
����������
�������

Citation: Gao, J.; Zhang, J.; Liu, C.; Li,

X.; Peng, Y. Camera-LiDAR

Cross-Modality Fusion Water

Segmentation for Unmanned Surface

Vehicles. J. Mar. Sci. Eng. 2022, 10,

744. https://doi.org/10.3390/

jmse10060744

Academic Editors: Mai The Vu,

Hyeung-Sik Choi

Received: 2 May 2022

Accepted: 26 May 2022

Published: 28 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Camera-LiDAR Cross-Modality Fusion Water Segmentation for
Unmanned Surface Vehicles
Jiantao Gao , Jingting Zhang, Chang Liu, Xiaomao Li * and Yan Peng

Research Institute of USV Engineering, School of Mechatronic Engineering and Automation, Shanghai University,
Shanghai 200444, China; summersunday@shu.edu.cn (J.G.); zjt322@shu.edu.cn (J.Z.);
liuchang123@shu.edu.cn (C.L.); pengyan@shu.edu.cn (Y.P.)
* Correspondence: lixiaomaosia@163.com

Abstract: Water segmentation is essential for the autonomous driving system of unmanned surface
vehicles (USVs), which provides reliable navigation for making safety decisions. However, existing
methods have only used monocular images as input, which often suffer from the changes in illu-
mination and weather. Compared with monocular images, LiDAR point clouds can be collected
independently of ambient light and provide sufficient 3D information but lack the color and texture
that images own. Thus, in this paper, we propose a novel camera-LiDAR cross-modality fusion water
segmentation method, which combines the data characteristics of the 2D image and 3D LiDAR point
cloud in water segmentation for the first time. Specifically, the 3D point clouds are first supplemented
with 2D color and texture information from the images and then distinguished into water surface
points and non-water points by the early 3D cross-modality segmentation module. Subsequently, the
3D segmentation results and features are fed into the late 2D cross-modality segmentation module
to perform 2D water segmentation. Finally, the 2D and 3D water segmentation results are fused for
the refinement by an uncertainty-aware cross-modality fusion module. We further collect, annotate
and present a novel Cross-modality Water Segmentation (CMWS) dataset to validate our proposed
method. To the best of our knowledge, this is the first water segmentation dataset for USVs in
inland waterways consisting of images and corresponding point clouds. Extensive experiments on
the CMWS dataset demonstrate that our proposed method can significantly improve image-only-
based methods, achieving improvements in accuracy and MaxF of approximately 2% for all the
image-only-based methods.

Keywords: water segmentation; semantic segmentation; image segmentation; LiDAR point cloud;
deep learning; unmanned surface vessel

1. Introduction

Unmanned surface vehicles (USVs) are boats or ships operating autonomously on the
water’s surface without a crew. They have been widely used in recent years to perform var-
ious laborious and dangerous offshore operations, such as search and rescue operations [1],
hydrographic surveying and charting [2], water quality monitoring [3] and other tasks.
In particular, the application of USVs in inland waterways is closely related to human life
and has great potential value, such as the construction of an autonomous transportation
system for inland waterways [4]. In its autonomous driving system, stable and accurate
water segmentation plays a crucial role, which provides reliable navigation for making
safety decisions [5].

Over the years, water segmentation based on monocular images [6–13] has made
significant progress. It only takes monocular images as input and classifies the images into
the water surface and non-water region at the pixel level. Despite substantial progress, this
method is adversely affected by changes in illumination and weather because the image
quality is influenced by ambient light. When visual noise occurs, such as variable lighting,
overexposure and blurring, these image-only-based methods perform poorly.
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Unlike monocular images, LiDAR point clouds can be collected under various ambient
light conditions and provide sufficient 3D information. However, these data have limita-
tions, i.e., point clouds are sparse and lack the color and texture information of images.
Therefore, the fusion of the dense RGB semantic information in images with the sparse 3D
information from LIDAR point clouds to improve perception capability is an important
topic in academia and industry [14,15].

Different from the applications in unmanned ground vehicle (UGV) tasks [14–17], Li-
DAR has unique advantages in the water segmentation task for USVs in inland waterways.
As shown in Figure 1, the LiDAR pulsed laser light will not be reflected on most water sur-
faces, only on non-water surfaces and very few water surfaces. By exploiting this inherent
property of LiDAR, the false positive water segmentation results of image-based methods
can be reduced with the incorporation of the LiDAR point clouds. Based on this idea, we
proposed a novel Camera-LiDAR cross-modality fusion water segmentation method for
USVs in inland waterways, which cleverly combines the data characteristics of the 2D
image and 3D LiDAR point cloud in water segmentation for the first time. Specifically, we
enhance the 3D point cloud by using 2D color and texture information and distinguish
point clouds into water surface points and non-water points by the early 3D cross-modality
segmentation module. Subsequently, the 3D segmentation results and features are fed into
the late 2D cross-modality segmentation module to perform image-based water segmenta-
tion. This method minimizes false positive water segmentation results. Finally, the 2D and
3D water segmentation results are fused for further refinement by an uncertainty-aware
cross-modality fusion module.

