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Abstract: The Morison equation is widely used to estimate the loads by surface waves on cylinders.
The formulation and coefficients determination method of the original work by Morison et al. are
revisited, it is found that there exist some issues yet to be explained, e.g., the larger uncertainties
in drag coefficient and the underestimated maximum moments. Numerical simulation with a
similar configuration is used to reproduce these issues and the results help discover the reason
and mechanism for these phenomena. The analysis shows that the larger uncertainties in drag
coefficient are caused by the introduction of linear wave theory, which is used to derive the velocity
and acceleration at cylinder location as direct measurements are not available. The results also show
that the underestimation of maximum moments is induced by the wave run-up process, which is
neglected in the Morison equation. The scale of wave run-up is approximately the length of cylinder
diameter. The results indicate although most recent studies are focusing on the high-frequency loads
on cylinders by nonlinear waves, there still exist some issues to be resolved in the linear wave regime.
Further studies are required to parameterize the additional loads by wave run-up to strengthen the
robustness of the Morison equation.

Keywords: surface wave; Morison equation; cylinder

1. Introduction

The surface waves are ubiquitous along with the air-water interface, which are primar-
ily driven by the wind [1–3] and play an important role in oceans [4,5]. The surface waves
could affect the air-sea momentum transport, heat transfer across the interface, and mix
the upper ocean boundary layer [6]. It is interesting to estimate forces induced by ocean
currents and surface waves on immersed solid structures in fluid mechanics [7,8]. This
is also of practical use in ocean engineering, e.g., estimating the forces and moments on
the offshore structure by surface waves accurately during the designing stage could avoid
potential casualties and economic losses.

Morison et al. [1] analyzed the forces by unbroken small-amplitude surface waves on
a cylindrical pile extending from the bottom upward above the wave crest and showed that
the force exerted on a differential section dz of the cylindrical pile could be decomposed
into two components, a virtual mass force proportional to the horizontal local acceleration
and a drag force proportional to the square of horizontal velocity,

dF =

(
ρCM

πD2

4
∂u
∂t

+ ρCD
D
2
|u|u

)
dz (1)

where ρ is the density of fluid, D the diameter of the cylinder, u the horizontal velocity, CM
and CD are the coefficients of inertial and drag components. This equation is expected to
be valid if the diameter of the pile, D is much less than the wave length L, D/L ≤ 0.15,
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so the incident wave field is not disturbed and the existence of the pile can be neglected.
The values of coefficients CM and CD were determined by laboratory measurements at
selected time steps and the overall performance of the empirical formula was confirmed [1].
Morison equation has been adopted as a standard method in industry for calculating forces
by surface waves on slender offshore structures. The Morison equation has also been
used in recent years for estimating forces induced by internal solitary waves on offshore
structures [9], the wave-induced velocity could be either derived from measurements [10]
or the results of a numerical model [11], some studies showed that the total acceleration
should be used in Morison equation for internal solitary wave scenario as nonlinearity
could not be neglected [12,13], these studies also suggest that layer dependent empirical
coefficients are recommended as the flow field are quite different between the upper and
lower layers [14].

Sarpkaya [15] systematically measured the forces on the smooth cylinder in a U-shaped
oscillating-flow tunnel, and concluded that the inertial and drag coefficients were functions
of Reynolds and Keulegan–Carpenter numbers. Sarpkaya [16] studied the force coefficients
in planar oscillatory flows of small amplitude, and compared the results with theoretical
values derived by Stokes [17] and Wang [18], the analysis showed that the coefficients were
in good agreement with Stokes–Wang’s result for attached and laminar flow conditions,
while the coefficients deviated abruptly from their theoretical prediction above a critical
Keulegan–Carpenter number at which the vortical instability occurs.

