respectively)
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and coverage periods Ts = 1, 2, 3, 4, 5T = 6.25, 12.5, 18.75, 25, 31.25 s (covering 1 to 5 vortex
shedding periods, respectively) were set to investigate the effect of sampling time interval
and coverage period on modal convergence. Figure 11 illustrates the RMSE between the
snapshot data and the DMD reconstruction result for the single cylinder case. The recon-
struction error decreased with increasing coverage periods and the decreasing sampling
interval. For ∆ts = 3∆t, the error reached a plateau for Ts = 4T, after which it did not
change significantly. Hence, we considered the snapshot number m = 1042 (∆ts = 0.03 s,
Ts = 5.0016 s) for this study.
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4.4. Modal Energy and Spectrum Statistics

POD provides modal energy and time coefficient (see Equation (4)), and its spectral
information can be obtained by calculating the time coefficient’s PSD. DMD provides modal
eigenvalue λi, frequency fi and amplitude αi (see Equations (9), (11) and (12)). Statistics on
these important parameters are given as follows.

4.4.1. POD Modes

Figure 12 illustrates the relative energy of the first 25 POD modes and their cumulative
energy. Overall, the energy of each mode decreased with increasing modal order. For the
flow around the single and two crossing cylinders in 60◦ and 90◦ arrangements, the first
mode had 84.55%, 81.82% and 81.29% of total energy, respectively. In addition, the first 3, 3,
and 5 modes were needed to reach 90% of total energy, and the first 31, 29, 71 modes were
needed to reach 99% of total energy, respectively. Statistics on modal energy show that the
presence or absence of DC and DC’s arrangement significantly affected the convergence of
the modal energy.

The spectral peak distribution of the first 25 POD modes are further demonstrated
in Figure 13, where the spectral peak value of each mode was normalized by its maxi-
mum value. Although most POD modes appear as multi-frequency coupling forms, the
modal frequency peaks (black pixels) followed a linear function with modal order, and
the frequency peaks of adjacent modes were the same in pairs. However, for the two
crossing cylinders in 90◦ arrangement case, the linear relationship between modal order
and frequency peaks was not as pronounced as the other two cases. For the studied three
cases, these modes’ frequency peaks were approximately integer multiples of St = 0.16.

4.4.2. DMD Modes

For DMD modes, a normalized dynamic factor di = |αi|× |λi|m−1/max(|αi|× |λi|m−1)
was defined to exclude spurious mode with a high amplitude and a high decay rate, consistent
with the approach in Shi et al. [31]. Each DMD mode was ranked according to its dynamic
factor, and the leading modes were expected to make a prominent contribution to the wake
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dynamics. The distribution of important modes are shown in Figure 14, where zero-frequency
mean flow modes are not considered and the leading 15 modes are colored in red.
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The spectra of DMD modes demonstrate that the modal contribution to the wake
dynamics decreased with increasing modal frequency, and that the contribution of modes
with St > 1 was negligible. Similar to the POD modes’ spectra in Figure 13, the frequencies
of the crucial DMD mode are integer multiples of St = 0.16. However, more than one
DMD mode existed around integer multiples of St = 0.16, especially for two crossing
cylinder cases.

4.5. Modal Results

This section focuses on the relationship between modal spatial patterns and frequen-
cies. Note that the vorticity magnitude in the three-dimensional flow field is the quantity
being analysed in this study, and only the spatial results on the y = 0 and z = 0 slices are
shown below.

4.5.1. Single Cylinder

The spatial patterns, time coefficients, and PSDs of some important POD modes for the
flow around the single cylinder are shown in Figures 15–17. Since adjacent POD modes have
the same spectral peak (Figure 13), and their spatial flow patterns and time information are
similar (not shown here for conciseness), the first 18 POD modes are presented at intervals.
In addition, the norm of each spatial mode is one (Equations (3) and (9)), and the colors in
the contours are used only to show flow patterns.
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Figure 15. Contours of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th (h), and
17th (i) POD modes on the xz plane for the flow around the single cylinder.