(d) Our Segmentation Results 

(a) Monocular 2D Image (b) LiDAR 3D Point Cloud

(c) Camera-LiDAR Fused Data

Figure 1. Monocular 2D image (a) and the corresponding LiDAR 3D Point Cloud (b). The projection
of the point cloud onto the 2D image (c) shows that most points (blue points) are reflected by non-
water surfaces, whereas few points (red points) are reflected by the water surface due to near-shore
reflection. This inherent property of LiDAR is exploited in our proposed method to reduce the false
positive results in the image-only-based method and achieve high-accuracy water segmentation (d).

Publicly available datasets are essential for validating deep learning methods and
conducting a fair comparison between different algorithms. However, existing water
segmentation datasets [9,13,18] only have annotated image data but no corresponding
LiDAR point cloud data, making it impossible to validate our method and compare it with
others. Thus, we collect, annotate and present a novel Cross-Modality Water Segmentation
dataset (CMWS dataset) in this paper. To the best of our knowledge, this is the first water
segmentation dataset for USVs in inland waterways that has both images and correspond-
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ing point clouds. We conduct extensive experiments on this CMWS dataset. The results
demonstrate that the proposed camera-LiDAR cross-modality fusion water segmentation
method can significantly improve image-only-based methods. It is worth noting that all
image-only-based methods achieve stable improvements in accuracy and MaxF.

The main contributions of this paper are as follows:

1. We propose a novel camera-LiDAR cross-modality fusion water segmentation method
to combine the 2D image and 3D point cloud characteristics. To the best of our
knowledge, we are the first to combine 3D LiDAR point cloud and image data to
improve the water segmentation performance;

2. A novel CMWS dataset is proposed to validate the proposed approach. This is the
first water segmentation dataset with images and corresponding point clouds for
USVs in inland waterways;

3. Extensive experiments are conducted on the CMWS datasets. The results show that
the proposed camera-LiDAR cross-modality fusion water segmentation method sig-
nificantly improves image-only-based methods, achieving improvements in accuracy
and MaxF of approximately 2% for all the image-only-based methods.

The rest of this paper is organized as follows. Section 2 reviews studies on water
segmentation. Section 3 provides the details of the proposed camera-LiDAR cross-modality
fusion water segmentation method. In Section 4, the CMWS dataset is described, and the
experimental results on the CMWS dataset are present. The conclusions are provided in
Section 5.

2. Related Work
2.1. Water Segmentation Methods for USVs

Water segmentation is a fundamental problem in the USV perception system. The aim
is to classify the images into the water surface and non-water regions at the pixel level.
Previous methods mainly relied on hand-craft features, such as decision forests [6], support
vector machines [7] and expectation-maximization algorithms [8]. Recently, semantic seg-
mentation based on deep learning has been developed rapidly. Wang et al. [19] proposed a
novel high-resolution segmentation network (HRNet) to maintain high-resolution represen-
tations throughout the whole process for better discrimination. Cheng et al. [20] formulated
semantic segmentation as a mask classification problem and combined semantic-level
segmentation with instance-level segmentation to achieve better segmentation results. Mo-
han et al. [21] proposed an efficient panoptic segmentation network based on the semantic
segmentation task. In addition, the Transformer in Natural Language Processing (NLP)
was applied to the semantic segmentation task by Chen et al. [22]. Since deep learning has
achieved excellent performance on the semantic segmentation task, some studies attempted
to use deep learning for water segmentation in recent years. Lopez-Fuentes et al. [23] were
the first to apply deep learning to water segmentation for USV perception, using fully
convolutional networks (FCNs) [11] for semantic segmentation. Taipalmaa et al. [9] adapted
the deep learning segmentation algorithm KittiSeg [10] to water segmentation. Moreover,
a lightweight FCN [11] architecture was proposed and evaluated in [9] for near real-time ap-
plications. Wenqiang et al. [12] proposed a semi-supervised deep learning method for water
segmentation for USVs in a dynamic navigation environment. Gui et al. [24] proposed an
enhanced UNet [25] by model channel pruning for real-time water segmentation for USVs.
Yuwei et al. [13] applied Deeplab V3+ [26] for water segmentation in their proposed water
segmentation benchmark.

Nevertheless, existing methods have only used monocular images as input, which
are adversely affected by changes in illumination and weather. In contrast to monocular
cameras, LiDAR is an active sensor that works independently of ambient light and captures
accurate 3D information. Therefore, we propose a novel camera-LiDAR cross-modality
fusion deep learning method for water segmentation.



