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Abstract: Buckle-initiation techniques, such as sleepers, are usually installed to trigger lateral buckling
at pre-designated locations to release the axial compressive forces induced by thermal loading.
Taking the nonlinear pipe–soil interaction model into account, a mathematical model is proposed to
investigate the lateral buckling of subsea pipelines triggered by a sleeper. The numerical solution
is validated by comparing the model with solutions in the literature, and the model shows good
agreement. The discrepancy between them is analysed by presenting the effect of mobilisation
distance during buckling. The influence of the breakout resistance, sleeper height, and sleeper friction
coefficient on the buckled configuration, post-buckling behaviour, and minimum critical temperature
difference is discussed parametrically. The results show that the deformation of the buckled pipeline
shrinks, and both the minimum critical temperature difference and the maximum stress along the
buckled pipeline enlarge when the nonlinear pipe–soil interaction model is incorporated. However,
the influence of the nonlinear pipe–soil interaction reduces with increasing sleeper height.

Keywords: subsea pipeline; nonlinear pipe–soil interaction model; breakout resistance; sleeper

1. Introduction

Subsea pipelines may buckle laterally due to the excessive axial compressive force
due to high-temperature and high-pressure conditions. Lateral buckling occurs when
the axial compressive force reaches critical levels. Lateral buckling, if not controlled, can
lead to serious accidents involving local buckling, fracture, and fatigue [1]. To control this
phenomenon, buckle initiation techniques, such as sleepers, are employed along pipelines
to trigger buckles at predesigned locations. A sleeper is a pipe segment that is installed
underneath and perpendicular to the pipeline, which typically has a low friction surface
to reduce the lateral friction force. Thus, the pipeline is uplifted vertically. A combination
of the vertical out-of-straightness and low lateral resistance results in reduced critical
buckling force. When the sleeper is used as the buckle initiation facility, part of the pipeline
is suspended. The pipeline segment at the end of the suspended section has a larger
embedment into the seabed, since a vertical concentrated force exists. This embedment
affects the lateral breakout resistance, which is a key design parameter governing the
initiation of the lateral buckle. Thus, a nonlinear pipe—soil interaction model is considered
in the mathematical model to investigate the influence of breakout resistance on post-
buckling behaviour.

The global buckling of subsea pipelines was investigated by numerous researchers.
Hobbs’ solutions for a straight pipeline were derived by assuming specific buckling mode
shapes and constant lateral soil resistance [2]. Based on this, an analytical model was
proposed by Taylor and Gan [3] with a consideration of initial imperfection. A simpli-
fied analytical model was proposed by Croll [4] for upheaval buckling. The interaction
between propagation buckling and global buckling in subsea pipelines was investigated
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by Karampour et al. [5]. This interaction leads to a significant reduction in buckle design
capacity. The lateral buckling of imperfect pipelines was studied by Liu et al. [6], using FEM.
The analytical solutions for the high-order lateral buckling of a pipeline with symmetric
and anti-symmetric initial imperfection were derived by Hong et al. [7] and Liu et al. [8],
respectively. Lateral buckling was investigated by Konuk [9,10] with coupled lateral and
axial pipe–soil interactions. Zhang et al. [11,12] derived unified formulas for the critical
buckling forces of the upheaval and lateral buckling of subsea pipelines with different types
of initial imperfection. The influence of the pipe length on the lateral buckling behaviour of
imperfect pipelines was investigated through FEM [13].

More recently, researchers investigated the influence of the nonlinear pipe–soil interac-
tion model on lateral buckling. Zeng and Duan [14] used a quintic polynomial formula to
simulate nonlinear pipe–soil interactions. Incorporating the tri-linear pipe–soil interaction
model, Chee et al. [15] investigated the effect of imperfections on the buckling response
through FEM. Considering both the initial imperfection and the nonlinear lateral soil resis-
tance model, the critical force of the lateral buckling was analysed by assuming that the
length of the buckled region equals the wavelength of initial imperfection [16].