It is clear from Figure 17 that the 2nd, 4th, 6th, 8th, 10th, 12th, and 14th POD modes
had a relatively prominent spectral peak, corresponding to St = 0.16, 0.32, 0.48, 0.64, 0.8,
0.96, and 1.12, respectively. For the 16th and 17th modes, there were substantial fluctuations
in their time coefficients (Figure 16h,i) and these two modes had multiple spectral peaks
(Figure 17h,i).
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The combination of Figures 15 and 17 shows that spatial patterns of the modes with a
spectral peak of odd multiples of St = 0.16 (St = i × 0.16, i = 1, 3, 5, 7) were antisymmetric in
space and those with a spectral peak of even multiples of St = 0.16 (St = i × 0.16, i = 2, 4, 6)
were spatially symmetric.

Because the vortex shedding frequency was calculated by lift coefficient is StL = 0.16
(see Figure 5a), the antisymmetric mode with a spectral peak of St = 0.16 is related to
the vortex shedding from the cylinder. Similar to the decomposition results of rotating
flows [31,32], the antisymmetric modes with a higher frequency peak (St = 0.48, 0.8, 1.12)
differ only on spatial scale with respect to the mode with a low-frequency peak of St = 0.16.
These antisymmetric patterns with no flow along the central axis of (y/D, z/D) = (0, 0)
explain the absence of the St = 0.16, 0.48 signals in the KE spectrum of Figure 9.

The symmetric patterns are associated with the shift motion of shedding vortices
during downstream evolution, and their flow signals are monitored in the KE spectrum of
Figure 9. Similar to antisymmetric modes, the spatial scale of symmetry modes decreased
with increasing frequency.

Although the 16th and 17th modes also represent the shedding vortices’ shift motion
and vortex shedding phenomena, respectively, their flow patterns were irregular in both
space (Figure 15h,i) and time (Figure 16h,i), and they had multi-frequency characteristics
(Figure 17h,i).

DMD modes are sorted according to their corresponding dynamic factors (see Figure 14a),
and Figures 18 and 19 show the first nine DMD modes and their corresponding time
coefficients, respectively. Unlike POD modes, DMD modes did not fluctuate in time, and
their time coefficients increased or decreased exponentially (Equation (10)) or remained
constant over time (see Figure 19).
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0.6591 (g), 0.6567 (h), and 0.8238 (i) DMD modes on the xz plane for the flow around the single cylinder.
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Figure 19. Time coefficients of the St = 0.1647 (a), 0.3295 (b), 0.1641 (c), 0.3282 (d), 0.4942 (e), 0.4924
(f), 0.6591 (g), 0.6567 (h), and 0.8238 (i) DMD modes for the flow around the single cylinder.

Two DMD modes with close frequencies occurred in pairs around St = 0.165, 0.33, 0.49,
and 0.66 (i.e., St = 0.1647 and 0.1641, 0.3295 and 0.3282, 0.4942 and 0.4924, and 0.6591 and
0.6567), and the spatial characteristics between the two modes were similar. Considering
the three-dimensional numerical simulation results, when a cylinder is long, there is a small
frequency difference between the vortex shedding from two ends of the cylinder. Because
DMD is sensitive in identifying flow phenomena with a single-frequency characteristic,
similar DMD modes emerged in pairs in the three-dimensional flow around the single
cylinder in this study, while this phenomenon did not occur in the two-dimensional flow
case [28].

The spatial patterns of DMD modes were consistent with those of POD modes, and
higher-frequency DMD modes are no longer shown here.

4.5.2. Two Crossing Cylinders in 60◦ Arrangement

For the two crossing cylinder cases, in addition to the modal contours on the xz plane,
the contours of modes on the xy plane are also presented to show the global wake patterns
of UC. The first 18 POD modes for the case of two crossing cylinders in 60◦ arrangement
are shown at intervals in Figures 20–23.

For the flow around the UC, it can be seen from the 2nd, 4th, 6th, 8th, 10th, 12th, and
18th POD modes in Figure 20 that the modal patterns in the range of 0.5 < x/D < 4.5 were
the same as those of the corresponding modes in the single cylinder case (Figure 15). When
the shedding vortices from UC centre encountered the DC, these modes’ symmetry and
anti-symmetry remained unchanged (see Figures 20 and 21). Furthermore, because the
cross section of the DC arranged at 60◦ on the xz plane is an ellipse, diffraction of the flow
caused the DC wake to expand in the z direction (Figure 20).