J. Mar. Sci. Eng. 2022, 10, 744 4 of 17

2.2. Water Segmentation Datasets for USVs

Publicly available datasets are crucial to validate deep learning methods and for train-
ing deep convolutional neural networks (CNNs). They provide a fair comparison between
different algorithms and promote breakthroughs. Various datasets for UGVs have been
released (e.g., KITTI [27], Cityscapes [28], Nuscenes [29] and Waymo [30]), and substantial
progress has been made using these datasets. Furthermore, many datasets for Unmanned
Aerial Vehicles (UAVs) (e.g., Stanford Drone Dataset [31], Okutama-Action dataset [32],
UAVDT [33] and MOR-UAV [34]) have been released in the past few years, contributing
to the development of UAVs. In contrast, there are few datasets for USVs, especially for
water segmentation. The Tampere-WaterSeg dataset [9] consists of 600 manually labeled
images selected from videos recorded by a camera mounted on a USV. The MaSTr1325
dataset [18] contains 1325 diverse images captured over a two-year period with a real USV,
covering a range of realistic conditions encountered in coastal surveillance tasks. USVIn-
land dataset [13] released a more challenging water segmentation benchmark containing
700 images captured under different weather or lighting conditions in inland waterways.

More importantly, existing water segmentation datasets [9,13,18] only have annotated
image data, but no corresponding LiDAR point cloud data, making it impossible to validate
our method and compare it with others. Thus, we collect, annotate and present a novel
Cross-modality Water Segmentation (CMWS) dataset in this paper. To the best of our
knowledge, this is the first water segmentation dataset for USVs in inland waterways that
has both images and corresponding point clouds. The CMWS dataset contains a total of
3018 images and point cloud data, which is the largest water segmentation dataset. We
used this CMWS dataset to conduct extensive experiments and perform fair comparisons
of our proposed method and other image-only-based methods.

3. Method
3.1. Limitations of the Current Approaches

Recently, water segmentation for USVs has achieved promising performance. Existing
methods [6–13] only use monocular images as input, so they heavily depend on the image
quality of the input images. However, monocular images are passively collected relying on
ambient light and therefore are adversely affected by changes in illumination and weather.
As a result, these image-only-based methods perform poorly in the presence of visual noise,
such as variable lighting, overexposure and blurring, as shown in Figure 2. Moreover, due
to the water reflections, the visual discrimination between the water surface and the shore
is also a challenge for image-based methods.

In contrast to the passive acquisition of images, LiDAR point clouds are actively
acquired by emitting pulsed laser light and are not affected by lighting conditions. However,
these data also have limitations, i.e., point clouds are sparse and lack the color and texture
information of images. Therefore, in this paper, we proposed a novel camera-LiDAR
cross-modality fusion water segmentation method, which combines the data characteristics
of the 2D image and 3D LiDAR point cloud in water segmentation for the improvement
of performance. Specifically, as shown in Figure 3, the proposed camera-LiDAR cross-
modality fusion method consists of three parts: an early 3D cross-modality segmentation
module, a late 2D cross-modality fusion module and an uncertainty-aware cross-modality
prediction fusion module. We use the early 3D cross-modality segmentation module
to enhance the 3D point cloud with 2D texture information and segment them into the
surface and non-surface points. Subsequently, the late 2D cross-modality fusion module
is utilized to integrate the 3D segmentation information and 2D image data for precise
water segmentation. Finally, the 2D and 3D water segmentation results are fused for further
refinement by the uncertainty-aware cross-modality fusion module.
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(a) Monocular 2D images (b) Segmentation results of UNet (c) Ground-truths

Figure 2. The water segmentation results obtained from an image-only-based method (UNet) in
various scenarios. This method typically performs poorly due to overexposure, reflective surfaces,
other visual noise and near-shore.
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Figure 3. Overall framework of the proposed method. The 3D point clouds are first supplemented
with 2D color and texture information from the images and then distinguished into water surface
points and non-water points by the early 3D cross-modality segmentation module. Subsequently,
the 3D segmentation results and features are fed into the late 2D cross-modality segmentation
module to perform 2D water segmentation. Finally, the 2D and 3D water segmentation results are
fused to refine their false positives (represented by the red area or points in the blue circles) by an
uncertainty-aware cross-modality fusion module.
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3.2. Early 3D Cross-Modality Segmentation Module

Although most points in point clouds are mostly reflected by non-water surfaces,
some are reflected by the water surface due to near-shore reflections. Therefore, we first
perform 3D semantic segmentation to classify the point clouds into water surface points
and non-water surface points by using 3D geometric information. This aims at providing
more accurate 3D priors for subsequent 2D water segmentation. However, although LiDAR
point clouds can be collected independently of ambient light and provide sufficient 3D
information, they have limitations, i.e., they are typically sparse and lack the rich color
and texture information of images. Thus, we first enhance the 3D point cloud with 2D
color and texture information using a 2D-to-3D projection module. We then feed the
enhanced point cloud into the 3D segmentation network to distinguish between surface
and non-surface points.