While the first harmonic force on a vertical cylinder is considered well-defined [19],
several authors have recently discussed the so-called ‘secondary load cycle’, a strongly
nonlinear phenomenon regarding the wave loads on a vertical cylinder, rather exten-
sively [20–24]. The secondary load cycle is an additional short-duration loading with a
peak just after the main load peak in the direction of wave propagation. Chaplin et al. [20]
did an investigation on the interaction between the cylinder and non-breaking phase fo-
cused wave. The results showed that the second load cycle might have an important effect
on ringing response, and the magnitude of the secondary load cycle was highly correlated
with wave steepness. Grue and Huseby [21] discussed experimental observations of a
secondary cycle on a vertical cylinder and found that the timing of the load cycle was about
one quarter-wave period later than the main peak of the force. Paulsen et al. [22] found
that the formation of secondary load cycles were led by an increase in wave length or wave
height. Through visual observation and a simplified analytical model, it was shown that the
secondary load cycle was caused by the strong nonlinear motion of the free surface, which
drove a return flow at the back of the cylinder following the passage of the wave crest. Kris-
tiansen and Faltinsen [25] confirmed the existence of this process. Riise et al. [23] analyzed
all harmonics from one to five and found that the theoretically predicted third harmonic
loads agreed well with the experiments for small to medium wave steepness. The discrep-
ancy in general increased monotonically with the increasing wave steepness. Fan et al. [24]
showed that the characteristic parameters of the secondary load cycle induced by regular
waves of large amplitude depend mainly on relative wave height and relative diameter
of the cylinder, while the dependence on relative depth is weak, and concluded that the
secondary load cycle was one important factor contributing to the ringing phenomena.

From the above review, it can be seen that in recent years the studies on higher
harmonics forces by surface waves have drawn more attention as they can induce res-
onances in the offshore structures. As nonlinearity is important for higher harmonics,
steep regular waves [22,24,25] or irregular waves [19,23] are used in these studies. While
first-order waves were assumed in Morison et al. [1], the empirical Morison equation posed
there could fit the corresponding laboratory measurements reasonably well, which is now
widely accepted in the industry. There arises the question of whether the forces by small-
amplitude surface waves on the circular cylinder are well defined by the classical Morison
equation, and no further study on this aspect is required. After reviewing the classical
paper by Morison et al. [1], it is found that there are still some issues yet to be addressed,
e.g., the uncertainties for drag coefficient (CD = 1.626± 0.414) are much larger than those
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for inertial coefficient (CM = 1.508± 0.197), the moments estimated with Morison equation
could fit most of the measured values well, but it is apparent that the maximum moments
are not captured by the empirical formula. These two issues are not discussed in the origi-
nal manuscript by Morison et al. [1], which could probably be regarded as errors due to
uncertainties in laboratory experiments. In this paper, numerical simulations are performed
with similar configurations to that by Morison et al. [1] to explain these two issues.

The remainder of this paper is organized as follows. The classical Morison equation is
briefly reviewed in Section 2. In Section 3 the numerical model and its configurations are
introduced. The results are analyzed and discussed in Section 4. The major conclusions are
drawn in Section 5.

2. The Morison Equation

In this section, the theoretical formulation and coefficients determination method
utilized by Morison et al. [1] are briefly reviewed. It should be noted that the mathematical
expressions in this paper are slightly different from those in the original manuscript [1],
as the force direction is taken into account in the differential Equation (1). For the sake of
simplicity, the small amplitude surface waves is assumed, the horizontal velocity u and its
local acceleration ∂u/∂t for a linear wave η = Acos(θ) could be expressed as

u = Aσ
cosh(k(z + h))

sinh(kh)
cos(θ) (2)

∂u
∂t

= Aσ2 cosh(k(z + h))
sinh(kh)

sin(θ) (3)

where θ is the phase and defined as θ = kx − σt, A is the wave amplitude, k is the
wave number, σ is the radian frequency, h is the depth of water, t is time, x and z are
the coordinates along with horizontal and vertical directions respectively. It should be
noted that the variations of surface elevation are neglected in the theoretical formulation
of velocity for linear wave theory, the valid range of z for velocity u is from the bottom
(z = −h) to the initial still surface (z = 0).

