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Abstract: A new three-dimensional high-order shock-capturing model for the numerical simulation
of breaking waves is proposed. The proposed model is based on an integral contravariant form of the
Navier-Stokes equations in a time-dependent generalized curvilinear coordinate system. Such an
integral contravariant form of the equations of motion is numerically integrated by a new conservative
numerical scheme that is based on three elements of originality: the time evolution of the state of the
system is carried out using a predictor—corrector method in which exclusively the conserved variables
are used; the point values of the conserved variables on the cell face of the computational grid are
obtained using an original high-order reconstruction procedure called a wave-targeted essentially
non-oscillatory scheme; the time evolution of the discontinuity on the cell faces is calculated using
an exact Riemann solver. The proposed model is validated by numerically reproducing several
experimental tests of breaking waves on computational grids that are significantly coarser than those
used in the literature to validate the existing 3D shock-capturing models. The results obtained with
the proposed model are also compared with those obtained with a previously published model,
which is based on second-order total variation diminishing reconstructions and an approximate
Riemann solver usually adopted in the existing 3D shock-capturing models. Through the above
comparison, the main drawbacks of the existing 3D shock-capturing models and the ability of the
proposed model to simulate breaking waves and wave-induced currents are shown. The proposed
3D model is able to correctly simulate the wave height increase in the shoaling zone and to effectively
predict the location of the wave breaking point, the maximum wave height, and the wave height
decay in the surf zone. The validated model is applied to the simulation of the interaction between
breaking waves and an emerged breakwater. The numerical results show that the proposed model is
able to simulate both the large-scale circulation patterns downstream of the barrier and the onset of
quasi-periodic vortex structures close to the edge of the barrier.

Keywords: three-dimensional model; wave breaking; conservative scheme; high-order reconstructions;
exact Riemann solver; contravariant formulation

1. Introduction

In the three-dimensional numerical simulation of wave propagation from the deep-
water region to the coastline (including the surf zone), the main difficulty is related to
numerical simulation of wave breaking. The three-dimensional models proposed by [1-4]
are based on the idea, adopted in the Boussinesq-type models by Tonelli et al. [5,6],
Roeber et al. [7], and Gallerano et al. [8], according to which a breaking wave can be
simulated as a shock wave, i.e., as a discontinuity of the solution of the equations of motion.
It is known that the numerical simulation of shock waves presents considerable difficulties.
The numerical approximation of a shock wave may have the wrong strength (i.e., erroneous
ratio between the value of the quantities before and after the shock wave) and an erroneous
propagation speed, and thus it can mistake the position of the discontinuity at a given
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time. Furthermore, during the simulation, spurious unphysical oscillations can arise in the
vicinity of the discontinuities and can propagate on the rest of the solution, compromising
the entire result. In the numerical simulation of hydrodynamic fields, the use of a conserva-
tive scheme is a necessary but not a sufficient condition for the convergence to the weak
solution with discontinuity (of the equations of motion): conservative schemes must be
able to preserve, at a discrete level, the properties of the continuum system, such as the
conservation of global quantities and the conservation of invariants across a discontinuity.
As underlined by Toro [9], in the numerical integration of differential equations of motion,
the convective terms written in a form other than the divergence form do not allow the for-
mulation of conservative schemes. Non-conservative numerical schemes do not guarantee
the convergence to the correct weak solution with discontinuity. Furthermore, conservative
numerical schemes (in which convective terms are written in a divergence form) applied to

—
equations of motion expressed in terms of primitive variables (H and u, where H is the

water depth and 1 is the Cartesian flow velocity vector) can produce shock waves with
erroneous propagation speeds. The integral form of the equations of motion expressed
in terms of conserved variables (H and H ;) allows for the formulation of conservative
numerical schemes that can converge to the correct weak solution with discontinuity.

In [1-4], to simulate breaking waves as shock waves, the three-dimensional equations
of motion are numerically integrated by shock-capturing finite volume numerical schemes
that adopt second-order total variation diminishing (TVD) reconstruction techniques and
approximate Riemann solvers. As demonstrated in the present paper, the simulation of
breaking waves carried out by the above-mentioned numerical scheme are affected by
some drawback: they underestimate the wave height increase during the shoaling process;
they are not able to find the correct initial wave breaking point and are not able to correctly
simulate the wave height decrease in the surf zone, with consequent underestimation of
the wave-induced currents. In order to provide more reliable representations of the wave
height evolution, wave breaking dynamics in the surf zone, and wave-induced coastal
currents, such low-order schemes require the use of fine grids (especially in the horizontal
directions) that limit their application mainly to laboratory-scale case studies.

In this paper, we demonstrate that the main cause of these deficiencies in the numerical
results is related to two drawbacks of the above-mentioned numerical schemes. The first
one is the fact that in those schemes the time evolution of the state of the system is obtained

by updating the primitive variables H and u (instead of the conserved variables H and

H ;Z) that, as written before, can produce shock waves with erroneous propagation speed.
The second drawback is that, to limit the spurious oscillations that can appear in the vicinity
of the discontinuities and avoid the propagation of such disturbances in the numerical
solution, all the above-mentioned three-dimensional numerical models [1-4] adopt shock-
capturing numerical schemes based on low-order (not more than second-order) TVD
reconstruction techniques and approximate Riemann solvers.

In this paper, to overcome the drawbacks of the above-mentioned three-dimensional
numerical models, the integral contravariant form of the Navier-Stokes equations proposed
by Cannata et al. [3] is used to realize a new high-order shock-capturing numerical scheme
for the three-dimensional simulation of the wave motion and wave-induced currents. The
main elements of novelty of the proposed numerical scheme are three.

The first one is an original conservative numerical scheme in which the time evolution

of the state of the system is carried out by updating the conserved variables H and H .
The second element of novelty is the proposal of an original high-order technique for
the reconstruction of the point values of the conserved variables at the center of the
computational cell faces. This original technique is specifically designed for the three-
dimensional simulation of breaking waves and is called (in this paper) a wave-targeted
essentially non-oscillatory (WTENO) technique. The third element of novelty consists in the
fact that, differently from the models proposed in [1-4] (in which an approximate Riemann



J. Mar. Sci. Eng. 2022, 10, 810

3 0f 35

solver is used), in this paper, we propose an exact Riemann solver for the time advancing
of the point values of the conserved variables at the cell faces.

The paper is organized in the following form. In Section 2 the mathematical for-
mulation and the proposed original numerical scheme based on conserved variables are
presented. In the first subsection of Section 3, we describe the original high-order WTENO
reconstruction technique adopted in the proposed shock-capturing scheme. In the second
subsection of Section 3, the Riemann problem is presented. In Section 4, we validate the pro-
posed model against several experimental tests and compare the numerical results also with
those obtained using an alternative scheme based on weighted essentially non-oscillatory
(WENO) reconstructions and the model proposed by Cannata et al. [3], which is based on
second-order TVD reconstructions and an approximate Riemann solver usually adopted
in the literature. In the last subsection of Section 4, we present a real application of the
proposed model, consisting in the simulation of the complex three-dimensional flow veloc-
ity fields and free-surface elevation generated by the interaction between breaking waves
and an emerged barrier. In the last section, the conclusions are drawn. In Appendix A, the
strategy for the exact solution of the x!-split Riemann problem is shown. In Appendix B,
the symbols used in this paper are listed.

2. Mathematical Formulation

In the proposed three-dimensional numerical model, the motion equations are the
integral contravariant incompressible Navier-Stokes equations written in a time-dependent
curvilinear coordinate system proposed by Cannata et al. [3]. These equations are obtained
by expressing the mass conservation and the momentum balance for an incompressible
fluid on a moving control volume.

We denote by AV (t) the moving control volume and by AA(t) its boundary surface.
In a Cartesian coordinate system, the integral form of the mass conservation equation on
the moving control volume reads

d - =\ —
4 av / &) ndA=0 1
dt /AV(t) * AA(t)(u w) " @

where # is the Cartesian flow velocity vector; w is the velocity vector of the boundary-

— . . -
surface control volume; n is the outward-normal unit vector, and the dot indicates the dot
product between vectors (and between vectors and second-order tensors).
On the same moving control volume, the projection of the integral form of the momen-
=

tum balance equation in the direction defined by a generic vector A reads
d 7= - = - 3\ =
EfAV(t) A-udV +fAA(t) A'(u b2y (u —w)-n) dA
— 4 7 .
- fAA(t) <G’7 + %) A-(Ln)dA - fAA(t) 5)\' (B'n)dA =0

where ® indicates the tensor product between vectors; G is the acceleration due to gravity;
p is the fluid density; 7 = H — h is the free-surface elevation, in which H and / are,
respectively, the total and still water depth; p is the dynamic component of the total
pressure, P, obtained by subtracting the hydrostatic component, pG (17 — x3), from the P; I
is the identity tensor; R is the stress tensor without the pressure term.

We denote by xl = xi(t_fl, &2,83,7),t =Tand & = Ci(xl, x%,x3,1), T =t, respectively, a
generic time-dependent coordinate transformation and its inverse, in which (xl, x2, %3, t)
are the Cartesian coordinates and ({;’1, &2, e, 7) are the curvilinear ones. For this coordinate

0

@)

transformation, §(l) =dx/ o¢! and § =a¢l/ ax (I = 1,3) are, respectively, the covariant
and contravariant base vectors (in which letter | between parentheses in the subscript or
superscript indicates the | — th base vector, not the | — th component). We indicate by
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(m)?(a) the contravariant metric coefficients, and by /g = § @)’ (?(1) A § (2))

g =3
the Jacobian of the transformation (in which A denotes the vector product).