3.2.1. 2D-to-3D Projection Module

This module aims at supplementing the 3D point cloud with 2D color and texture
information. The details are presented in Figure 4. Given a monocular image I ∈ RH×W×3

and its corresponding LiDAR point cloud P = {pi}N
i=1 ∈ RN×3, the monocular image I is

used as input in a 2D feature extraction network. Image-wise 2D features F2D ∈ RH×W×DI

with color and texture information are extracted in the hidden layer. Next, based on the
camera’s intrinsic K ∈ R3×4 and extrinsic matrices T ∈ R4×4, the projection of each 3D
point pi = (xi, yi, zi) ∈ R3 to a pixel p̂i

(
ix, iy

)
∈ R2 on the image plane is defined as:

[
ix, iy, 1

]T
=

1
zi
× K× T × [xi, yi, zi, 1]T , (1)

The 2D–3D mapping is represented as:

Mimg =
{(
bixc,

⌊
iy
⌋)}N

i=1 ∈ RN×2, (2)

where b·c is the floor operation.
According to the 2D–3D mapping, we extract a point-wise 2D feature F̂2D ∈ RN×DI

from the original feature map F2D if the pixel in the feature map is included in Mimg.
Next, we fuse the projected point-wise 2D feature F̂2D with the 3D point cloud coordinate
information P by concatenation to obtain the enhanced 3D point cloud.

CNN
K·T

2D-3D Mapping

2D Monocular Image

𝐼𝐼 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×3

3D LiDAR Point Cloud

𝑃𝑃 ∈ 𝑅𝑅𝑁𝑁×3

𝑁𝑁 × 𝐷𝐷𝑙𝑙

�𝐹𝐹2𝐷𝐷

Point-wise 2D Feature
Image-wise 2D Feature 

𝑁𝑁 × (3 + 𝐷𝐷𝑙𝑙)

Enhanced 3D Point Cloud

C

Figure 4. The details of 2D-to-3D projection module.
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3.2.2. 3D Segmentation Network

After acquiring the enhanced 3D point cloud, a 3D point cloud segmentation network
is employed to extract the point-wise 3D feature F3D ∈ RN×Dp and segment the points into
water and non-water points O3D ∈ RN×2. In this paper, we adopt the efficient and robust
3D segmentation network PointNet++ [35] for 3D semantic segmentation. As shown in
Figure 5, PointNet++ is composed of two parts: an encoder with set abstraction modules
and a decoder with feature propagation modules. The set abstraction modules sample
the farthest point in the given point cloud sets. These points are regarded as the center
of a sphere, and their neighbors are determined by the K-nearest neighbor (KNN) [36]
algorithm. Subsequently, PointNet [37] is used in the local regions to aggregate features.
The feature propagation modules interpolate the subsampled points and concatenate these
points with the point features from the set abstraction modules. These features are fed into
the PointNet network with a multilayer perceptron (MLP) for updating. Finally, an MLP
layer is adopted to classify the points into water and non-water points.

Per-point classification

𝑁𝑁2 Points in (𝑥𝑥,𝑦𝑦, 𝑓𝑓𝑓𝑓)

𝑁𝑁1 Points in (𝑥𝑥,𝑦𝑦, 𝑓𝑓𝑓𝑓𝑓)

𝑁𝑁 Points in (𝑥𝑥, 𝑦𝑦, 𝑓𝑓𝑓𝑓𝑓𝑓)

1.Interpolation
2.Concatenation
3.MLP feature update

1.Farthest point sampling
2.Grouping
3.PointNet feature extraction

Figure 5. The architecture of the PointNet++.

3.3. Late 2D Cross-Modality Segmentation Module

The early 3D cross-modality segmentation module provides the 3D feature and seg-
mentation result. We first project these priors into a 2D image plane and use them to enhance
the 2D image features by the 3D-to-2D projection module. Afterward, the enhanced image
features are fed into a 2D segmentation network to conduct 2D water segmentation.

3.3.1. 3D-to-2D Projection Module

As described in Section 3.2.1, the projection of each 3D point to the pixel image plane is
calculated based on the camera’s intrinsic and extrinsic matrices (i.e., the inverse operation
of 2D–3D mapping). We first transfer the 3D feature F3D ∈ RN×Dp and segmentation

result O3D ∈ RN×2 into 2D presentation F̂3D ∈ RH×W×(Dp+2) and use them to enhance the
2D image features by a Channel-Exchanging-Network (CEN) [19], as shown in Figure 6.
The CEN is a general multimodal fusion framework that does not require additional
parameters. It achieves multimodal fusion by dynamically exchanging feature channels of
different modalities. Specifically, the magnitude of the batch normalization (BN) scaling
factor is utilized to measure the importance of each channel and guide the channel exchange
when it is greater than a threshold value.
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Inverse Operation 
of 2D-3D Mapping

3D Feature & 3D Segmentation

𝐹𝐹3𝐷𝐷 ∈ 𝑅𝑅𝑁𝑁×𝐷𝐷𝑝𝑝 ; 𝑂𝑂3𝐷𝐷 ∈ 𝑅𝑅𝑁𝑁×2

Image-wise 3D Feature 2D Image Features

E

Enhance 2D Image Features
Channel-Exchanging-Network

Figure 6. The details of 3D-to-2D projection module.