As the moments by surface waves on the cylinder were measured in the laboratory
experiments, the theoretical formulation of the moment was derived by integrating the
differential moments along z direction,

M =
∫ 0

−h
(z + h)dF (4)

After the differential force expression (1), the horizontal velocity (2) and local accel-
eration (3) are substituted into the above equation, the total moments exerted by surface
waves on cylinder can be simplified and expressed as:

M =
4ρDA2σ2

k2

(
Dπ

8A
K1CMsinθ + K2CD|cosθ|cosθ

)
(5)

K1 =
1− cosh(kh) + khsinh(kh)

2sinh(kh)
(6)

K2 =
1 + 2k2h2 − cosh(2kh) + 2khsinh(2kh)

64sinh2(kh)
(7)

From Equation (5), it can be seen that the two-moment components are out of phase.
The inertial coefficient CM and drag coefficient CD can be determined from the measured
moments at selected time steps,
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CM =
2k2

ρD2 Aσ2πK1
|M| θ = (2i + 1)π/2, i ∈ Z (8)

CD =
k2

4ρDA2σ2K2
|M| θ = iπ, i ∈ Z (9)

From the above equations, it can be seen that the empirical coefficients CM and CD are
constrained by overdetermined equations, which explains the existence of uncertainties.
After the empirical coefficients are fixed, Morison Equation (1) can be used to predict the
temporal evolution of forces and moments.

3. The Numerical Model and Configurations

The Morison equation is now widely used in industry to estimate forces by sur-
face waves on cylindrical structures. However, as pointed out in Section 1, there are
still some issues yet to be addressed, e.g., the larger uncertainties for drag coefficient
(CD = 1.626± 0.414) than inertial counterpart (CM = 1.508± 0.197) and the underesti-
mated maximum moments as shown in the original manuscript [1]. As the measured data
from that experiment are not accessible, a numerical model with similar configurations is
used to reproduce the corresponding laboratory experiment to further analyze the mecha-
nisms for these phenomena. As some key information is not available from the original
manuscript, e.g., the size of the wave flume, the location of the cylinder, the details of the
physical wave-maker, etc., an exact reproduction of the corresponding laboratory experi-
ment is not possible. The purpose of numerical simulation is, therefore, to reproduce these
issues to be addressed with similar configurations as the original laboratory experiment,
the results of which could provide comprehensive physical quantities and help understand
the reason and mechanism that lead to these issues.

OpenFOAM (Open Source Field Operation and Manipulation) is used for computa-
tions in this study. OpenFOAM is an open-source software that is widely used in computa-
tional fluid dynamics (CFD). The solver based on Navier–Stokes equations and the Volume
of Fluid (VOF) method is used to simulate free-surface flows around the cylinder and calcu-
late the wave loads on structures. The VOF method in OpenFOAM is applied for locating
and tracking free surface [26], each of the two phases is considered to have a separately
defined volume fraction α. When the grid cell is empty of water but filled with air, the value
of the volume fraction function is 0; when the cell is full of water, it is 1; when the interface
cuts the cell or the cell is partially filled with water or air, this function is between 0 and 1.
The OpenFOAM solver based on the VOF method has been used to investigate wave loads
on cylindrical structures [22,24,27] in recent years, more details on these methods can be
found in these references. The CFD-based solvers can capture nonlinearities at the cost of
resource-demanding, which restricts the length of analyses for an irregular wave input [19].
For the present study, the case for a small amplitude regular wave is considered, which
significantly reduces the amount of computational resource needed.