We chose a particular time-dependent coordinate transformation, in which the hor-
izontal coordinates, ¢! and ¢?, are chosen to obtain a lateral boundary conforming grid,
gt =gl (xh, 2%, x%), &% =¢&?(x!,x2,x%), and the vertical coordinate, &%, changes over time
as a function of the water depth, H,

o ¥+ h(xl,xz) 3)
~ H(x1,x2,t)

By Equation (3), the moving free surface is always identified by ¢* = 1 and the

sea bottom by & = 0. The coordinate transformation given by Equation (3) allows

for expressing the Jacobian of the transformation in the form /¢ = H,/go, in which

= s 4 —
V80 = k- ( SN (2)> and k is the vertical unit vector. We adopt a particular moving

control volume whose boundaries are defined by surfaces on which only one curvilin-
ear coordinate is constant. Thus, the infinitesimal moving control volume is expressed
by dV(t) = H(t),/g0d&'dZ?d& and the product between the outward-normal unit vec-

tor and the infinitesimal boundary surface on which ¢* is constant is (ﬁdA) | e —const. =

—(

g

the projection of Equation (2): the vector A is equal to the | — th contravariant base vector
()

defined at the center of the control volume, which is indicated by symbol ¢ . The m — th

=) SAUNER

covariant components of vector g is givenby Ay, = & -g(,,) and the contravariant com-
ponents of the identity tensor are equal to the contravariant metric coefficients, ["™* = g"*.
Using the above-mentioned expressions and by adopting the Einstein notation (according
to which an index repeated as subscript and superscript in a product represents summa-
tion over the range of the index), in the time-dependent curvilinear coordinate system,
Equations (1) and (2) become

—
a)H \ /godéjﬁdcf,“’ («, B, 7 are cyclic). Furthermore, we choose a particular vector A for
—

4 Saeingzaes (Hy/80)dg dg?dgs

y @
+ L {fange ((Hu® — Ho®) yg0)dEPATT — [y qo- ((Hu — Heot) /o) d5PdE | =0
& Jarazzags (AmHu"\/20) A3 dg?dE +
3 14
£l () oo upmos

— S~ An (" (B = w0) 4 g7 (G + ) H ) /godePdg™ } =
* j:l{fAAé‘* (AR Hy/R0 ) dePde — [, g (AR Hy/R0 ) dePde? |

where AZ'AZ2AZ is the control volume in the transformed space, and AA§T and AA§™
indicate, respectively, the control-volume boundary surfaces on which the coordinate ¢* is
constant, which are placed at larger and smaller values of ¢* («, 8, and 7 are cyclic). R™*
are the contravariant components of the stress tensor without the pressure term, u* and
w® (« = 1, 3) are, respectively, the contravariant component of the flow velocity and the
velocity of the moving coordinate ¢*.

Equations (4) and (5) are the integral contravariant continuity and momentum balance
equations expressed in terms of the conserved variables H and Hu®. These equations can
be discretized by a conservative finite-volume shock-capturing numerical scheme.
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3. New 3D Shock-Capturing Numerical Scheme
3.1. Finite-Volume Discretization

We divide the physical domain occupied by the fluid into n1 x n2 x n3 hexahedral cells,
Ii,j,k (i=1,n1; j = 1,n2; k = 1,n3), bounded by cell faces that lie on curvilinear coordinate

surfaces (defined by indexes i %, jE % and k + 1). We define the two-dimensional cell av-

erage of the water depth, (H)i]. =1/ (AClAéz\/g») f( AZIAZ),, H,/g0d¢dE?, and the three-
. . . _ 1 2 3

dimensional cell average of the conserved variable, (Hu ) ik 1/ (AC AL“AE\ /S0 )z'j P

J (68182208), H u \/> dg'dz?dg. By integrating Equation (4) over the water column, and
dlscretlzmg over space the obtained equation, we obtain the rate of change of the cell-
averaged water depth,

o n3
)iy == et L VRO
_(Hul\/gioAnggs)i—%,j,k} (6)

+[(H2 RATAL)  y — (HI2/g08g A), 1 ()
By discretizing over space Equation (5), we obtain the rate of change of the cell-

averaged conserved variable, (Hu ) o
ijk

e = (ot e

_ (GU + B)Hg’"l) Nl Lik

B _<HumHu B (GU+ ) 1)\/g»0A§2A€3} i—1jk

+| (i — (G + ) ) vaatad®]
_:<H”mHTM2_( %) gmz)\ﬁAglA‘gg}- 1k @)
+_<Hum<%“3—w3) (G;y %)Hg"ﬁ)\ﬁAglACz}

— (Hum(H“3 w3) (GW %)Hg’"s)fAﬁlAéz} e

2
% ( [RM1H\/g70ACZA§3:Ii+%,jk B [leH@A§2A€3] 1‘7% ik
[R™H /Z0AZ A1 4 — [R™HRASTAS, 1
R™H ZATAZ ], o — [R™HGoASAS], 4 )

—

3.2. Time Advancing of the Numerical Solution

Step 1

At the generic time ¢, the point values of the conserved variables at the cell faces
are reconstructed, starting from their cell-average values, using an original procedure
(described in Section 3.3) that is based on a high-order combination of polynomials centered
in the computational cell. After the reconstruction procedure, on the cell face defined by
indexes i 4 2] j, k, two different point values of the generic conserved variables are obtained,

f - ik and f 1K ; the first one indicates the reconstruction obtained by the combination
2/ ’
of polynormals centered in cell J; j4; the second one indicates the reconstruction obtained

by the combination of polynomials centered in cell I;; 1 jx (analogously on the other cell
faces). At the end of this step, a couple of point values of the conserved variables on each
cell face are obtained:



J. Mar. Sci. Eng. 2022, 10, 810 6 of 35

[H, (k) SHT, (Hul>+]

Step 2

At every cell face, the point values of the conserved variables obtained in the previous
step are used as initial values of a local Riemann problem in which two constant states
are separated by a discontinuity. The local Riemann problem is solved in exact form. For
this purpose, at the center of every cell face, a transformation of the basis vectors is carried
out, to obtain a local system in which one of the basis vectors is normal to the cell face and
the other two lie on the plane of the cell face. By expressing the point values of the vector
components with respect to the above local system of basis vectors, the local Riemann
problem at each cell face can be solved as a Cartesian Riemann problem. The exact solution
of the local Riemann problem provides the updated point values of the conserved variables
on the cell faces. After a new basis vector transformation, from the local Cartesian one to
the contravariant one, we obtain the contravariant components of the updated point values
of the conserved variables on every cell face:

RS
()™ ©)

[HRg(HuORT ,{HR%(HuORT 1
ijk+1

where the superscript RS indicates point values obtained using the exact Riemann solver.
Step 3

The point values obtained in the previous step are introduced in the discretized form
of the momentum balance equation (Equation (7)) in which the dynamic component of the

) [H, (Hul>7;H+, (Hul)j ) [(Hul); (Hul)j ®)

i1k i1k ijk+3

i+3,k ij+3k

pressure is omitted. The resulting equation provides an approximate field, (ﬁ)*, (called
predictor field and denoted by the asterisk) of the cell average of the conserved variables

Hu!. This predictor field (Hu! )* represents an approximation of the final vector field Hu!,
since it is obtained without taking into account the dynamic component of the pressure.

Step 4
Differently from what is done in [3], in the proposed conservative scheme the predictor

field (H ul ) Tis directly used to define the known right-hand side of a Poisson-like equation,

a[glsg%)H\/gio} _ _B(Hul)*\/g? 10)
ozl oc!

in which & is an unknown potential scalar function. It must be noted that the right-hand
side of Equation (10) is expressed directly in terms of the conserved variables (H ul) ", Con-
sequently, the scalar field of ® is calculated by numerically solving Equation (10), without
the need of calculating an approximate field of the water depth, H*, and primitive variables,
ul*. Equation (10) is discretized by the same finite volume-finite difference method pro-
posed by [3] and is numerically solved for ® by an iterative method in which a four-color
zebra, a line-by-line Gauss-Seidel procedure, and a multigrid technique are adopted.

Step 5

The gradient of the potential scalar @ is used to correct the field of the conserved
variables, both at the center of the computational cells and at the center of the cell faces:

(Hul) - (Hul)* n Hglsgif (11)

The final field of the conserved variables, Hu!, takes into account the dynamic com-
ponent of the pressure and is associated with a divergence-free flow velocity field (unless
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the approximation error by which the Poisson equation is numerically solved). By this
predictor—corrector procedure, the proposed finite volume conserved numerical scheme
makes use exclusively of conserved variables and, consequently, can converge to the weak
solution with discontinuity, with a correct shock-speed propagation.

Step 6

The corrected values of the conserved variables, Hu!, at the center of the vertical cell
faces (defined by indexes i £ %, jkandi,j+ %, k) are associated with a divergence-free
flow velocity field) and are introduced in the discretized integral over the water column of
the continuity equation (Equation (6), to update the cell average of the water depth H.

Step 7

The new position of the free surface is used to update the coordinates of all the
computational cells, the metric terms associated to the time-dependent curvilinear coordi-
nate system, and the contravariant velocity component of the moving curvilinear vertical
coordinate, which is given by

W = —aa—éf (12)

3.3. The Proposed Fifth-Order Wave-Targeted Essentially Non-Oscillatory Reconstruction Technique

In this section, we propose an original high-order technique for the reconstruction
of the point values of the conserved variables at the center of the cell faces. The high-
order shock-capturing numerical scheme proposed in this paper is based on the idea
that a breaking wave can be represented as a discontinuity of the numerical solution. It is
known [9] that in the numerical solution with discontinuities, spurious numerical oscillation
can arise close to the discontinuities and can propagate on the solution, compromising
the entire result. As emphasized by Toro [9], the numerical schemes that ensure a non-
oscillatory behavior are first-order accurate.

The shock-capturing numerical schemes proposed by [1-4] for the three-dimensional
simulation of breaking waves are at most second-order accurate, where the solution is
smooth and degrades to first-order accuracy near the discontinuities. The use of such
low-order TVD schemes proposed in the literature is mainly due to the need to limit the
spurious oscillation that can take place in the numerical solution.