J. Mar. Sci. Eng. 2022, 10, 811 17 of 26J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 18 of 28 
 

 

 

Figure 20. Contours of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th (h), and 

18th (i) POD modes on the xz plane for the flow around the two crossing cylinders in 60° arrange-

ment. 

 

Figure 21. Contours of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th (h), and 

18th (i) POD modes on the xy plane for the flow around the two crossing cylinders in 60° arrange-

ment. 
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(i) POD modes on the xz plane for the flow around the two crossing cylinders in 60◦ arrangement.
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18th (i) POD modes on the xy plane for the flow around the two crossing cylinders in 60◦ arrangement.



J. Mar. Sci. Eng. 2022, 10, 811 18 of 26J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 19 of 28 
 

 

 

Figure 22. Time coefficients of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th (h), 

and 18th (i) POD modes for the flow around the two crossing cylinders in 60° arrangement. 

 

Figure 23. PSDs of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th (h), and 18th 

(i) POD modes for the flow around the two crossing cylinders in 60° arrangement. 

For the flow around the UC, it can be seen from the 2nd, 4th, 6th, 8th, 10th, 12th, and 

18th POD modes in Figure 20 that the modal patterns in the range of 0.5 < x/D < 4.5 were 

Figure 22. Time coefficients of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th (h),
and 18th (i) POD modes for the flow around the two crossing cylinders in 60◦ arrangement.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 19 of 28 
 

 

 

Figure 22. Time coefficients of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th (h), 

and 18th (i) POD modes for the flow around the two crossing cylinders in 60° arrangement. 

 

Figure 23. PSDs of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th (h), and 18th 

(i) POD modes for the flow around the two crossing cylinders in 60° arrangement. 

For the flow around the UC, it can be seen from the 2nd, 4th, 6th, 8th, 10th, 12th, and 

18th POD modes in Figure 20 that the modal patterns in the range of 0.5 < x/D < 4.5 were 

Figure 23. PSDs of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th (h), and 18th (i)
POD modes for the flow around the two crossing cylinders in 60◦ arrangement.

As can be seen from Figures 20a and 21a, for the mode with a spectral peak of St = 0.16,
its pattern was always antisymmetric on both xz and xy planes, corresponding to the
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unchanged lift force frequency along the spanwise direction of UC and DC (Figure 5b,d).
As for the KE spectra in Figure 10b,c, the spectral peaks of St = 0.16 and 0.48 around the
crossing point of lines 3 are caused by the antisymmetric flow patterns from DC centre, and
those of lines 4 are caused by the antisymmetric patterns from UC centre.

The spatial and temporal results of DMD modes are shown in Figures 24–26, where the
spatial patterns of DMD modes are similar to those of POD modes but DMD modes have a single-
frequency characteristic. Interestingly, three similar DMD modes appeared around St = 0.32,
and their frequencies were St = 0.3204, 0.3258, and 0.3227 (see Figures 24b,f,h and 25b,f,h). In
addition to the frequency difference between the vortex shedding from two ends of the
cylinder explained above, the difference in vortex shedding frequency between UC and DC
caused by three-dimensionality is responsible for the appearance of more than two similar
DMD modes.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 20 of 28 
 

 

the same as those of the corresponding modes in the single cylinder case (Figure 15). When 

the shedding vortices from UC centre encountered the DC, these modes’ symmetry and 

anti-symmetry remained unchanged (see Figures 20 and 21). Furthermore, because the 

cross section of the DC arranged at 60° on the xz plane is an ellipse, diffraction of the flow 

caused the DC wake to expand in the z direction (Figure 20). 

As can be seen from Figures 20a and 21a, for the mode with a spectral peak of St = 

0.16, its pattern was always antisymmetric on both xz and xy planes, corresponding to the 

unchanged lift force frequency along the spanwise direction of UC and DC (Figure 5b,d). 

As for the KE spectra in Figure 10b,c, the spectral peaks of St = 0.16 and 0.48 around the 

crossing point of lines 3 are caused by the antisymmetric flow patterns from DC centre, 

and those of lines 4 are caused by the antisymmetric patterns from UC centre. 