To increase the reliability of buckle formation predictions, buckle initiation facilities
were incorporated into the mathematical models. A single buoyancy or distributed buoy-
ancy with a specific length installed along the pipeline was considered to derive some
simple analytical solutions [17]. The critical load of lateral buckling triggered by a single
buoyancy was investigated by Shi and Wang [18]. Moreover, dual distributed buoyancy
sections with a gap between them were employed to initiate lateral buckling [19]. A new
way to trigger lateral buckling is to introduce a pre-deformed section along the pipeline
before installation [20]. Lateral buckling triggered by a sleeper was investigated experi-
mentally by Silva-Junior et al. [21] and de Oliveira Cardoso and Solano [22]. Bai et al. [23]
studied the lateral buckling triggered by dual sleepers through FEM. Analytical solutions
for antisymmetric buckling modes triggered by a sleeper were obtained by Wang and
Tang [24]. They found that the symmetric buckling mode was more likely to occur with
lower sleeper friction or smaller sleeper height. Hong and Liu [25] investigated the vertical
deflection of a pipeline on a sleeper by FEM.

By assuming constant lateral soil resistance, analytical solutions were derived for the
lateral thermal buckling triggered by a sleeper in [26]. In practice, the pipeline always has
an initial embedment into the soil and the lateral soil resistance is not constant. However,
there are no studies about lateral thermal buckling triggered by sleepers that consider
nonlinear lateral soil resistance.

The innovative aspect of this study is the nonlinear pipe–soil interaction model that
is incorporated into the governing equations. In previous published studies about lateral
buckling triggered by sleepers, the lateral soil resistance, f (w2), is assumed to be constant.
However, in this study, this function is nonlinear and it includes the effect of breakout
resistance. This is due to the fact that in practice, pipe–soil interactions are nonlinear.

2. Mathematical Modelling

To avoid rogue buckles along subsea pipelines, buckle-initiation techniques, such as
installing sleepers along the pipeline, are usually employed to trigger the pipeline to buckle
in a controlled way at the predesignated location. For a pipeline laid on a sleeper and
subjected to a temperature difference T0, the axial compressive force is accumulated. The
axial compressive force, P0, is expressed as

P0 = EAαT0 (1)

where E is the elastic modulus, A is the cross-sectional area of the pipeline, and α is the
coefficient of linear thermal expansion.

When P0 is larger than the critical value, lateral buckling can be triggered at sleeper.
The configuration and load distribution of lateral buckling are illustrated in Figure 1. From
Figure 1a, it is clear that part of the pipe segment within −l1 ≤ x ≤ l1 is uplifted by the
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sleeper. In −l1 ≤ x ≤ l1, the soil resistances are zero. However, there are concentrated
contact forces Fs between pipeline and sleeper at the sleeper and Ft between the pipe and
seabed at the end of the suspended section, respectively. The vertical configuration of the
pipeline laid on a sleeper was solved by Wang et al. [26]. From their derivation, Fs and Ft
can be expressed as

Fs =
4
3

Wpipel1 and Ft =
1
3

Wpipel1 (2)

where Wpipe is the submerged weight per unit length and l1 is the half-length of the free
span, solved by

l1 = 4

√
72EIvom

Wpipe
(3)

where I is the moment of inertia and vom is the sleeper height. Therefore, the value of l1 can
be obtained by Equation (3) when vom is specified. Furthermore, Fs and Ft can be solved.
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Figure 1. Configuration and load distribution. (a) Vertical plane. (b) Horizontal plane.

After the pipeline buckles, additional pipe coming from the thermal expansion is fed
into the buckled section. Therefore, the axial force reduces partially due to the release
of axial strain (see Figure 2). The axial force within the suspended region −l1 < x < l1,
denoted by P, is constant. At x = ±l1, there is a jump in axial force with an amplitude of
fAt induced by Ft. Within the region where the pipeline makes contact with the seabed,
the axial force increases because of the restraint of axial soil resistance. The axial force will
reach P0 at x = ±ls. From Figure 2, the axial force distribution P(x) is

P(x) =
{

P (0 ≤ x < l1)
P + fAt + fA(x− l1) (l1 ≤ x ≤ ls)

(4)

where fA = µAWpipe is the axial soil resistance per unit length and µA is the axial friction
coefficient. The force fAt = µAFt is induced by Ft.
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Figure 2. Axial compressive force distribution.