3.3.2. 2D Segmentation Network

After using the 3D priors to enhance the 2D image features, we feed the enhanced
image features into the 2D segmentation network to conduct water segmentation. We
adopt the fast and classical UNet [25] as the 2D image segmentation network. As shown in
Figure 7, UNet is composed of two parts: a top-down encoder and a bottom-up decoder.
The encoder achieves further feature aggregation by reusing down-sampling blocks and
residual blocks, while the decoder implements segmentation prediction by reusing up-
sampling blocks and residual blocks. The down-sampling and up-sampling blocks are
implemented by a 2 × 2 convolution with stride 2. The output channels of the down-
sampling block are doubled, whereas those of the up-sampling block are reduced by
half. The residual blocks consist of multiple 3 × 3 convolutions with identity shortcut
connections [38]. Each convolution layer in the network is followed by BN and a rectified
linear unit (ReLU).

Skip Connection

Top-down Encoder Bottom-up Decoder

Figure 7. The architecture of the UNet.

It is worth noting that other 2D segmentation networks, such as FCN [11] and Deeplab
V3+ [26], can also be used and achieve stable improvements. Thus, our proposed method
is a plug-and-play framework that can be used to enhance most existing image-only-based
methods. More details are provided in Section 4.

3.4. Uncertainty-Aware Cross-Modality Prediction Fusion Module

Since it is difficult to perform water segmentation in 2D in some scenes but very
easy in 3D, a reasonable fusion of the 2D and 3D segmentation results can optimize the
segmentation performance. Therefore, we propose an uncertainty-aware cross-modality
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prediction fusion module to further refine the 2D and 3D water segmentation predictions
to exploit the complementary properties of 2D images and 3D point clouds. In this module,
the 2D and 3D water segmentation predictions are transformed into 3D and 2D dimensions,
respectively, and fused based on the uncertainties in the different dimensions.

3.4.1. 2D Water Segmentation Refinement

For the 2D image water segmentation, we project the 3D segmentation result O3D ∈
RN×2 into the 2D domain Ô3D ∈ RH×W×2 using the 3D-to-2D projection module proposed
in Section 3.2.1, and we densify the image-wise 3D results by dilation. Subsequently, a 2D
uncertainty-aware weight module is used to calculate the uncertainty weight of the image-
wise 2D and 3D segmentation results. The 2D uncertainty-aware weight module is inspired
by the convolutional block attention module (CBAM) [39]. It is composed of two parts:
the domain weight and the spatial weight modules, as shown in Figure 8. The domain
weight module generates an uncertainty confidence interval for the overall segmentation
results in 2D and 3D. The spatial weight module generates an uncertainty confidence
interval spatially for the 2D and 3D individual segmentation results. Specifically, as shown
in Figure 8, given the 2D segmentation prediction O2D and image-wise 3D segmentation
prediction Ô3D, the domain weight module concatenates the predictions and uses them as
input to infer a 1D domain weight map W2D

d ∈ R2. After applying the domain weight map
to the image-wise 2D and 3D segmentation results, the spatial weight is utilized to produce
a 2D spatial weight map W2D

s ∈ RH×W×2. Then, the overall image-wise uncertainty
confidence weight W2D ∈ RH×W×2 is generated as:

W2D = W2D
d ⊗W2D

s , (3)

where ⊗ denotes element-wise multiplication. During multiplication, the weight values
are broadcasted accordingly.

Finally, based on the overall image-wise uncertainty confidence weight, the 2D water
segmentation result is refined as:

Õ2D = W2D
(

O2D, Ô3D
)

, (4)

2D segmentation

𝑂𝑂2𝐷𝐷 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×2

3D segmentation

�𝑂𝑂3𝐷𝐷 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×2

2D Uncertainty-aware Weight Module

⊗

The domain weight

𝑊𝑊𝑑𝑑
2𝐷𝐷 ∈ 𝑅𝑅2

The spatial weight

𝑊𝑊𝑠𝑠
2𝐷𝐷 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×2

⊗

The refined 2D segmentation

�𝑂𝑂2𝐷𝐷 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×2

The Spatial Weight

Input feature

𝑊𝑊𝑑𝑑
2𝐷𝐷 ∈ 𝑅𝑅2

The Domain Weight

𝐻𝐻 × 𝑊𝑊 × 𝐶𝐶

MaxPool

AvgPool
Shared MLP

Channel-refined feature

MaxPool

AvgPool

1 × 1 × 𝐶𝐶

𝐻𝐻 × 𝑊𝑊 × 1𝐻𝐻 × 𝑊𝑊 × 𝐶𝐶 𝑊𝑊𝑠𝑠
2𝐷𝐷 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×2

Conv 
layer

false positives

corrections

Figure 8. The details of the 2D uncertainty-aware cross-modality prediction fusion module. The false
positives of 2D segmentation are represented by the red area in the blue circles.
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3.4.2. 3D Water Segmentation Refinement