As demonstrated in this paper, in the three-dimensional numerical simulation of break-
ing waves, second-order TVD shock-capturing schemes introduce too much numerical
energy dissipation. The excessive numerical energy dissipation produces an underestima-
tion of the wave height evolution in the shoaling phase, a wrong location of the initial wave
breaking point, and an excessive reduction in the wave height in the surf zone. Further
developments of second-order TVD methods are the WENO methods [10,11]. In the fifth-
order upwind WENO schemes [11], to reconstruct the point values of a generic quantity in
the face of a given computational cell J; j, three different second-order polynomials are de-
fined, each one centered on a different cell in the neighborhood of [; ; x. In the above WENO
scheme, the point value is obtained using a convex combination of the three polynomials.
In such a convex combination, the initial weight of each polynomial is defined to obtain the
maximum order of accuracy of the reconstruction. During the numerical simulation, the
weight of each polynomial can be dynamically modified with respect to the original one,
in order to reduce or increase its relative weight in the convex combination. The modifi-
cation of the weights of the combination, with respect to the original values, produces a
lower-order reconstruction that introduce numerical energy dissipation in the numerical
solution. WENO schemes aim to maintain a high order of accuracy where the solution is
smooth and to introduce numerical energy dissipation near the discontinuities, to limit the
spurious oscillations. As shown in this paper, the use of a shock-capturing scheme based
on fifth-order WENO reconstructions for the simulation of breaking waves, allows for only
partially overcoming the drawbacks of shock-capturing schemes based on second-order
TVD reconstructions. Numerical results of breaking waves carried out by a fifth-order
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upwind WENO scheme are in better agreement with the experimental results (with respect
to those obtained using a second-order TVD method), but show an underestimation of the
wave height evolution in the shoaling zone, a wrong location of the initial breaking point,
and an excessive reduction in the wave height in the surf zone. This is due to an excess
of numerical energy dissipation introduced by the WENO scheme in the shoaling zone
before the breaking point and in the entire wave breaking zone. Such excess numerical
energy dissipation is due to the criterion by which the WENO schemes modify the weight
of each polynomial of the convex combination. In the WENO schemes, the modification of
the weights with respect to their original values is determined exclusively as a function of
the smoothness of the polynomials. In the shoaling zone before wave breaking and in the
entire surf zone, the steep wave fronts produce high gradients of the conserved variables
(H and Hu'). In such a zone, in the presence of the above-mentioned high gradients, the
WENO schemes consider the numerical solution as irregular and, consequently, modify
the weights with respect to the original one. These modifications produce low-order re-
construction approximations that introduce too much numerical energy dissipation in the
numerical solution.

It must be emphasized that the steepest fronts take place at the wave breaking, where
the turbulence phenomena are more significant. At these steep fronts, the reconstruction
procedure must introduce small numerical energy dissipation, to leave the task of dissi-
pating the adequate amount of kinetic energy to the turbulence model. In the surf zone,
the wave front is followed by a wave tail characterized by small energy dissipation due to
turbulence. In such a portion of the wave, the reconstruction procedure must introduce the
numerical energy dissipation required to contain the spurious oscillations that take place on
the free surface at the steep wave fronts. In the present paper, we follow the conceptual line
of the so-called targeted essentially non-oscillatory (TENO) schemes, first presented in [12]
and improved by [13], and we propose an original high-order TENO scheme specifically
designed for three-dimensional simulation of breaking waves, called wave-targeted essen-
tially non-oscillatory (WTENO) scheme. The original WTENO scheme is based on three
main elements. The first one is the definition of three different second-order polynomials,
each one candidate to approximate the point value of the conserved variable on the faces
of the generic computational cell [; ;. The second main element is the definition of a
regularity function, associated with each polynomial, which depends on the smoothness
of the polynomials. The third main element of the proposed reconstruction technique is
the definition of a dynamic threshold, common to the three polynomials, which varies as a
function of both the smoothness of the polynomials and the steepness of the wave front. At
every instant of the numerical simulation and at every point of the computational domain,
the comparison between the regularity function and the dynamic threshold determines
whether only one, two, or all the three candidate polynomials participate in the given
reconstruction of the point values. In the case in which all the polynomials participate
in the reconstruction, the maximum order of accuracy of the reconstruction is reached
(fifth order), since the calculated point value is equivalent to the one obtained using a
fourth-order polynomial defined on the stencil of five contiguous cells centered on the cell
I; jx- In the case in which only one or two polynomials participate in the reconstruction,
the order of accuracy of the reconstruction reduces and the numerical energy dissipation
introduced in the simulation by the numerical scheme increases. In the proposed WTENO
scheme, the regularity function and the dynamic threshold are defined in such a way as to
guarantee good non-oscillatory properties of the numerical scheme and avoid the excessive
numerical energy dissipation produced by reconstruction techniques commonly used in the
literature, such as TVD or WENO. The purpose of the proposed reconstruction procedure
is to limit the numerical energy dissipation of energy introduced by the numerical scheme
on the steep wave fronts (where the energy dissipation is left to the turbulence model) and
ensure an adequate numerical energy dissipation on the non-breaking wave fronts and
wave tails (where the energy dissipation due to the turbulence is lower and occurs mainly
near the bottom).
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In the three-dimensional finite volume proposed in this paper, the cell average value
of the generic conserved variable is defined by the integral of the given variable over the
volume of the computational cell. The reconstruction procedure consists in calculating
the point values of each conserved variable on the center of every computational cell face,
starting from the integral of the given conserved variable over the cell volume. In the
proposed numerical model, we define a time-dependent coordinate transformation that
allows us to transform the computational cells that in the physical space have an irregular
and time-varying shape into computational cells that in the transformed space have a
regular and fixed shape. In the transformed space, the integral of the conserved variables
over the cell volume is defined by three consecutive one-dimensional integrals, each one
defined on a single coordinate line. This makes it possible to define a three-dimensional
reconstruction procedure for the calculation of the point values of the conserved variables
that consists of three consecutive one-dimensional reconstructions, each one relative to a
single coordinate line (dimension by dimension reconstructions).

In the first step of the procedure, which is carried out along coordinate ¢, the first
level of reconstruction allows for passing from the values of the given variable averaged
over the volume of the computational cell to the values of the same variable averaged over
a surface on which only coordinates &l and &2 vary. The values obtained in the first step
are used as starting points of a second one-dimensional reconstruction, carried out along
coordinate &2. This reconstruction provides the values of the given variable averaged over
lines on which only @1 varies. The third one-dimensional reconstruction, which is carried
out along coordinate ¢!, allows for obtaining the point values of the given variable on the
center of the cell face on which coordinate ¢! is constant.

The mathematical steps of the above procedure are shown below.

In the transformed space denoted by coordinates Cl, §2, 63, the generic computational
cell I; ;x has a regular and fixed shape and a volume equal to AFYAZZAER. Because of
the regularity of the computational cell in the transformed space, the cell average of the

conserved variable Hu! can be indicated by the following triple integral:

3 2 1
§k+% ¢/+ 16

3 iy
— 1
Hul — ///511123 1
YT ATARAD wdg dgtdg (13
R AR
k=3 -3 Timg

This integral is expressed as a sequence of three consecutive single integrals, each one
defined along a different coordinate line. This implies that the reconstruction of the point
values of Hu! can be calculated with three consecutive one-dimensional reconstructions,
each one carried out along a different spatial coordinate [14].

We indicate by (Hu;) ik the average of the conserved variable H ul over the cell L jk-
We indicate by (Hul) -, . and (Hul) .

i+yk i3,k
the cell faces on which ¢! is constant, which are placed at the side on which &' increases
and decreases, respectively.

the two point values of Hu! at the center of

Step 1: starting from the cell averages (Hu!); ;,, along the coordinate ¢*, we reconstruct

om ijks
the surface average (Hu! )i,]-,k, which is defined by
(F)ja = ez [ oy [ bl (8,2, 19
1,1, — 7 7
HT AR e Al



J. Mar. Sci. Eng. 2022, 10, 810

10 of 35

Step 2: starting from the surface averages (I—?z;l) along the coordinate &2, we

i,jks
reconstruct the line averages (Hu! )l-,]- » which are defined by

(H/';l)i,j,k — 1/A§1 éfi+% Hul (él[ 62/ C3)d€'1 (15)

Step 3: starting from the line averages (Hu!). ., along the coordinate ¢!, we reconstruct

ik’

the point values on the cell faces (Hul)iJrl - and (Hul) L
b i~Lik

Below, we show the original WTENO procedure by which, starting from the line

averages (Hu! )i jk» We reconstruct the point value (H ub) An analogous procedure is

i+1,jk
used for the reconstruction of the point values on the other cell faces.
The reconstruction of (Hu') i+ ik is given by the value assumed at §Z,1+ 1 by a poly-
27 %

nomial function F;  x (¢ 1) defined on cell I; jx (subscripts 7, j, k indicate the position of the
computational cell):
1 _ . 1
(Hu )i-s—%,j,k = Fijk (§i+%) (16)

Polynomial function F; (¢1) is given by a combination of three different second-

order polynomials P,; : (¢') (with p = —1,0,1), each one defined on a sub-stencil of three
contiguous cells I;; 4 (with fixed pand g = —1,0,1):

Pl (6) = aiin (&) + 00 (6) + eiin (17)

For each polynomial, the coefficients a,); i t, b(p)i ks C(p)i,jx are uniquely determined
by solving a linear system of three equations. The three equations of the system are defined
by imposing that the integral of the polynomial over each cell of the stencil be equal to the
line average of Hu; obtained at the end of the previous one-dimensional reconstruction:

— 1 8 1 -
(Hu')i i gk = Al /Cl TPk (§1>d§1 (with fixed pand g = —1,0,1)  (18)
i+p+qf%

By using Equation (17) for P(,); ;¢ (¢"') and by analytically solving the integrals on the
right-hand side of Equation (18), the coefficients of the polynomial are uniquely determined.
The reconstruction of the point value on the cell face located at CZ,1+ 1 is given by a combina-