The spatial and temporal results of DMD modes are shown in Figures 24–26, where 

the spatial patterns of DMD modes are similar to those of POD modes but DMD modes 

have a single-frequency characteristic. Interestingly, three similar DMD modes appeared 

around St = 0.32, and their frequencies were St = 0.3204, 0.3258, and 0.3227 (see Figures 

24b,f,h and 25b,f,h). In addition to the frequency difference between the vortex shedding 

from two ends of the cylinder explained above, the difference in vortex shedding fre-

quency between UC and DC caused by three-dimensionality is responsible for the appear-

ance of more than two similar DMD modes. 

 

Figure 24. Contours of the St = 0.1602 (a), 0.3204 (b), 0.4806 (c), 0.1628 (d), 0.6408 (e), 0.3258 (f), 0.8010 

(g), 0.3227 (h), and 0.9613 (i) DMD modes on the xz plane for the flow around the two crossing 

cylinders in 60° arrangement. 

 

Figure 24. Contours of the St = 0.1602 (a), 0.3204 (b), 0.4806 (c), 0.1628 (d), 0.6408 (e), 0.3258 (f),
0.8010 (g), 0.3227 (h), and 0.9613 (i) DMD modes on the xz plane for the flow around the two crossing
cylinders in 60◦ arrangement.

4.5.3. Two Crossing Cylinders in 90◦ Arrangement

The first 18 POD modes in the two crossing cylinders in 90◦ arrangement case are
shown at intervals in Figures 27–30. The POD modes’ multi-frequency couplings were more
severe than that of the other two cases (Figure 30). Enhanced multi-frequency coupling
and slow energy convergence (Figure 12) were caused by the blockage of DC on the
shedding vortices from UC and the resulting vortex breakdown. In other words, when
encountering DC in 90◦ arrangement, large-scale wake vortices from UC centre broke down
into numerous small-scale vortices, which is not conducive for POD to decompose the
flow field.

Figures 31–33 show the first nine DMD modes of flow around two cylinders in 90◦

arrangement. Compared with POD, DMD is a practical tool in the severe destabilisation
case due to its single-frequency characteristic. For the flow around the crossing point,
the flow patterns of symmetric modes were distinctive on both xy and xz planes, e.g.,
St = 0.3101 DMD mode (see Figures 31d and 32d). However, for the antisymmetric modes,
the distinctive flow patterns of the wake vortices from UC and DC appeared on different
planes. For instance, for the St = 0.1600 DMD mode, the antisymmetric flow pattern of the
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UC wake was significant on the xz plane (see Figure 27a), but that of the DC wake was
significant on the xy plane (see Figure 28a).
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Figure 25. Contours of the St = 0.1602 (a), 0.3204 (b), 0.4806 (c), 0.1628 (d), 0.6408 (e), 0.3258 (f),
0.8010 (g), 0.3227 (h), and 0.9613 (i) DMD modes on the xy plane for the flow around the two crossing
cylinders in 60◦ arrangement.
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Figure 26. Time coefficients of the St = 0.1602 (a), 0.3204 (b), 0.4806 (c), 0.1628 (d), 0.6408 (e), 0.3258 (f),
0.8010 (g), 0.3227 (h), and 0.9613 (i) DMD modes for the flow around the two crossing cylinders in
60◦ arrangement.
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(i) POD modes on the xz plane for the flow around the two crossing cylinders in 90◦ arrangement.
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J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 24 of 28 
 

 

 

Figure 30. PSDs of the 2nd (a), 4th (b), 6th (c), 8th (d), 10th (e), 12th (f), 14th (g), 16th (h), and 18th 

(i) POD modes for the flow around the two crossing cylinders in 90° arrangement. 

Figures 31–33 show the first nine DMD modes of flow around two cylinders in 90° 

arrangement. Compared with POD, DMD is a practical tool in the severe destabilisation 

case due to its single-frequency characteristic. For the flow around the crossing point, the 

flow patterns of symmetric modes were distinctive on both xy and xz planes, e.g., St = 

0.3101 DMD mode (see Figures 31d and 32d). However, for the antisymmetric modes, the 

distinctive flow patterns of the wake vortices from UC and DC appeared on different 

planes. For instance, for the St = 0.1600 DMD mode, the antisymmetric flow pattern of the 

UC wake was significant on the xz plane (see Figure 27a), but that of the DC wake was 

significant on the xy plane (see Figure 28a). 
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POD modes for the flow around the two crossing cylinders in 90◦ arrangement.
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Figure 31. Contours of the St = 0.1600 (a), 0.1540 (b), 0.3199 (c), 0.3101 (d), 0.4798 (e), 0.4652 (f), 0.6393 