The axial force at x = ls is

P(ls) = P0 = P + fAt + fA(ls − l1) (5)

Linear beam theory is used to simulate pipeline buckling. Thus, the equilibrium
equations governing lateral deformation are [27]:{

EI d4w1
dx4 + P d2w1

dx2 = 0 (0 ≤ x < l1)

EI d4w2
dx4 + P(x) d2w2

dx2 = − f (w2) (l1 ≤ x ≤ l2)
(6)

where w1 and w2 are lateral deflections, EI is bending stiffness, and f (w2) is the nonlinear
lateral soil resistance determined by the nonlinear pipe–soil interaction model, as shown
in Figure 3. Here, the variation in the axial force within the buckled region l1 ≤ x ≤ l2 is
ignored when solving lateral deformations. This assumption is acceptable [26,28].
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Here, the nonlinear pipe–soil interaction model proposed by Chatterjee et al. [29] is
employed. It can simulate breakout resistance and is given by

µ =
w
|w|

(
µbrk

(
1− e−a1(

|w|
D )

a2
)
+ (µres − µbrk)

(
1− e−a3(

|w|
D )

a4
))

(7)

where µ, µbrk and µres are the equivalent friction coefficients, and D is the external diameter
of the pipeline. The quantities f (w) = µWpipe, Fbrk = µbrkWpipe and Fres = µresWpipe are,
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therefore, respectively, the nonlinear lateral soil resistance, the breakout resistance, and the
residual resistance. The value of the coefficient a3 in [29] is given as

a3 = a5

(Wpipe

Vmax

)
+ a6 (8)

where Wpipe is the weight of the pipe and Vmax is the vertical bearing capacity. The values
of a5 and a6 are calculated by

a5 = 8.2
vinit
D
− 4.9, a6 = −5.8

vinit
D

+ 4.5 (9)

where vinit is the initial embedment of the pipe into the soil. In [29], a1 = 25 and a4 = 1.5 are
employed, but a2 = 1 is used here in order to have a finite linear resistance, which is
physically realistic. Vmax = 5Wpipe and vinit = 0.3D are adopted so that a3 = 2.272, and set
µres =0.5.

Due to symmetry, half a pipeline is considered. The slope of the deflection at x = 0 is
zero, while the shear force fow = µsFs/2 at x = 0 is induced by the friction force µsFs. Here,
µs is the friction coefficient between pipeline and sleeper. The displacement, slope, and
moment at x = l2 are also zero. The boundary conditions at x = 0 and x = l2 are

dw1
dx (0) = 0

d3w1
dx3 (0) + fow

EI = 0
w2(l2) = 0
dw2
dx (l2) = 0

d2w2
dx2 (l2) = 0

(10)

The displacement, slope, and bending moment must be continuous at the touchdown
point x = l1, while there is a jump in shear force with an amplitude of ft = µresFt at x = l1
induced by the force Ft. Thus, additional conditions at x = l1 are

w1(l1) = w2(l1)
dw1
dx (l1) =

dw2
dx (l1)

d2w1
dx2 (l1) =

d2w2
dx2 (l1)

d3w1
dx3 (l1) =

d3w2
dx3 (l1) +

ft
EI

(11)

With Equations (10) and (11), the nonlinear governing equations are solved numeri-
cally by the shooting method [30]. Once the lateral deflections are known, the geometric
shortening u2 is obtained by

u2 =
1
2

∫ l1

0

(
dw1

dx

)2
dx +

1
2

∫ l2

l1

(
dw2

dx

)2
dx (12)

The following compatibility condition is employed to link the lateral deflection and
the thermal loading induced deflection:

u1 = u2 (13)

where u1 is thermal expansion in 0 < x < ls.
We have

u1 =
∫ ls

0

∆P(x)
EA

dx (14)

where ∆P(x) = P0 − P(x).
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Thus, this leads to

u1 =
fA(ls − l1)

2

2EA
+

(P0 − P)l1
EA

(15)

The following formula is obtained by combining Equations (5), (13), and (15).

ls =

√
1
3

l2
1 +

2EAu2

fA
(16)

With Equations (5) and (16), one finally obtains

P0 = P + fA

(√
1
3

l2
1 +

2EAu2

fA
− 2

3
l1

)
(17)