2

tion of the three third-order reconstructions, each one relative to a single polynomial:
1 _ 1 1 1
Fijk (Ci+%) = Q1P 1)k (CH%) + QoPo); ik (Ci+%) + le(l)i,j,k< i+%> (19)
where (), (with p = —1,0, 1), which are called non-linear weights, are defined by
OpCp

Q= Fr 20)
Z%}zfl dpcp

in which J, are cut-off functions adopted in TENO schemes [12,13] that can be 0 or 1 and
determine whether one, two, or all the three polynomials participate in the reconstruction.
cp are the so-called linear weights that are defined so that the reconstruction of the point
value of the given variable in §}+ v which is obtained using all the three second-order

polynomials, is equal to the reconstruction obtained using a single fourth-order polynomial
defined on a big stencil composed by the five contiguous cells I; ., ;x (withp = —1,0,1
and g = —1,0,1):

c_1=1/10;c9 = 6/10;c1 =3/10 (21)
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These values guarantee that, in the case in which all the three polynomials partici-
pate in the reconstruction, the maximum order of accuracy (fifth order) is obtained. By
following [13], in the proposed WTENO scheme the cut-off functions §, (with p = —1,0,1)
are calculated by defining three regularity functions I'y and a dynamic threshold Cr. At
every instant of the simulation and at every point of the computational domain, the com-
parison between I', and Cr determines whether one, two, or three candidate polynomials
participate in the reconstruction:

- 0 Fp < Cr
o = {1 T, >Cr 22)

For the calculation of I'y, we adopt the same procedure of [13] and define a function
7p (relative to each polynomial P,) that depends on the smoothness indicator 8, of each
polynomial and on the global smoothness indicator 7,:

Tp
,Bp‘i'e

I
vy = (c+ ) , with p = —1,0,1 (23)

where € = 1 x 1078 is a coefficient to avoid zero in the denominator and Bp are computed
by the expression proposed in [11] and usually adopted in WENO schemes. By following
Borges et al. [15], in this paper the global smoothness indicator is defined as 7, = |1 — f_1].
Coefficients C and u in Equation (23) are meant to improve the ability of the numerical
procedure to detect the discontinuities and, at the same time, reduce the numerical energy
dissipation introduced in the solution. In this paper C and yu are set equal to 1 and 6,
respectively, which are the values usually adopted in the TENO schemes [12,13]. Once
calculated, function 7, is normalized to be between 0 and 1,

T

Ir,= ———
r
Z;j:—] T

, with p = —1,0,1 (24)

Using Equation (23), the values of I'y are compared to the dynamic threshold, Cr,
common to the three candidate polynomials. In the proposed WTENO scheme, differently
from [13], the dynamic threshold Cr varies with space and time not only as a function of
the regularity of the polynomials but also as a function of the steepness of the wave front.
For this purpose, we propose the following expression for Cr:

Cr=10""
{”_Bl+(9+9z)(3h—31) 2

In Equation (25), B; and By, are integer parameters that determine the minimum and
maximum values of exponent 1. For all the numerical simulations carried out in this paper,
we set B = 1 and By, = 7. 6 is a function proposed in [13] (ranging between 0 and 1) that
depends exclusively on the smoothness indicator 8, of each polynomial and the global
smoothness indicator 7,. > is a new function proposed in the present paper (equal to or
greater than 0) that depends on the steepness of the wave front. Exponent n can assume
values equal to or greater than 1. For low values of n, the propensity of the proposed
technique to cut off one or two candidate polynomials from the reconstruction increases.
Function 8 is calculated by the expression proposed by Peng et al. [13]:

1
- with p = —1,0,1 (26)
1 T
1+ Hmax(ﬁpi€>

where d is a parameter set equal to 10. For values of d larger than 10, the proposed tech-
nique is more dissipative, since it increases the propensity to cut off one or two candidate
polynomials from the reconstruction. The new function 6, is defined to guarantee a high
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order of accuracy of the reconstructions on the steep wave fronts and limit the spurious
oscillations that can arise on the wave tails,

9 9

6, = (giT%ﬁ*T’ 5 1 27

2= 22— ¥ ¥ &7
o _

in which 7 is the free-surface elevation, 07 /0t is its local time rate of change, and ¥ is the
threshold value for 97 /0t. In Equation (27), the quantity 07 /9t and its threshold value ¥
are used to identify the breaking wave fronts and distinguish them from the wave tails. A
gravity wave can be represented as a perturbation that, at a given point, produces temporal
variations in the free-surface elevation. The portion of the wave in which 97 /0t is positive
is associated with the wave front. Larger values of dy /0t indicate a higher steepness of
the wave front. The portion of the wave in which d4/df is negative is associated with
the tail of the wave (the portion of the wave between a crest and the successive wave
front). In the proposed reconstruction procedure, a wave is breaking if d1 /09t is higher
than 0.3v/Gh, which is a threshold value in the typical range used for detecting the onset
of wave breaking [16]. In Equation (27), the term in curly brackets is equal to 1 only at
points of the domain and at instants in which 97 /9t is larger than its threshold value ¥,
and is equal to zero otherwise. This term has the task to activate function 6, only at the
breaking wave fronts, since it is null both at the tail of the wave and at non-breaking wave
fronts. If different from zero, the magnitude of 8, is determined by the value of the term in
square brackets of Equation (27), which is greater than or equal to zero. This entails that
the 6; is higher the higher the steepness of the breaking wave front is: 6, has a maximum
at the beginning of the wave breaking (where the fronts are steeper) and progressively
decreases as the wave breaking proceeds. As can be deduced from Equation (25), the higher
the value of 0, the lower the value of Ct. This entails that, at the wave breaking fronts,
the propensity of the proposed technique to cut off one or two candidate polynomials is
reduced. Consequently, at the wave breaking fronts, the introduction of numerical energy
dissipation in the numerical solution due to the reconstruction procedure is lower.

At the tail of the waves and at the non-breaking fronts, where 6, is equal to zero, the
value of the dynamic threshold Cr is a function of 8§, which depends exclusively on the
regularity of the reconstruction polynomials. This entails that at the tail of the waves and
at non-breaking fronts, the propensity of the proposed technique to cut off one or two
candidate polynomials is higher. Consequently, in such a portion of the wave, the capacity
of the proposed reconstruction procedure to introduce numerical energy dissipation in the
solution is increased.

The reconstruction technique proposed in this section allows for limiting the energy
dissipation introduced by low-order numerical schemes at the steep wave fronts (where
the energy dissipation is entrusted mainly to the turbulence model) and guarantees an
adequate numerical energy dissipation at the non-breaking wave fronts and at the tail of
the waves (where the energy dissipation due to turbulence is lower and occurs mainly near
the bottom).

3.4. The Solution of the Riemann Problem

The updating of the point values of the conserved variables at the center of the cell
faces is carried out by solving an exact local Riemann problem. For this purpose, following
the strategy proposed in [17] and adopted in [3], the vector of the conserved variables is
expressed with respect to a local Cartesian system of base vectors. On this local system of
base vectors, starting from the integral contravariant form of the Navier-Stokes equations
adopted in this paper, by some mathematical manipulation we obtain a differential form of
the equations of motion written in conservative form, in which the vertical coordinate varies
over time according to the o-coordinate transformation, while the horizontal coordinates
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are equal to the Cartesian ones and the vector of the conserved variables is expressed with
respect to the Cartesian basis vectors

oH 0Hu  9dHv 8H(u3—w3)_0

o Tod Tar T o @8)
oHu N oHuu N oHuv +058GH2 B GH% N OHu(u® — w®) 0 29)
ot ox! dx2 T ooxl dx! ags3 N
oHu oHuu oHuv dGH? oh  oHu(u® — w?)
: _gplh o @)
ot T ad o T TCH a0 0 (30)
0Hw oHuw dHvw OJHw(u® — w?)
= 1
o o Tow T am 0 G1)

In Equations (28)-(31), Hu, Hv, Hw are the local Cartesian components of the vector of
the conserved variable, x! and x2 are the horizontal Cartesian coordinates; C?’ is the moving
curvilinear vertical coordinate; u®> and w? are the contravariant components of the flow
velocity and moving coordinate, respectively.

The above system can be rewritten in the following compact form:

ou N oF(U) N aG(U) N oH(U)
ot ox1 ox?2 o3

=S (32)

where the bold letters indicate the following vectors and matrices:

H Hu Hv
| Hu | Huu +0.5GH? . Huv
U=1 1o FU) = Huv G(U) = Hoov + 0.5GH?
Hw Huw How
0 _8H(u37w3) (33)

Hu(u3 3 B%Sh

Hw = | et T8 5= | S

GHZ%

Hu (1/[3 o w3) Oax

By following the procedure proposed by Toro [9], the solution of the above system of
equations is obtained by solving three different exact Riemann problems, each one relative
to a coordinate direction. In Appendix A, the strategy for the solution of the exact x!-split
Riemann problem is shown.

4. Results and Discussion

In this section, the validation of the proposed numerical model and its real application
to the simulation of the complex three-dimensional flow velocity fields generated by the
interaction between breaking waves and an emerged barrier are presented. The model
validation was carried out by numerically reproducing several experimental tests of break-
ing waves widely used in the literature. The same experimental tests were reproduced
also using an alternative model based on fifth-order WENO reconstructions and the model
proposed by Cannata et al. [3], which is based on second-order TVD reconstructions and
an approximate Riemann solver.

Let us indicate with WIENO the numerical model proposed in this paper. The
WTENO model adopts a reconstruction procedure based on the proposed original fifth-
order WTENO reconstruction technique and the exact Riemann solver.

Let us indicate with SWENO the model that differs from the proposed one only in the
reconstruction procedure. The SWENO model adopts a reconstruction procedure based on
a fifth-order upwind weighted essentially non-oscillatory technique [11].
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Let us indicate by 2TVD the numerical model proposed by Cannata et al. [3]. The
2TVD model adopts a reconstruction procedure based on a second-order TVD technique
and an approximate (HLL) Riemann solver.