Water segmentation refinement is also performed in 3D, similar to the 2D water
segmentation refinement. Specifically, the 2D segmentation prediction O2D ∈ RH×W×2 is
projected into the 3D domain Ô2D ∈ RN×2 by the 2D-to-3D projection module described
in Section 3.2.1. Then, a 3D self-attention module is utilized to calculate the uncertainty
weight of the point-wise 2D and 3D segmentation results. As shown in Figure 9, the 3D
self-attention module is implemented through an MLP consisting of five hidden layers
with neuron sizes of 64, 128, 64 and 2. BN is used for all layers with a ReLU, and dropout
layers are used for the last MLP. The point-wise 2D water segmentation prediction Ô2D and
3D water segmentation prediction O3D are passed through the 3D self-attention module to
the obtain the overall point-wise uncertainty confidence weight W3D ∈ RN×2 as:

W3D = σ
(

MLP
(

Ô2D, O3D
))

, (5)

where σ denotes the sigmoid function.
The 3D segmentation result is refined as:

Õ3D = W2D
(

Ô2D, O3D
)

, (6)

3D Self-Attention Module

2D Seg. prediction
�𝑂𝑂2𝐷𝐷 ∈ 𝑅𝑅𝑁𝑁×2

MLP(64,128,64,2)

3D Seg. prediction
𝑂𝑂3𝐷𝐷 ∈ 𝑅𝑅𝑁𝑁×2

ReLU

C
on

v1
D

…

BN

C
on

v1
D

BN

ReLU

C
on

v1
D

BN

ReLU

The refined 3D 
segmentation result

Figure 9. The details of the 3D self-attention module.

4. Experiments

We first present the novel Cross-modality Water Segmentation (CMWS) dataset
—the first water segmentation dataset for USVs in inland waterways that has both im-
ages and corresponding point clouds. Then, extensive experiments are conducted on the
CMWS dataset to validate the proposed method. The results indicate that our proposed
method significantly improves those image-only-based methods. It is worth noting that all
image-only-based methods show 2% improvements in accuracy and MaxF. Furthermore,
our proposed method also results in accuracy improvements in 3D water segmentation.

4.1. Cross-Modality Water Segmentation Dataset

The CMWS dataset contains 3018 frames acquired under various weather and lighting
conditions. Each frame has a 640 × 320 resolution image and its corresponding LiDAR
point cloud. All frames were manually annotated and split into a training set, and a
validation set, containing 1944 and 1074 pairs, respectively. As shown in Figure 10, this
dataset is composed of two parts: the re-labeled data from the simultaneous localization
and mapping (SLAM) task in USVInland [13] and the new labeled data acquired by the
Jinghai USV [2] platform.
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2D Camera Image 2D Segmentation Label

3D LiDAR Point Cloud 3D Segmentation Label

(a) Re-labeled Data from USVInland

2D Camera Image 2D Segmentation Label

3D LiDAR Point Cloud 3D Segmentation Label

(b) Collected Data from Jinghai-USVs

Figure 10. The data and labels in the CMWS dataset: the re-labeled data from the SLAM task in
USVInland (a) and the new labeled data acquired by the Jinghai-USVs platform (b).

The USVInland dataset is the first multi-sensor USV dataset for inland waterways.
This dataset was collected under various weather conditions for real driving scenarios
on inland waterways. In this dataset, benchmarks for SLAM, stereo matching and water
segmentation tasks were proposed. However, its water segmentation benchmark only has
annotated image data but no corresponding LiDAR point cloud data. Thus, we focused
on a SLAM task that uses images and corresponding LiDAR point cloud data. We re-
annotated the data in the USVInland SLAM task to make them applicable to the water
segmentation task.

Jinghai-USVs are a series of unmanned surface vehicles developed by Shanghai Uni-
versity, and a total of eight models have been developed so far. We collected the data with
a Pandora sensor module and a GPS/IMU localization system on a Jinghai-USVs platform.
The Pandora is an integrated sensor system consisting of a camera, LiDAR system and data
processing system with advanced synchronization and calibration capabilities. The data
were acquired under a diverse range of weather conditions, from sunny days to days with
light rain. We carefully selected the representative sample data for manual annotation.

4.2. Experimental Settings
4.2.1. Parameter Settings

The experiments were implemented in PyTorch. The models were trained for 64
epochs with a batch size of 6 and the following training loss L:

L = L2D + Lrefined
2D + L3D + Lrefined

3D , (7)

where L2D and L3D denote the weighted cross-entropy losses for the 2D and 3D segmenta-
tions before refinement, and Lrefined

2D and Lrefined
3D denote the weighted cross-entropy losses

for the 2D and 3D segmentation after refinement, respectively.
The learning rate of the linear warm-up Radam [40] Lookahead [41] optimizer was

initialized as 0.1 with a decay of 0.9 for every 10 epochs. The same data split and training
settings were applied to all the following experiments. All experiments were implemented
using a single NVIDIA 1080Ti GPU.