The bending moment is obtained by

M = EI
d2w
dx2 (18)

where w stands for w1 or w2, and the bending stress σM is

σM =
MD
2I

(19)

The maximum stress is
σm = σP + σMm (20)

where the stresses σP and σMm, induced by axial force P and maximum bending moment
Mm, respectively, are {

σP = P
A

σMm =
∣∣∣MmD

2I

∣∣∣ (21)

3. Results

The mathematical model is validated by comparing it with the analytical solution
in [26], and the discrepancy between them is discussed. Next, the influence of µbrk, vom and
µs is analysed. The results are obtained by employing the analytical formulation developed
in Section 2 and taking the parameters in Table 1.

Table 1. Parameters.

Parameter Value Unit

External diameter D 323.9 mm
Wall thickness t 12.7 mm

Elastic modulus E 206 GPa
Steel density ρ 7850 kg/m3

Coefficient of thermal expansion α 1.1× 10−5 ◦C
Axial friction coefficient µA 0.5 —

One should note that only the analytical solutions in Figures 4 and 5 come from [26],
which is used to validate the numerical results obtained in this study. In [26], the lateral
soil resistance is assumed to be constant, while in the present study, nonlinear lateral soil
resistance is considered. Moreover, in [26], analytical solutions are obtained due to the
assumption of constant lateral soil resistance. In the present study, because the lateral
soil resistance is nonlinear, Equation (6) cannot be solved analytically. Thus, the shooting
method is used to solve Equation (6) to obtain the numerical results.
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Figure 5. Error analysis. (a) wm. (b) σm. (c) P. (d) l2 (µbrk = 0.5, vom = 0.1 m, µs = 0.1) [26].

3.1. Validation

The solutions obtained in this study were validated by comparing them with the analyti-
cal solutions in [26], as shown in Figure 4. An error analysis is shown in Figure 5. In Figure 4,
the analytical solutions are obtained by using the formulas derived in Wang et al. [26] with
constant lateral soil resistance. To compare with the analytical solutions, the numerical
solutions shown in Figure 4 are obtained by assuming µbrk = 0.5. For µbrk = 0.5, the non-
linear pipe–soil interaction model is reduced to elastic-plastic (see Figure 3). The numerical
solutions for µbrk = 2.0 are also illustrated in Figure 4 to show the influence of the nonlinear
pipe–soil interaction.

In Figure 4, there are two branches for each solution, which are denoted as m-b and
m-c. The temperature difference at m, i.e., Tm, is called the minimum critical temperature
difference, since solutions only exist for T0 > Tm.

From Figure 4, the numerical solutions for µbrk = 0.5 are in good agreement with the
analytical solutions, except that there is a slight discrepancy between them around Tm. This
discrepancy comes from the difference in mobilization distance. For the rigid-plastic model,
the resistance is always constant (see Figure 3). For the elastic-plastic model, the lateral soil
resistance increases from zero to residual resistance gradually (see Figure 3).

In Figure 4, the discrepancy between the analytical and numerical solutions reduces as
the temperature difference increases. The reason for this is that the displacement amplitude
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increases along with the temperature difference, so that more pipe sections fall into the
region of constant lateral soil resistance for numerical solutions.

A more detailed error analysis is illustrated in Figure 5. Figure 6 shows that the
mobilization distance is controlled by the parameter a1. The mobilization distance is the
distance that the lateral resistance reaches µbrk. In Figure 6, µbrk = µres = 0.5, so the
mobilization distance in Figure 6 is the distance at which µ reaches 0.5. The elastic-plastic
model approaches the rigid-plastic model for larger a1, since the mobilization distance
becomes smaller. In Figure 5, the discrepancy between the analytical and numerical
solutions becomes smaller for larger a1. In Figures 4 and 5, the discrepancy in half-buckled
length l2 is larger than in the other parameters. This is because the deflection at the ends
of the buckled section is small, and it is affected by the mobilization distance. For the
remaining parameters, the discrepancy between the analytical and numerical solutions is
small enough.
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Figure 6. Pipe–soil interaction model with different a1.