In all the above numerical models, the turbulent stress tensor is modeled by the
Smagorinsky turbulence model, which is used in [1,3]. In the Smagorinsky model, the eddy
viscosity v; is given by a simple algebraic expression:

v = (CsA)*/25: S (34)

where S is the strain rate tensor; the double dot indicates the doubly contracted prod-

uct between second-order tensors; A = (\/§A§1ACZA§3)1/3 is the filter width (that is
related to the volume of the computational cells); and C; is the Smagorinsky coefficient,
which is the only adjustable coefficient of the turbulence model. Although more sophis-
ticated turbulence models could be used, in this paper we adopt this simple turbulence
model to highlight the differences produced in the numerical solution by the different
numerical models.

4.1. Test 1: Spilling Breaking Wave

For this subsection, an experimental test of monochromatic breaking waves carried
out by Stive [18] and widely used to validate numerical models [3,5] was numerically
reproduced using the proposed WTENO model, the above-described alternative numerical
model (SWENO), and the model proposed by Cannata et al. [3] (2TVD). In the experimental
test, regular waves with wave height and wave period equal to 0.158 m and 1.79 s, respec-
tively, propagated along a 55 m-long channel, characterized by an initial constant water
depth equal to di 0.85 m followed by a beach with a 1 : 40 slope (Figure 1). In the numerical
simulations of this test, we adopted the same time and spatial discretization step for all
the above-mentioned three numerical models. The time step was 0.001s. The number of
grid points in the vertical direction was equal to 9. The spatial discretization along the
wave propagation direction Ax was set to obtain a given value of the ratio r; = ny/L, in
which n, is the number of grid points along the wave propagation direction and L is the
wavelength in deep water. In the other horizontal direction, the spatial grid step Ay was
set equal to 2Ax. For this test, the deep-water wavelength was L = 4.2m. In the three-
dimensional numerical simulation of breaking waves, computational grids with r; < 100
can be considered coarse grids. In the present paper, to highlight the drawbacks of the
numerical models based on low-order reconstruction schemes, for this test we adopted a
very coarse computational grid in which the discretization step in the wave propagation
direction was Ax = 0.075 m, which corresponded to 7 = ny/L = 56. In this test, the
Smagorinsky coefficient Cs was set to 0.06, for all three numerical models. Figure 1 shows
an instantaneous free-surface elevation and velocity field obtained using the proposed
WTENO model during the simulation of Test 1. From this figure, it is possible to see the
steepening of the wave fronts approaching the coastline and the following wave height
reduction due to the wave breaking. The contour of the eddy viscosity, v;, shows that its
maximum values are found at steep wave fronts of the breaking waves.

Figure 2 shows the comparison between the wave heights experimentally measured
by Stive [18] and those obtained using the proposed WTENO model, the 2TVD model
and the SWENO model. From Figure 2, it can be seen that the results obtained with the
proposed model show a general good agreement with the experimental results: the wave
height increase in the shoaling zone was well simulated, although slightly overestimated,
and the wave breaking point was correctly identified. From this figure it can be seen that
by using a coarse grid (r;, = 56), the proposed model provides a good agreement with
the experimental data: the wave height increase in the shoaling zone, the maximum wave
height, and the wave height reduction in the surf zone were well simulated. Furthermore,
the wave breaking point was correctly located by the proposed model. The same Figure
shows that, on this very coarse grid, the 2TVD model provided significantly worse results
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than those obtained using the proposed model: the increase in wave height before the
wave breaking was not correctly simulated; the wave breaking point was located too far
offshore and the maximum wave height was highly underestimated (with respect to the
experimental data). From the same figure, it is possible to see that the results obtained with
the SWENO model, although better than those obtained with the 2TVD model, show an
underestimation of the wave height in the shoaling zone and an incorrect location of the
wave breaking point.
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Figure 1. Test 1. Spilling breaking wave. Instantaneous free-surface elevation and contour of the
eddy viscosity, v, obtained using the proposed WTENO model.
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Figure 2. Test 1. Spilling breaking wave. Mean wave heights: comparison between experimental
measurements by [18] (circles) and numerical results obtained with the WTENO model (black line),
the 2TVD model proposed by Cannata et al. [3] (red line), and the SWENO model (green line).

4.2. Test 2: Spilling/Plunging Breaking Wave

In this subsection, we test the ability of the proposed model to simulate waves charac-
terized by a spilling/plunging breaker. This kind of wave represents the upper limit of the
breaking waves that can be effectively simulated using the proposed numerical model. In
fact, the proposed one belongs to the class of numerical models in which the position of the
free surface is uniquely defined by a function of the horizontal coordinates. This class of nu-
merical models cannot effectively simulate a fully plunging breaker, in which the crest of the
wave curls over and drops onto the trough of the wave. For accurate numerical simulations
of fluid flows with complex moving interfaces, more computationally expensive models
based on a meshless Lagrangian approach [19,20] or finite element methods for two-fluid
flows [21,22] are required. For this section, we numerically reproduced an experimental
test of spilling/plunging breaker carried out by Stive [18] in the same experimental setup
used for Test 1. The wave height was 0.142 m and the wave period was 2.99 s. The Iribarren
number was &, = tan(«)/+/H,/L = 0.35 (where « is the plain beach slope, Hj, is the wave
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height at the breaking point, and L is the deep-water wavelength), which was very close to
the upper limit (0.4) beyond which the breaker is classified as plunging. As in Test 1, in
this test the time step was 0.001 s and the number of grid points in the vertical direction
was equal to 9. The spatial discretization along the wave propagation direction was the
same used for the previous test, Ax = 0.075 m, and Ay = 2Ax. For this test, the deep-water
wavelength was L = 7.3 m and the ratio between the number of grid points along the
wave propagation direction, ny, and L was r; = 97. This test was carried out also using the
2TVD model proposed by Cannata et al. [3] and the SWENO model. For all the models,
the Smagorinsky coefficient Cs was set to 0.1. Figure 3 shows an instantaneous free-surface
elevation and contour of the eddy viscosity obtained with the proposed WTENO model
during the simulation of Test 2. From this figure, it is possible to see the increase in the
wave height in the shoaling zone and the very steep front of the waves in the surf zone. As
for the previous test, the maximum values of the eddy viscosity can be found at the very
steep wave fronts that arise in the surf zone after the wave breaking point.
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Figure 3. Test 2. Spilling/plunging breaking wave. Instantaneous free-surface elevation and contour
of the eddy viscosity obtained using the proposed WTENO model.

Figure 4 shows the comparison between the wave height measured by Stive [18] and
those obtained with the proposed WTENO model, the 2TVD model, and the 5SWENO
model. The proposed model provides results that are in quite good agreement with the
experimental data: the wave height increase in the shoaling zone, the maximum wave
height, and the wave breaking point were well predicted. The main discrepancies with
the experimental data were found after the breaking point, in the first part of the surf
zone, where the proposed model predicted slightly overestimated wave heights. This
slight overestimation of the wave height in the surf zone can be attributed to the adopted
turbulence model. For this simulation, the Smagorinsky turbulence model with a constant
value of the Smagorinsky coefficient (Cs = 0.1) was not able to adequately represent the
energy dissipation due to the wave breaking. In this test, rather than adjust the Smagorinsky
coefficient in the surf zone (and increase the energy dissipation), we preferred to slightly
underestimate the dissipation of energy introduced by the turbulence model, to highlight
the differences produced by the three different numerical schemes. Figure 4 shows that
the results obtained with the 2TVD model were considerably worse than those obtained
with the proposed model: the wave height evolution in the shoaling was poorly predicted;
the maximum wave height was significantly underestimated; the wave breaking point was
located too far offshore, and the wave height reduction in the surf zone was incorrectly
represented with respect to the experimental results. From the same figure, it can be
noted that the results obtained using the 5SWENO model are in better agreement with the
experimental data, with respect to those obtained using the 2TVD model, but are affected
by some drawbacks: the wave height increase in the shoaling zone was only partially well
predicted; the maximum wave height was underestimated, and the wave breaking point
was located slightly too far offshore.
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Figure 4. Test 2. Spilling/plunging breaking wave. Mean wave heights: comparison between
experimental measurements by [18] (circles) and numerical results obtained with the WTENO model
(black line), the 2TVD model proposed by Cannata et al. [3] (red line), and the 5SWENO model
(green line).

4.3. Test 3: Cnoidal Wave

In this subsection, we numerically reproduce an experimental test of a cnoidal wave
proposed by Ting and Kirby [23] and used by several authors to validate shock-capturing
models [1,4]. The experimental channel by [23] has an initial depth & = 0.4 m followed
by a 1:35 sloping beach. In this test, a cnoidal wave with a wave height of H = 0.125 m
and a wave period of T = 2 s was simulated. This experimental test was reproduced using
the proposed WTENO model, the 2TVD model proposed by Cannata et al. [3], and the
S5WENO model. As for the previous tests, in all the simulations shown in this section, the
number of grid points in the vertical direction was equal to 9 and the time step was 0.001 s.
For this wave, the deep-water wavelength was L = 6.3 m. It must be emphasized that in
the literature this test is usually reproduced on very fine computational grids in which
the spatial discretization step in the wave propagation direction is Ax = 0.025 m [1] and
Ax = 0.0375 m [4], which corresponds to r; = ny,/L = 254 and r; = 168, respectively.
For the proposed paper, we adopted the same coarse grid used for Test 1 and Test 2
(Ax = 0.075; Ay = 2Ax), which corresponds to r; = 84. In this test, the Smagorinsky
coefficient Cs was set to 0.06, for all the three numerical models.

Figure 5 shows an instantaneous free-surface elevation and contour of the eddy
viscosity obtained using the proposed WTENO model during the simulation of Test 3.
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Figure 5. Test 3. Cnoidal wave. Instantaneous free-surface elevation and contour of the eddy viscosity
obtained using the proposed WTENO model.