4.2.2. Evaluation Metrics

Similar to [13,42], we used the following eight metrics for performance evaluation:
Accuracy (ACC), Max F-measure (MaxF), Average Precision (AvgPrec), Precision (PRE),
Recall (REC), False Positive Ratio (FPR) and False Negative Ratio (FNR). These evalua-
tion metrics can be calculated as follows:

Acc =
TP + TN

TP + FP + TN + FN
, (8)

PRE =
TP

TP + FP
, (9)
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REC =
TP

TP + FN
, (10)

MaxF = argmaxτ

[(
1 + β2)PRE ∗ REC
β2(PRE + REC)

]
, (11)

AvgPrec =
1
11 ∑

r∈[0,0.1,...,1]
max
r̃:r̃>1

PRE(r̃), (12)

FPR =
FP

FP + TN
, (13)

FNR =
FN

FN + TP
, (14)

where TP (true positive) represents the number of water surface pixels classified correctly;
TN (true negative) represents the number of non-water surface pixels classified correctly;
FN (false negative) indicates the number of water surface pixels wrongly classified as
non-water surface; FP (false positive) denotes the number of non-water surface pixels
wrongly classified as the water surface.

ACC represents the ratio of the number of correct predictions to the total number
of samples. PRE is the rate of correct predictions among the samples predicted to be
positive, and REC is the rate of correct predictions among all positive samples in the
dataset. MaxF is a single score that balances the PRE and REC values. AvgPrec is the
average of all precision values. FPR is the ratio of falsely predicted positive samples to
all predicted positive samples, and FNR is the ratio of falsely predicted negative samples
to all predicted negative samples. The higher the value of the ACC, MaxF, AvgPrec, PRE
and REC, the better the performance of the algorithm is. The opposite is true for FNR
and FNR.

4.3. Experimental Results

We compared the proposed method with the image-only-based methods, UNet [25],
FCN [11] and DeeplabV3+ [26]. As described in Section 3.3.2, the proposed method is a
plug-and-play framework enabling the use of any 2D segmentation network. Therefore,
we used the proposed method to improve UNet, FCN and Deeplabv3+, respectively.
As Table 1 shows, the incorporation of the 3D LiDAR point cloud information results in
significant and stable improvements of all image-only-based methods, achieving about
2% improvements in accuracy and MaxF. Note that the more powerful FCN only achieves
a 1.07% improvement in accuracy over UNet, and DeeplabV3+ only achieves a 0.95%
improvement in accuracy over FCN. Compared with them, the proposed method brings
twice as much improvement. In addition to the accuracy and MaxF metrics, the proposed
method improves the PRE and REC metrics and reduces the FPR and FNR metrics for all
image-only-based methods. This further illustrates that the proposed method reduces the
misjudgment of water surface and non-water surface well by utilizing the 3D LiDAR point
cloud information. In addition, the steady improvement in the AvgPrec metric for all image-
only-based methods is also a good illustration of the stability of the improvement brought
by the proposed method. Remarkably, the lightweight model UNet even outperforms
the more powerful FCN and DeeplabV3+ models after being improved by the proposed
method. The stronger the 2D segmentation network, the higher the performance of the
proposed method is. The highest performance is achieved with the DeeplabV3+ model
improved by the proposed method.
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Table 1. Performance comparison of the proposed camera-LiDAR method and image-only-based
methods on the CMWS dataset.“I” denotes “images”; “L” denotes “LIDAR”; “CM-” denotes the
enhancement by our proposed method. Bold denotes the best performance, and underline in red
shows the improvement achieved by our proposed method.

Methods Input Acc(%)↑ MaxF(%)↑ AvgPrec(%)↑ PRE(%)↑ REC(%)↑ FPR(%)↓ FNR(%)↓
UNet [25] I 94.31 94.85 92.03 93.59 96.14 6.41 3.86
FCN [11] I 95.38 96.38 95.69 97.13 95.64 2.87 4.36

DeepLabV3+ [26] I 96.33 96.69 95.50 96.54 96.83 3.46 3.17

CM-UNet (Ours) L+I
96.77 97.34 95.86 96.94 97.75 3.06 2.25
+2.46 +2.49 +3.83 +3.35 +1.61 −3.35 −1.61

CM-FCN (Ours) L+I
97.64 97.83 96.28 97.78 97.97 2.22 2.03
+2.26 +1.45 +0.59 +0.65 +2.33 −0.65 −2.33

CM-DeepLabV3+ L+I
98.08 98.24 96.77 97.49 98.00 2.51 2.00

(Ours) +1.75 +1.55 +1.27 +0.95 +1.17 −0.95 −1.17

Furthermore, we visualize the qualitative results of the proposed method and the
image-only-based methods in Figure 11 (More qualitative results can be seen in Figures S1
and S2). Although the image-based methods can segment most of the water surface, they
typically perform poorly for segmenting near-shore or reflective water surfaces. In contrast,
our proposed method segments most of the water surface well and performs accurate
segmentation in difficult cases, such as near-shore or reflective water.
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Figure 11. The qualitative results of our methods and those image-only-based methods.
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4.4. Design Analysis

We conducted comprehensive ablation experiments on the CMWS dataset to validate
the design of the proposed method. All ablation experiments were conducted on the model
with the lightweight UNet as the 2D segmentation network.