In Figure 4a, Tm becomes larger when the nonlinear pipe—soil interaction model is
considered, which means that lateral buckling can only be triggered at higher temperature
differences. At the same temperature difference, both wm and l2 become smaller when
considering the nonlinear pipe–soil interaction model (see Figure 4a,e). Thus, the use of
an additional pipe to create lateral deflection, which comes from thermal expansion, also
reduces (see Figure 4d), so that ls decreases, as shown in Figure 4f. However, P within the
buckled section becomes larger due to the restriction of the breakout resistance. Moreover,
at the same temperature difference, the maximum stress σm becomes larger when nonlinear
pipe–soil interaction is considered. This means that the maximum stress is underestimated
when assuming the lateral soil resistance to be constant.

3.2. Parametric Study
3.2.1. Influence of µbrk

The influence of µbrk on the buckled configuration, post-buckling behaviour, and
minimum critical temperature difference Tm is shown in Figures 7–9, respectively.
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Figure 7. Influence of µbrk on configurations. (a) Deformed shapes. (b) Bending stresses (vom = 0.1 m,
µs = 0.1, T0 = 40 ◦C).

In Figure 7, the dashed curves are the pipe sections in contact with the seabed, and the
solid curves are the pipe sections suspended due to the existence of the sleeper. In Figure 7a,
both the touchdown and suspended pipe segments shrink with larger µbrk. In Figure 7b,
there are two extrema of bending stress in the positive direction. Another three extrema of
bending stress occur around the sleeper. One local minimum (absolute value) of bending
stress appears at the sleeper, while there are two other local maxima (absolute value) of
bending stress close to the sleeper. The occurrence of the local minimum (absolute value) of
bending stress at the sleeper is induced by the friction force between the pipeline and the
sleeper. For each specific µbrk, the maximum bending stress is located at the local maxima
(absolute value) of bending stress close to the sleeper. For larger µbrk, all the extrema of
bending stress in both positive and negative directions become larger.

In Figure 8a, Tm is larger for larger µbrk. A more detailed analysis on the influence of
µbrk on Tm is shown in Figure 9, which shows that Tm increases with increasing µbrk for
specific values of vom and µs, and the increasing rate of Tm reduces with the increase in µbrk.
In Figure 9a, under the same µbrk, Tm is larger for smaller vom. The increasing rate of Tm
with increasing µbrk is also larger for smaller vom. The reason is that since there are less
length of suspended pipeline and larger length of touchdown pipeline with the smaller
vom, the breakout resistance has a larger influence on the initiation of lateral buckling. In
Figure 9b, under the same µbrk, Tm becomes larger for larger µs. The increase in the rate of
Tm along with the increasing µbrk remains almost the same for different values of µs. The
reason for this is that the friction force between the pipeline and the sleeper becomes larger
for larger µs; however, the value of µs has no influence on the lengths of the suspended or
touchdown pipeline segments.

In Figure 8a,e, both the displacement amplitude wm and the half-buckled length l2
increase with the increasing T0, and need more thermal expansion u1 to form the buckled
deflection (see Figure 8d). Thus, larger ls is required for larger T0, as shown in Figure 8f.
The maximum stress also increases with increasing T0 (see Figure 8b) since large deflection
occurs; however, the axial force P reduces with increasing T0 (see Figure 8c).

In Figure 8a,e, at a specific temperature difference, both wm and l2 become smaller for
larger µbrk. The reason for this is that since the breakout resistance is larger for larger µbrk,
the pipeline is subjected to greater lateral soil resistance. The deflection shrinks with larger
µbrk, as shown in Figure 7a. Therefore, both u1 and ls become smaller with larger µbrk at
the same temperature difference (see Figure 8d,f).
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Figure 8. Influence of µbrk on the buckling behaviour. (a) wm. (b) σm. (c) P. (d) u1. (e) l2. (f) ls
(vom = 0.1 m, µs = 0.1).
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Figure 9. (a) Influence of µbrk on Tm with different vom (µs = 0.1). (b) Influence of µbrk on Tm with
different µs. (vom = 0.1 m).