In Figure 6, the maximum, minimum, and average values of the free-surface elevation
obtained using the proposed WTENO model are compared to the experimental data by [23]
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and the numerical results obtained using the 2TVD model and the SWENO model. The
figure shows a good agreement between the results obtained with the proposed WTENO
model and the experimental data: the wave height evolution in the shoaling zone was
well predicted; the maximum wave height and the wave breaking point were correctly
represented; a slight overestimation of wave height after the wave breaking point can be
observed. This lack of energy dissipation in the first part of the surf zone can be attributed
to the adopted turbulence model. In this test, as for the previous ones, we adopted a
constant low value of the Smagorinsky coefficient (Cs = 0.06). With this choice, we limited
the kinetic energy dissipation due to the turbulence model to highlight the effect produced
by too dissipative numerical schemes on the wave height evolution. From Figure 6, it can
be seen that, for this test, the 2TVD model provided very erroneous results: the wave height
evolution in the shoaling zone was almost absent, the maximum wave height was highly
underestimated, and the location of the wave breaking point was extremely incorrectly
predicted. From the same figure, it can be noted that the results obtained using the SWENO
model are affected by drawbacks, that although lower, are similar to those of the 2TVD
model: the wave height evolution in the shoaling zone and the maximum wave height were
underestimated; the location of the wave breaking point was predicted too far offshore.
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Figure 6. Test 3. Cnoidal wave. Maximum, minimum, and average values of the free-surface
elevation. Comparison between experimental data by [23] (circles) and numerical results obtained
using the proposed WTENO model (black line), the 2TVD model proposed by Cannata et al. [3] (red
line), and the SWENO model (green line).

From the comparison between the numerical results shown in Figures 2, 4 and 6, it
can be deduced that the drawbacks in the results obtained by the models based on second-
order TVD and fifth-order WENO reconstructions are mainly due to an excess of numerical
energy dissipation introduced by the above models in the numerical solution. This excess of
numerical energy dissipation is mainly due to the low order of the reconstruction procedure
rather than to turbulence model that is a too dissipative. In fact, in the above simulations,
the coefficient C; of the turbulence model (the Smagorinsky coefficient) was set to values
(0.06 and 0.1, respectively), which are lower than or equal to the minimum value (0.1)
usually adopted in the literature. From the same figures it can be noted that, although
the numerical results obtained using the SWENO model are in better agreement with the
experimental data than those obtained using the 2TVD model, the WENO reconstructions
introduced too much numerical energy dissipation in the shoaling and surf zone compared
to the proposed WTENO technique. The reason for such excessive numerical energy
dissipation can be found in the criterion by which the WENO technique determines the
weight of each reconstruction polynomial. In the WENO technique, the weight of each
candidate polynomial is determined exclusively as a function of the smoothness of the
polynomials. In the shoaling zone before the wave breaking and in the whole surf zone, the
steep wave fronts produce high gradients of the conserved variables (H and Hu;). In such
steep wave fronts, the WENO technique interprets the numerical solution as irregular and,
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consequently, modifies the original weight of each polynomial to provide a lower weight
to the more irregular ones. This entails a final low-order point value reconstruction that
is significantly more dissipative than the original fifth-order one. It must be emphasized
that these too dissipative WENO reconstructions occur in the same computational cells
where the maximum kinetic energy dissipation due to the turbulence model takes place
(i.e., on the steepest wave fronts). The main consequence is an excess of kinetic energy
dissipation introduced in the numerical solution by the reconstruction technique, which
produces underestimated wave heights in the shoaling zone, an erroneous wave breaking
location, and a maximum wave height that is too low.

By the same figures, it is possible to deduce that the above-mentioned drawbacks of
the WENO technique are overcome by the WITENO reconstruction procedure proposed
in this paper. In fact, on the steep wave fronts, where the maximum energy dissipation
due to the turbulence model takes place, the dynamic threshold, defined in the proposed
WTENO scheme to determine whether one or two polynomials must be excluded from
the reconstruction procedure, assumes its maximum values. Consequently, on these steep
wave fronts, all the three candidate polynomials participate in the reconstruction with
weights that are not modified with respect to the original ones, so that the point values
of the conserved variables are given by a fifth-order low-dissipative reconstruction. This
entails that, on the steep wave fronts, no further numerical energy dissipation is introduced
by the reconstruction procedure, in addition to the one introduced by the turbulence model.
For this reason, in the simulations obtained using the WTENO model, the wave height in
the shoaling and surf zone was significantly higher than that obtained using the SWENO
model. Inside the shoaling and surf zone, the waves propagating towards the coastline
exhibited a steep wave front followed by a wave tail. On these wave tails, where the
local time derivative of the free-surface elevation was negative, the dynamic threshold
defined in the proposed WTENO scheme depended only on the regularity of the candidate
polynomials. This implies that, on this portion of the waves, the magnitude of the dynamic
threshold can be reduced and the contribution of the more irregular polynomials can
be excluded from the procedure, producing a low-order reconstruction that introduces
numerical energy dissipation in the numerical solution. Therefore, this numerical energy
dissipation is introduced mainly on the wave tails, where the energy dissipation due to
the turbulence model is lower. In this way, it is possible to obtain good non-oscillatory
properties of the numerical model without excessively reducing the wave height in the
shoaling and surf zone.

4.4. Test 4: Rip Current

In this subsection, the capacity of the proposed numerical model to simulate the
wave propagation and wave-induced currents in a coastal area with a curvilinear coastline
is verified. We numerically reproduced a laboratory test of a rip current test proposed
by Hamm [24]. The laboratory test was carried out in a 30 x 30 m basin in which the
curvilinear coastline was obtained by digging a rip channel along the central line of a 1:30
sloping beach. In this test, the incoming waves were monochromatic with a wave height of
H = 0.07 m and a wave period of T = 1.25 s; the deep-water wavelength was L = 3.5 m.
Since the laboratory basin was symmetric with respect to the alongshore coordinate v,
in our numerical simulations only half of the basin was reproduced. On the symmetric
axis of the laboratory basin (central line of the rip channel) and on the opposite lateral
boundary, we imposed closed boundary conditions (null normal velocity and null gradient
of the tangential velocity and free-surface elevation). On the bottom, a no-slip condition
was imposed. The numerical simulations were carried out on a very coarse curvilinear
grid consisting of 256 x 100 (25,600) computational cells in the horizontal plane: in the
direction parallel to the deep-water wave fronts (y-axis), the average spatial grid step was
about Ay = 0.15 m; in the wave propagation direction (x-axis), the average spatial grid
step was about Ax = 0.1 m. The ratio between the number of grid cells along the wave
propagation direction and the deep water wavelength was r;, = 35. The number of grid
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250 wave periods. The time average of the hydrodynamic quantities began after the first
50 wave periods and was carried over the next 200 wave periods. Figure 7a shows a plan

view of the boundary-conforming curvilinear grid in which only one line in every two is
drawn. Figure 7b,c show two vertical sections of the computational domain: Section A is

points in the vertical direction was equal to five and the time step was equal to 0.001 s. The
Smagorinsky coefficient C; was set to 0.1. The numerical simulations were carried out for
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Figure 7. Test 4. Rip current. (a) computational grid (only one line in every 5 is drawn). (b) bottom
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Figure 8. Test 4. Rip current. Three-dimensional view of the bottom.

This test was carried out using the proposed WTENO model, the 2TVD model pro-
posed by Cannata et al. [3], and the 5SWENO model. In Figure 9, an instantaneous wave
field obtained with the WTENO model is shown. The presence of the rip channel on the
lateral boundary of the computational domain induced a rip current. This offshore-directed
current interacted with the incoming waves. As shown in Figure 9, the interaction between
the rip current and the incoming waves produced an increase in the wave height and a
curvature of the wave fronts close to the rip channel.

1 [m]

-2.0x10°

-1.0x107

0.0x10"

1.0x10°

2.0x107  3.0x10°  4.0x107  5.0x10>
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x [m]

[ O

P bl

1

Figure 9. Test 4. Rip current. Instantaneous view of the wave field obtained using the proposed
WTENO model.
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In Figure 10a,b, the significant wave heights measured by Hamm [24] along the rip
channel (Section A) and along the cross-shore section of the 1:30 sloping beach (Section B),
respectively, are compared to the mean wave heights obtained using the WTENO model,
the 2TVD model, and the SWENO model. From Figure 10a,b it can be noted that, on this
very coarse grid, the WTENO model provides results that are in good agreement with the
experimental data: the wave evolution in the shoaling zone and the wave height reduction
in the surf zone were well simulated; the wave breaking point was correctly located both
in the rip channel and in the sloping beach. From the same figure, it can be noted that
the numerical model based on second-order TVD reconstructions provided a wave height
evolution that was highly inaccurate, in both the shoaling and the surf zone: the wave
height increase in the incoming waves due to shoaling was completely absent and no
wave breaking location could be found. From Figure 10 it can be seen that the results
obtained using the SWENO model are in better agreement with the experimental data than
those obtained using the 2TVD model, but they were affected by similar drawbacks: the
maximum wave height was overestimated and the wave breaking point was predicted too
far offshore, especially along the cross-section of the 1:30 sloping beach.
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Figure 10. Test 4. Rip current. Wave height. Comparison between experimental and numerical results:
significant wave height from Hamm [24] (circles); mean wave height obtained with the WTENO
model (black line), the 2TVD model proposed by Cannata et al. [3] (red line), and the SWENO model
(green line). (a) Section A, along the rip channel; (b) Section B, along the cross-section of the 1:30
sloping beach.