(g), 0.0148 (h), and 0.6198 (i) DMD modes on the xz plane for the flow around the two crossing 
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Figure 31. Contours of the St = 0.1600 (a), 0.1540 (b), 0.3199 (c), 0.3101 (d), 0.4798 (e), 0.4652 (f),
0.6393 (g), 0.0148 (h), and 0.6198 (i) DMD modes on the xz plane for the flow around the two crossing
cylinders in 90◦ arrangement.
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Figure 32. Contours of the St = 0.1600 (a), 0.1540 (b), 0.3199 (c), 0.3101 (d), 0.4798 (e), 0.4652 (f),
0.6393 (g), 0.0148 (h), and 0.6198 (i) DMD modes on the xy plane for the flow around the two crossing
cylinders in 90◦ arrangement.
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Figure 33. Time coefficients of the St = 0.1600 (a), 0.1540 (b), 0.3199 (c), 0.3101 (d), 0.4798 (e), 0.4652 (f),
0.6393 (g), 0.0148 (h), and 0.6198 (i) DMD modes for the flow around the two crossing cylinders in
90◦ arrangement.

Although UC wake’s induction and DC’s blockage effect [8] caused the flow around
DC centre to move downstream along approximately |L/D| = 1 (Figure 8c), the antisym-
metric vortex shedding modes and symmetric shift motion modes still existed.

For the antisymmetric mode with St = 0.1600 (Figure 32a), the flow around the DC
centre became narrower in the y direction due to UC wake’s induction and DC’s blockage
effect. For the symmetric mode with St = 0.3199 (Figures 31c and 32c), symmetric flow
patterns were not found on the central axis (y/D = 0, z/D = 0) in the range of x/D = 5.5–9
due to the blockage of DC. In addition, there was a low-frequency flow pattern in the
wake of the DC centre (see Figures 31h and 32h). The low-frequency mode is related to the
low-speed flow under the shadowing effect of DC.

5. Summary

This study employed modal decomposition techniques, including POD and DMD,
to investigate the wake patterns past single and two crossing cylinder configurations at
Re = 100. The two crossing cylinders were arranged at 60◦ and 90◦ with a gap ratio G = 4.
The numerical simulation was conducted using DNS.

We focused on the effect of DC’s arrangement on the wake patterns around the crossing
point. For the DC in 60◦ arrangement, the shedding vortices from UC centre underwent
diffraction after passing through the DC. However, for the DC in 90◦ arrangement, due to
the DC’s blockage effect, the wake vortices from UC centre broke down when encountering
the DC.

POD and DMD have their own advantages. For the stable flow, i.e., flow around
the single and two crossing cylinders in 60◦ arrangement, POD can successfully extract
the modes that contribute most to the wake dynamics, and these modes have a single,
prominent spectral peak. Due to the frequency sensitivity, DMD may capture the single-
frequency modes with similar frequencies, temporal information, and spatial patterns. This
is caused by the three-dimensionality of flow, i.e., the frequency difference between the
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vortex shedding from two ends of the cylinder, and the frequency difference between the
wake of UC and DC. For the severely destabilised flow, i.e., flow around two crossing
cylinders in 90◦ arrangement, POD is not practical for analysis due to the enhanced multi-
frequency coupling.

Both POD and DMD identified spatially antisymmetric and symmetric wake patterns
for the studied three cases. Antisymmetric modes are associated with the vortex shedding
phenomenon in the flow field, and these modes’ frequencies are odd multiples of cylinders’
lift force frequency. Symmetric modes are associated with the shift motion of shedding
vortices during downstream evolution, and these modes’ frequencies are even multiples
of cylinders’ lift force frequency. The spatial scale of the above modes decreased with
increasing frequency.

For the flow around the DC in 90◦ arrangement, both symmetric and antisymmetric
modes had significant deformation due to the interference of the UC wake and the blockage
effect of DC. In addition, a low-frequency mode was found in the wake of DC centre, which
is related to the shadowing effect of DC.

For the three-dimensional flow, the cylinder length seemed to affect the DMD analysis,
and in the next work we will focus on this subject.
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