However, P becomes larger with larger µbrk (see Figure 8c). The reason for this is that
the reduction in the axial force reduces, since the greater breakout resistance restricts the
deflection of the buckled pipeline. Moreover, σm along the buckled pipeline becomes larger
for larger µbrk (see Figure 8b). After considering the nonlinear pipe–soil interaction model,
both Tm and σm in the pipeline became larger. When the nonlinear pipe–soil interaction
model is not included, lateral buckling may fail to be triggered by the sleeper, and the
maximum stress along the buckled pipeline may exceed the allowable stress in the design.

3.2.2. Influence of vom

The influence of vom on the buckled configuration, post-buckling behaviour, and
minimum critical temperature difference Tm are shown in Figures 10–12, respectively.
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Figure 11. Influence of vom on the buckling behaviour. (a) wm. (b) σm. (c) P. (d) u1. (e) l2. (f) ls
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Figure 12. (a) Influence of vom on Tm with different µbrk (µs = 0.1). (b) Influence of vom on Tm with
different µs (µbrk = 2.0).

From Figure 10a, it is clear that the length of the suspended pipe segment becomes
larger with larger sleeper heights, vom. The deflection of the buckled pipeline enlarges
with larger vom. Because the soil resistance for the suspended pipeline is zero, the buckled
pipeline has less restriction from the seabed foundation with larger vom. The deflection of
the buckled pipeline enlarges with larger vom, but both the local minimum and the local
maximum (absolute value) of the bending stress become smaller with larger vom, as shown
in Figure 10b. This is because the deflection of the buckled pipeline is more benign with
larger vom.

In Figure 11a, Tm becomes smaller with larger vom. Figure 12 illustrates the influence
of vom on Tm in detail. In Figure 12, Tm decreases with increasing vom for specific values
of µbrk and µs, and the decreasing rate of Tm reduces with increasing vom. In Figure 12a,
under the same vom, Tm becomes larger for larger µbrk. The influence of µbrk on Tm becomes
smaller for larger vom, since the length of suspended pipeline with zero soil resistance is
greater. In Figure 12b, under the same vom, Tm is larger with larger µs. The decreasing rate
of Tm with increasing vom becomes smaller with larger µs. The influence of µs on Tm is
larger with larger vom. The reason for this is that the concentrated contact force between the
pipeline and the sleeper becomes larger with larger vom, so that the friction force between
the pipeline and the sleeper becomes larger with larger vom. Therefore, an effective way to
reduce Tm is to increase the sleeper height vom; however, the corresponding weakness is
that the suspended pipeline will be longer, which may lead to vortex-induced vibration.

In Figure 11a,e, at a specific temperature difference, both wm and l2 become larger with
larger vom. This is because the length of the suspended pipeline with zero soil resistance
increases with increasing vom, as shown in Figure 10a. There is less restriction from the
seabed foundation with larger vom. Due to the larger deflection with larger vom, the
requirement of additional pipes to feed into the buckled section increases, which creates
the need for more thermal expansion (see Figure 11d) and a longer feed-in region (see
Figure 11f). The axial force P becomes smaller with larger vom, since a larger deflection
occurs to release more axial force, as shown in Figure 11c. The maximum stress σm along
the buckled pipeline reduces with larger µbrk (see Figure 11b).

3.2.3. Influence of µs

The influence of µs on the buckled configuration, post-buckling behaviour, and mini-
mum critical temperature difference Tm are shown in Figures 13–15, respectively.
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Figure 13. vom on configurations. (a) Deformed shapes. (b) Bending stresses (µbrk = 2.0, vom = 0.1 m,
T0 = 40 ◦C).

In Figure 13a, the deflection of the buckled pipeline shrinks with larger µs. This is
because the friction force between the pipeline and the sleeper becomes larger with larger
µs, which restricts the deflection of the buckled pipeline. In Figure 13b, the extrema of the
bending stress in the positive direction becomes slightly larger with larger µs. However,
both the local minimum and the local maximum (absolute value) of the bending stress
close to the sleeper in the negative direction become smaller with larger µs, as shown
in Figure 13b. With larger µs, the difference between the local minimum and the local
maximum of the bending stress close to the sleeper becomes larger. Taking µs = 0.4 as an
example, it is clear that the local minimum (absolute value) of the bending stress is smaller
than the local maximum (absolute value) of the bending stress.