Figure 11a,b (where only one vector in every three is drawn) show the induced
wave current obtained using the WTENO model close to the free surface and close to
the bottom, respectively. From Figure 11a it can be noted that, close to the free surface,
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the alongshore component of the mean gradient of the free-surface elevation induced a
significant alongshore current, which close to the channel became a rip current. This current
produced a main anticlockwise circulation pattern and secondary clockwise recirculation
structures close to the shoreline. From the same figure it can also be noted that close to the
free surface, except in the rip channel, most of the cross-shore velocity components were
directed onshore. On the contrary, from Figure 11b it can be seen that, close to the bottom,
most of the cross-shore velocity components were directed offshore. These variations in
the sign of the cross-shore current components along the vertical direction highlight the
presence of undertow currents in the surf zone that make the circulation pattern fully
three-dimensional.
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Figure 11. Test 4. Rip current. Plant view of the time average horizontal velocity components

obtained using the proposed WTENO model: (a) close to the free surface; (b) close to the bottom
(only one of every three vectors is drawn).
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Figure 12 shows the near-bottom offshore-directed cross-shore current along the rip
channel obtained using the WTENO model, in comparison with the currents obtained
using the 2TVD model, the SWENO model, and the experimental data from Hamm [24].
From this figure, it can be seen that the numerical results obtained with the proposed
WTENO model are in good agreement with the experimental data. From the same figure
it can be noted that, in this very coarse grid, the results obtained using the 2TVD model
(red line) significantly underestimated the magnitude of the rip current. Such erroneous
values of the offshore-directed cross-shore current component were due to a significant
underestimation of the mean gradients of the free-surface elevation that drive the currents
in the entire coastal basin. The main reason for these drawbacks is an excessive numerical
energy dissipation introduced by the 2TVD model in the shoaling and surf zone which
causes a wrong wave height evolution in the incoming waves (see Figure 10). Figure 12
shows that a significant underestimation of the rip current was also obtained using the
S5WENO model (green line).
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Figure 12. Test 4. Rip current. Time average of the near-bottom offshore-directed cross-shore velocity
component along the rip channel. Experimental data from Hamm [24] (circles); WTENO model (black
line); 2TVD model proposed by Cannata et al. [3] (red line); 5SWENO model (green line).

The numerical results that are shown in this section highlight the capability of the
proposed WTENO model to effectively simulate the wave height evolution in the shoaling
zone, the maximum wave height, and the wave height reduction in the surf zone, also by
using a very coarse computational grid in which the ratio r; (between the number of grid
nodes in the wave propagation direction and the deep-water wavelength) is significantly
less than 100. Consequently, on these coarse grids, differently from the numerical models
based on second-order TVD and fifth-order WENO reconstructions, the proposed WTENO
was able to simulate the spatial variations of the mean free-surface elevations and the
wave-induced coastal currents.

4.5. Wave-Structure Interaction

In this subsection, we present a real application of the validated proposed model, con-
sisting in the three-dimensional simulation of the interaction between breaking waves and
an emerged breakwater. Emerged breakwaters are widely used coastal defense structures.
Generally, they are heavy structures resting on the bottom which emerge from the free
surface to avoid wave propagation. In most cases, they are placed parallel to the shoreline,
isolated or in series. The presence of such barriers, besides modifying the wave fields and
coastal currents, can cause local sea bottom erosion produced by quasi-periodic vortex
structures close to the edge of the barrier. The flow velocity field that causes this local
sea bottom erosion is fully three-dimensional and is related to the formation of vortices
of various dimensions which interact with each other. In this subsection, the proposed
model is applied to the numerical simulation of the complex free-surface elevation and
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three-dimensional flow velocity fields produced by the interaction between breaking waves
and an emerged vertical coastal barrier, which is placed parallel to the shoreline in the
surf zone. We numerically reproduced a rectangular portion, 20 m x 6 m, of a coastal area
in which an emerged parallelepiped barrier (2 m long, 0.5 m wide, and 1 m high) was
placed parallel to the shoreline. In this coastal area, an initial undisturbed water depth of
h = 0.4 m (between x = —5 m and x = 0 m) was followed by a 1 : 35 sloping beach. In
Figure 13a,b, a plan view and a vertical section, respectively, of the coastal area with the
coastal barrier are shown.

X [m]

(@)

0.2
0.1

0.1E
N
0.2
0.3
. 04
0 5 10 15
X [m]

(b)

Figure 13. Wave-structure interaction. Coastal area with a vertical emerged barrier (in red). (a) Plan

view. (b) Vertical section.

As can be seen from Figure 13a, the central line parallel to the x-axis is an axis of
symmetry of the above-mentioned coastal area. Consequently, to save computational
time, we numerically reproduced only one half of the original area. In Figure 14, the
computational grid adopted for the above-mentioned numerical simulation is shown (in
which only one line in every three is drawn): the waves were generated at x = —5m
and propagated along the x-axis in the direction of increasing x; the barrier was located
between x = 7.1 m and x = 7.6 m, and between y = 0 m and y = 1 m. In the horizontal
directions, the spatial discretization steps ranged from Ax = 0.025 m to Ax = 0.05 m and
from Ay = 0.025 m to Ay = 0.05 m. In the vertical direction, we adopted 13 non-uniformly
distributed grid cells.

On the right (with respect to the wave propagation direction) lateral boundary
(v = 0m), we imposed a closed boundary condition (null normal gradient of the free-
surface and tangential flow velocity components and zero normal velocity). On the left
lateral boundary (y = 3 m), we imposed an open boundary condition (null normal gradient
of free-surface elevation and flow velocity components). On the left boundary, at x=0m, a
cnoidal wave with a period of T = 2 s and a wave height of H = 0.125 m was imposed.
The Smagorinsky coefficient was set Cs = 0.2. Figure 15 shows a sequence of instantaneous
snapshots of the free surface obtained using the proposed model during the numerical
simulation of the wave—structure interaction (the barrier was drawn as transparent for
purposes of clarity).
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Figure 14. Wave-structure interaction. Plan view of the computational grid with the vertical emerged
barrier (in red).
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Figure 15. Wave-structure interaction. Instantaneous snapshots of the free surface obtained using

the proposed model (the barrier was drawn as transparent for purposes of clarity). Three different
instantaneous wave field: (a) T = 100s, (b) T = 101 sand (¢) T = 102 s.

From Figure 15a,c it is possible to see the reduction in the wave height due to the wave
breaking (before reaching the barrier), a significant increase in the surface elevation due to
the impact with the barrier, and the propagation of the breaking front wave along the side
of the barrier. The spatial variations in the free-surface elevation (due to the presence of
the barrier) produced significant modifications in the flow velocity fields and characteristic
wave-induced circulation patterns.

Figure 16 shows the circulation patterns obtained by averaging over time the flow
velocity calculated with the proposed model at different vertical distances from the bottom:
(a) near the bottom; (b) at an intermediate water depth; (c) near the free surface (only
one out of every two vectors are drawn). As can be seen from Figure 16, upstream of
the barrier, the wave trains which impacted the barrier induced a mean gradient of the
free-surface elevation driving flow velocities parallel to the barrier and directed toward the
zone where the barrier is absent. Such a velocity component was greater close to the bottom
and gradually decreased upon approaching the free surface. Downstream of the barrier, a
mean gradient of the free-surface elevation induced flow velocities that were parallel to the
barrier and directed towards the sheltered zone. Consequently, behind the barrier, there
was a clockwise vortex with increasing intensity upon approaching the free surface.

Figure 17 shows the instantaneous local vortex structures close to the edges of the
barrier and propagating toward the shoreline. These vortex structures were visualized using
the Q-criterion, which is a vortex identification method based on the three-dimensional
contours of the second invariant of the velocity gradient tensor. As can be seen from
Figure 17, the presence of the barrier caused, near the edges, the onset of quasi-periodic
vortex structures with a vertical axis. Such vortex structures emerged close to the bottom
and developed toward the free surface. Downstream of the barrier, the vortices generated
at the upstream edge of the barrier were characterized by almost horizontal axes, which
were directed toward the shoreline. Such vortices were stretched by the wave motion and
breakdown to form smaller vortex structures.
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Figure 16. Wave-structure interaction. Circulation patterns. (a) Near the bottom. (b) At an intermedi-

ate water depth. (c) Near the free surface.
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Figure 17. Wave-structure interaction. Instantaneous local vortex structures visualized using the
Q-criterion (three-dimensional contours of the second invariant of the velocity gradient tensor). Three
different instantaneous wave field: (a) T = 100s, (b) T = 101 sand (¢) T = 102 s.
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The numerical results shown in this subsection highlight the ability of the proposed
model to simulate the complex fully three-dimensional hydrodynamic phenomena pro-
duced by the interaction between breaking waves and an emerged barrier. Especially
noteworthy are the formation of large-scale circulation patterns and the emergence of local
quasi-periodic vortex structures near the structure, at the sea bottom. Such local fully
three-dimensional hydrodynamic phenomena can cause an increment in the capacity of
the wave motion to put in suspension and carry away the suspended sediment from the
bottom, with a possible partial undermining of the barrier.