4.4.1. Ablation Study

The ablation results for different modules are summarized in Table 2. In the baseline
model (model A), training for water segmentation is conducted separately in 2D and 3D.
The baseline achieves a MaxF of 78.91%, an AvgPrec of 79.38% and a PRE of 83.59% for
3D water segmentation, and it achieves a MaxF of 94.85%, an AvgPrec of 92.03% and a
PRE of 93.59% for 2D water segmentation. The performance of 3D point cloud water
segmentation (Model B) is greatly improved due to the incorporation of 2D image color
and texture information in the early 3D cross-modality segmentation module. The MaxF
is 86.13%, AvgPrec is 85.12% and PRE is 86.22%, showing a significant improvement.
Incorporating the 3D point cloud segmentation results and geometric information into
the 2D segmentation through the late 2D cross-modality segmentation module (Models
C and D) significantly improves the performance of 2D water segmentation. Moreover,
the higher the accuracy of the 3D point cloud segmentation, the greater the performance
improvement of the 2D segmentation is. After implementing the uncertainty-aware cross-
modality prediction fusion module, the proposed method achieves the best results for 2D
and 3D water segmentation tasks.

Table 2. Results of different ablations on the CMWS dataset, in which “3D CM” denotes the “early 3D
cross-modality segmentation module”; “2D CM” denotes the “late 2D cross-modality segmentation
module”; “Fusion” denotes the “uncertainty-aware cross-modality prediction fusion module”.

Model 3D CM 2D CM Fusion
3D Segmentation 2D Segmentation

MaxF AvgPrec PRE MaxF AvgPrec PRE
A 78.91 79.38 83.59 94.85 92.03 93.59
B X 86.13 85.12 86.22 - - -
C X 78.91 79.38 83.59 95.53 94.26 94.98
D X X 86.13 85.12 86.22 96.82 95.12 95.62
E X X X 89.64 89.73 87.77 97.34 95.86 96.94

4.4.2. Image-Wise Feature Fusion Strategy

Several feature fusion methods were used in the late 2D cross-modality segmentation
module to fuse the 2D image with the projected image-wise 3D feature and segmenta-
tion results, such as Max fusion, Sum fusion, Concatenation fusion, and Conv fusion
(i.e., CEN [19], CBAM [39]). Table 3 presents the results of the different fusion meth-
ods. Conv fusion provides the best results, and the Conv-CEN fusion outperforms the
Conv-CBAM fusion. Thus, we choose the Conv-CEN fusion as the default fusion method.

Table 3. Results of different image-wise feature fusion strategies in the Late 2D Cross-modality
Segmentation Module on the CMWS dataset.

Fusion Method MaxF (%) AvgPrec (%) PRE (%)
Max 90.98 91.13 87.98
Sum 93.71 92.9 92.19

Concatenation 94.83 94.46 94.16
Conv-CBAM [39] 96.82 95.12 95.62

Conv-CEN [19] 97.34 95.86 96.94

4.4.3. Cross-Modality Prediction Fusion Strategy

We further evaluated different fusion methods for the 2D and 3D segmentation results.
As Table 4 shows, the proposed uncertainty-aware fusion method significantly outperforms
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all other fusion methods for the 2D and 3D segmentations. In the 3D water segmentation,
the MaxF is 89.64%, AvgPrec is 89.73% and PRE is 87.77%.

Table 4. Results of different cross-modality prediction fusion strategies on the CMWS dataset.

Fusion Method
3D Segmentation 2D Segmentation

MaxF (%) AvcgPrec (%) PRE (%) MaxF (%) AvgPrec (%) PRE (%)
Max 87.13 85.96 85.6 95.32 94.66 94.44
Sum 87.93 86.01 86.06 96.13 95.69 95.73

Mean 88.27 88.23 87.17 96.58 95.58 95.93
Uncertainty-aware 89.64 89.73 87.77 97.34 95.86 96.94

5. Conclusions

We proposed a novel camera-LiDAR cross-modal fusion water segmentation method
to combine the 2D image and 3D point cloud characteristics to improve the accuracy of
water segmentation. By exploiting the advantages of 2D images and 3D point clouds,
the proposed method handles simple cases, such as large water surfaces well, and performs
accurate segmentation in difficult cases, such as near-shore or reflective water. In addition,
we collected, annotated and presented a novel CMWS dataset to validate the proposed
method. To the best of our knowledge, this is the first water segmentation dataset for
USVs that contains images and corresponding point clouds. Extensive experiments were
conducted on the CMWS dataset, indicating that the proposed method is a plug-and-
play framework that can significantly improve existing image-only-based methods. All
image-only-based methods achieved improvements in accuracy and MaxF.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jmse10060744/s1. Figure S1: More qualitative results of our
methods and those image-only-based methods. Figure S2: More qualitative results of our methods.
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