In Figure 14a, Tm is larger with larger µs. The effect of µs on Tm is illustrated in
Figure 15, with different values of µbrk and vom. In Figure 15, Tm increases with increasing
µs for specific values of µbrk and vom, and the increasing rate of Tm slightly reduces with
increasing µs. The friction force between the sleeper and the pipeline becomes larger with
larger µs, which makes it more difficult to trigger the lateral buckling. In Figure 15a, at the
same µs, Tm becomes larger with larger µbrk. The increasing rate of Tm with increasing µs is
similar for different values of µbrk. In Figure 15b, under the same µs, Tm becomes smaller
for larger vom. The increasing rate of Tm with increasing µs is larger for larger vom. The
influence of vom on Tm gradually reduces with increasing µs. Thus, the friction coefficient
between the sleeper and the pipeline µs should be carefully controlled. When the value of
µs is too large, such as µs = 0.6, Tm is barely affected by the sleeper height vom.

In Figure 14a,e, under a specific T0, both wm and l2 reduce with larger µs. This is
because, since the friction force between the sleeper and the pipeline becomes larger with
larger µs, the deflection of the buckled pipeline is restricted by the larger resistance between
the sleeper and the pipeline. Thus, the requirements of both u1 and ls decrease with larger
µs, as shown in Figure 14d,f. Due to the restriction of the larger friction force between
the sleeper and the pipeline, the axial force P increases with increasing µs, as shown in
Figure 14c. However, the maximum stress σm along the buckled pipeline reduces with
larger µs (see Figure 14b), which is induced by the decrease in the maximum bending stress
(absolute value) along the buckled pipeline.
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Figure 14. Influence of µs on the buckling behaviour. (a) wm. (b) σm. (c) P. (d) u1. (e) l2. (f) ls
(µbrk = 2.0, vom = 0.1 m).
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Figure 15. (a) Influence of µs on Tm with different µbrk (vom = 0.1 m). (b) Influence of µs on Tm with
different vom (µbrk = 2.0).

4. Conclusions

Through a consideration of the nonlinear pipe–soil interaction model, a mathematical
model was proposed to simulate the lateral buckling of subsea pipelines triggered by a
sleeper. The model was solved numerically and validated by comparing its predictions with
the analytical solutions from [26]. The discrepancy between the numerical and analytical
solutions was analysed through the discussion of the mobilization distance. A detailed
parametric analysis was presented to show the effect of the breakout resistance, sleeper
height, and sleeper friction coefficient on the buckling behaviour of a pipeline laid on a
sleeper. The conclusions are:

(i) The discrepancy between the numerical and analytical solutions comes from the
difference between the elastic-plastic and rigid-plastic pipe–soil interaction models,
which reduces with decreasing mobilization difference in the elastic-plastic pipe–soil
interaction model.

(ii) When the nonlinear pipe–soil interaction model is taken into account, both the dis-
placement amplitude and the buckled length reduce due to the occurrence of breakout
resistance, which decreases further with increasing breakout resistance. However,
both the axial force and the maximum stress, along with the buckled pipeline, increase,
and increase further with increasing breakout resistance.

(iii) The deflection of the buckled pipeline enlarges as the sleeper height increases and
shrinks as the sleeper friction coefficient increases. The axial force decreases with
increasing sleeper height and increases with increasing sleeper friction coefficient.
Moreover, the maximum stress along the buckled pipeline decreases with increasing
sleeper height and with decreasing sleeper friction coefficient.

(iv) The minimum critical temperature difference increases with increasing breakout resis-
tance and sleeper friction coefficient, and decreases with increasing sleeper height. The
influence of the breakout resistance on the minimum critical temperature difference
gradually reduces with increasing sleeper height. Moreover, the sleeper height has
little effect on the minimum critical temperature difference when the sleeper friction
coefficient is large enough.

In conclusion, it is better to incorporate the nonlinear pipe–soil interaction model into
the mathematical model when simulating the lateral buckling of subsea pipelines triggered
by a sleeper, since both the minimum critical temperature difference and the maximum
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stress increase. Moreover, both the sleeper height and the sleeper friction coefficient should
be carefully selected and controlled.
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