5. Conclusions

A new three-dimensional high-order shock-capturing model for the numerical sim-
ulation of breaking waves was proposed. The proposed model is based on the integral
contravariant form of the Navier-Stokes equations in a time-dependent generalized curvi-
linear coordinate system proposed by [3]. Such an integral contravariant form of the
equations of motion is numerically integrated by a new conservative numerical scheme, in
which exclusively the conserved variables are used. In the proposed numerical scheme, the
point values of the conserved variables on the cell faces of the computational cells were
obtained using an original reconstruction procedure called WTENO, designed for the 3D
numerical simulation of breaking waves. On such cell faces, the time evolution in the dis-
continuity was calculated using the exact solution of the Riemann problem. The proposed
model was validated by numerically reproducing several experimental tests of breaking
waves on computational grids that were significantly coarser than those usually used in the
literature to validate the existing 3D shock-capturing models. The results obtained using
the proposed model were also compared with those obtained using the model proposed by
Cannata et al. [3], which is based on second-order TVD reconstructions and an approximate
Riemann solver usually adopted in the literature. The above comparison shows that the
results obtained with the 3D shock-capturing model based on second-order TVD reconstruc-
tions and approximate Riemann solvers were affected by some main drawbacks: the wave
height evolution in the shoaling zone and the maximum wave height were underestimated
and the predicted wave breaking point was incorrectly located. The same comparison
showed that the proposed model was able to overcome the above-mentioned drawbacks: it
correctly simulated the wave height increase in the shoaling zone, and correctly predicted
the location of the wave breaking point, the maximum wave height, and the wave height
decay in the surf zone. The validated proposed model was applied to a real case consisting
in the simulation of the complex three-dimensional flow fields and free-surface elevation
generated by the interaction between breaking waves and an emerged barrier. The numeri-
cal results show the ability of the proposed model to simulate both large-scale circulation
patterns downstream of the barrier and the onset of quasi-periodic vortex structures close
to the edge of the barrier. These fully three-dimensional complex flow structures can put in
suspension and carry away the suspended sediment from the bottom and cause local scour
near the barrier.
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Appendix A

The x!-split Riemann problem is defined as an initial value problem

AF(U)

u _
ot + oxl 01
U;ifx* <0 Al
(0 = { - (A
Urifx >0
where
HL HR Hu
Hpup ) . Hgug ) | Huu —|—O.5gH2
u, = Ho, | Ug = Heox |’ FU) = Huw (A2)
Hpwy, Hrwg Huw

F(U) is the vector of fluxes in the x!-direction; U and Uy are the vectors of the initial
conditions on the left and right of the cell face, which in the local system of coordinates
is placed at x = 0. The structure of the solution of the Riemann problem is given by
three waves, associated with the eigenvalues el = u —a, 2 = u, and e3 = u +a (in
which a = \/L@), which separate four constant states, indicated by Wy, Wy, Wgr, and
Wg, where W = (H, u, v, w). The values Wy; and Wgg denote the star region, where the
solution is unknown, and arise from the interaction of W and Wx. Across the left and right
waves, H and u change, while v and w remain constant; across the middle wave, v and
w change discontinuously, while H and u remain constant. We denote by Hg and ug; the
constant values of the water depth and x-component velocity in the star region, respectively.
The left and right waves are determined according to the following conditions:

Hg > Hp : left wave is a shock wave
Hg < Hp : left wave is a rare faction wave

and
Hg > Hp @ right wave is a shock wave

Hgt < Hp : right wave is a rarefaction wave

The tangential velocity components v and w do not influence the left and right waves
and the values of Hg; and ug and, therefore, are not taken into account in the solution
procedure. The first step of the procedure consists in obtaining a non-linear algebraic
equation for Hg. For this purpose, we relate u, to the left and right values of H by
functions funy(H, Hr) and fung(H, Hg), which govern the relations between u and H
across the left and right waves, respectively. Using the Riemann invariants for a rarefaction
wave and the Rankine-Hugoniot conditions for a shock wave, we obtain

2(\/gHst — \/gHL), if Hs < Hy (rarefaction wave)
funy, = ,
(Hst — Hp) 1/%gmﬁst7w, if Hy > Hg (shock wave)

(A3)
2(\/gHst — \/gHR), if He < Hg (rarefaction wave)
fung = H H 1, (HatHR) ¢ g H» (shock
(Hst — HR) 28 HoH if Hs > Hg (shock wave)
The solution H, is given by the root of the algebraic equation
fun(Hst) = funL(Hst/ HL) +funR(Hst, HR) +uUr —up = 0; (A4)

Three intervals of values of Hy in which the solution of the Riemann problem is
determined are of physical interest (Hg; > 0):

Hg < Hyins Hypin < Hst < Hpgax; Het > Hpggx where Hy = min(HL/ HR) and
HMax = max(HL,HR).
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Given Hy, and Hp, the solution of Equation (A4) depends exclusively on Au = ug — uy.
In order to obtain positive values of Hg;, the following depth positivity condition,
2(ap +ag) > ug — uy, must be fulfilled.
In the case in which f(H,;,,) > 0, the left and right waves are rarefaction waves and
fun(Hs;) becomes
2(ast —ar) +2(ass —ag) +ur —up =0 (A5)

The solutions for as (and thus for Hgt) and for ug are given by

1 1
ast = =(ap +ar) — =(ug —up); ust = = (up +ur) +ar —ag (A6)

2 4

N —

In all the other cases, Equation (A4) for H, is numerically solved with a Newton—
Raphson iterative scheme. Once Hg is known, the value of ug; is calculated using the
following equation:

Ust = %(ML +ug) + %[fR(Hstr Hg) — fr.(Hst, Hp)] (A7)

If Hyy > Hi, the left wave is a shock wave with speed Sy, given by

Sp=up—arqr

_ [AHarHOHG (A8)
qL - H%

and the structure of the complete solution is shown in Figure Ala.
If Hyt < Hj, the left wave is a rarefaction wave, for which the speeds of the head Sg.
and tail St are
SHL = up —ag
A9
STL = Ust — ast (A9)

In this case, the solution inside the rarefaction wave is given by

a= %(ML—FZ{JL—X—;)

(A10)
u= %(UL +2aL+¥)

WLfLHZ =

and the structure of the complete solution is shown in Figure Alb.

Shock (xtug) ¢ Rarefaction (x/t-5,,) t (x/tuy)
wave wave /
(x/t=81) \ (/t=Syp) Wsm/

\ W fan - /
WatL \ War /
\ / Wsir

W WL
X X

(a) (b)

Figure A1. Solution of the Riemann problem to the left of the contact wave: (a) left wave is a shock
wave; (b) left wave is a rarefaction wave.

If Hgt > Hp, the right wave is a shock wave, with speed Sr given by

SR = UR + ARqR
3 (Hst+Hg) Hst (A11)
qR - H2
R

and the structure of the complete solution is shown in Figure A2a.
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If Hst < Hg, the right wave is a rarefaction wave, for which the speeds of the head
Syr and tail Sy are
SHR:uR+aR (A12)
STR = Ust + ast

In this case, the solution inside the right rarefaction wave is given by

1 x!
SHR = uRr +a “:é(_”R"'z“R"‘T)
SHR_ K RWRf[m = 1 1 (A13)
TR = Ust + st u:§<uR—2aR+2xT>

and the structure of the complete solution is shown in Figure A2b.

_ Shock - Rarefaction
t (Xh’, Usi) wave (XH\U“) t (x/t=S1g) wave
/ (X/t=Sg) \ (x/t=Syg)
Rfan

[ \ [
/ \

/ wx Wil \ Wr
X X
(a) (b)

Figure A2. Solution of the Riemann problem to the right of the contact wave: (a) right wave is a
shock wave; (b) right wave is a rarefaction wave.

Once Hy; and ug; are calculated, the remaining velocity components are easily obtained
as a function of the celerity of the contact wave:

ifug >0,v=v,andw =wy; ifug <0,v=ovgandw = wg (A14)
Appendix B

Table A1l. Symbols used in this paper.

Symbols Unit of Measurements
AV(t) (m3) Moving control volume
AA(Y) (m?) Boundary surface of the moving control volume
x! (1=13) (m) Cartesian coordinates

U (ms™ 1) Cartesian flow velocity vector

u, v, w (ms™1) Cartesian components of flow velocity vector
@ (s) Cartesian velocity vector of the boundary surface control volume
n -) Cartesian outward normal unit vector
. (-) Dot product
: ) Doubly contracted dot product
24 (-) Tensor product between vectors
- . .
A (-) Generic Cartesian vector
G (ms~2) Acceleration due to gravity
n (m) Free-surface elevation
H (m) Total water depth
h (m) Still water depth
0 (kg m~3) Fluid density
14 (kg s2m™ 1) Dynamic pressure
P (kg s2m™1) Total pressure
R (kg s2m™1) Stress tensor
S (s Stain rate tensor
I (s Identity tensor

& (1=1,3 (-) Curvilinear coordinates

I-th covariant base vector

ool
_=
=
I
=Y
W —
=
—
2
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Table Al. Cont.

Symbols Unit of Measurements
pad (1=1,3) (m~1) I-th contravariant base vector
Vg (m3) Jacobian of the transformation
A ) Symbol for the vector product
/80 (m?) Factor of the Jacobian of the transformation
z -) Cartesian vertical unit vector
g @ (1=1,3) (m~1) Contravariant base vector at the center of the control volume
!
Am (m =1,3) ©) mthcovariant component of ? )
ut (1=1,3) (ms™h) I-th Contravariant component of the flow velocity vector
AFIABAE ) Control volume in the transformed space
AAYY, AAYT (a=1,3) ) Boundary surfaces of the control volume on which the coordinate ¢* is constant
R™ (m,a =1,3) (s7?) Contravariant components of the stress tensor without the pressure term
w* (v =1,3) (s7h a-th Contravariant component of the velocity of the moving coordinate
Lijk (-) Generic hexahedral computational cell
0 Cell-averaged value
(“) Surface-averaged value
(A) Line-averaged value
OF, ()~ Point values on the cell face
()RS Updated point value obtained with the Riemann solver
0O Predictor value of a cell average variable
[ (m?s~1) Scalar potential
¢(l,s =1,3) (m~2) Contravariant metric tensor
Q, (-) Non-linear weights
Op -) Cut-off functions
Ccp (-) Linear weight
Iy ) Normalized regularity function
Cr ) Dynamic threshold
Tp ) Regularity function
By ) Smoothness indicator
Tp ) Global smoothness indicator
C,u,€,d,B;, By ) WTENO coefficients
n -) Exponent of the dynamic threshold
0 and 6, ) WTENO functions
Y (ms™1) Threshold for local time rate of change
u Vector of the Cartesian conserved variables
F(U), G(u), H(U) Flux vectors
S Source term vector
Vg (m?s~1) Eddy viscosity
Cs -) Smagorinsky coefficient
A (m) Filter width
Or O)r Right and left values on the cell face
el, e2,¢e3 (ms™1) Eigenvalues
a (ms~1) Celerity
()st -) Star region values
SL, Sr (ms™1) Left and right wave speed
SH, ST (ms™1) Head and tail wave speed
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