The computational domain is shown in Figure 1, which is 8 m long and 0.4 m wide,
the height is 0.8 m. A circular cylinder with a diameter of 0.025 m is fixed at the centerline
and the distance between the cylinder and wave generation boundary is 1 m. The wave
period, wave height, wave length, initial still water depth, and cylinder diameter in this
study are listed in Table 1, which are chosen to be close to parameters for corresponding
laboratory experiments [1]. The quantities in Table 1 are preset in model configuration
except for the wave length, which is a derived quantity measured from model results.
The wave length derived with linear dispersion relation σ2 = gktanh(kh) is 3.59 m, this
minor difference is induced by the assumptions adopted in the theoretical formulation.
The wave generation and absorption methods developed by Higuera et al. [28,29] and
Higuera [30] are adopted in this study as no relaxation zone is required, which further
reduces the amount of computational resource. The k−ω SST two-equation closure model
is adopted for turbulence parameterization in this study. A long-standing problem with the
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VOF method on modeling surface wave dynamics is the severely over-estimated turbulence
level along with the phase interface, which dissipates the wave energy significantly and
the wave shape could not be maintained. In this study, the modification strategy proposed
by Larsen and Fuhrman [31] is utilized to solve this problem.

Table 1. The wave period T, wave height H, wave length L, initial still water depth h, cylinder
diameter D in Morison et al. [1] and this study.

Parameter T H L h D

Morison et al. [1] 1.68 s 0.0744 m 3.734 m 0.6187 m 0.0253 m
Numerical Setting 1.7 s 0.08 m 3.43 m 0.62 m 0.025 m

Figure 1. The computational domain and the boundaries (Perspective View).

The computational grid topology for a horizontal section is shown in Figure 2, the back-
ground mesh with a side length equal to 0.02 m is used across the domain, and the mesh is
gradually refined towards the cylinder. A smooth boundary layer with 60 cells adjacent to
the cylinder surface is utilized to calculate the forces and moments for each layer on the
cylinder. This plane grid structure is extruded 0.8 m along the z axis with 160 homogeneous
layers to generate the 3D mesh, the grid resolution along the z direction is 0.005 m, which
is fine enough to capture free surface variations. The boundary conditions for the variables
in the numerical models are listed in Table 2.

Figure 2. The computational grid topology around cylinder.



J. Mar. Sci. Eng. 2022, 10, 702 6 of 16

Table 2. The boundary conditions of the key variables in the computation.

Variable α p_rgh U

Inlet waveAlpha fixedFluxPressure waveVelocity
Outlet zeroGradient fixedFluxPressure waveAbsorptionVelocity

Front/Back zeroGradient fixedFluxPressure noSlip
Top inletOutlet totalPressure pressureInletOutletVelocity

Bottom zeroGradient fixedFluxPressure noSlip
Cylinder zeroGradient fixedFluxPressure noSlip

As shown in Section 2, the velocity and acceleration at cylinder location were needed
in the Morison equation. These data were not available from laboratory experiments [1],
and were derived based on linear wave theory. In order to evaluate the influence of
employing this assumption on the determined coefficients, one more numerical simulation
is configured to derive velocity and acceleration at cylinder location, the cylinder is removed
from the background mesh and no grid refinement is required, the computational domain
is divided into cuboid grids with dimensions of 0.02 m × 0.02 m × 0.005 m. The numerical
results of velocities and moments are saved every 0.01 s, while other physical quantities
are output every 0.05 s to save the storage resources.

4. Result Analysis

The numerical results are analyzed in this section. The temporal evolution of surface
elevations at cylinder location are shown in Figure 3. The analytical solution based on
linear wave theory η = Acos(θ) is also plotted for comparison. The analytical solution
is translated in time to be in phase with the numerical solution. It can be seen that after
the startup duration of about 1 s, the temporal evolution of surface elevations at cylinder
location fit the analytical solution reasonably well, which confirms the assumption of the
linear wave for this configuration. The two vertical lines mark time steps 2.57 s and 4.27 s,
which are designated as t = 0 and t = T respectively. The wave phases for these two time
steps are assigned as θ = 0 and θ = −2π for later discussion, the minus sign is introduced as
the wave phase decreases with increasing time for fixed location θ = kx0 − σt. The velocity
and moment data within this specific period are further analyzed in this section.

The moments exerted by surface waves on the cylinder are calculated directly with a
numerical model and shown in Figure 4. The forces and moments on a rigid structure by
fluid motion are known to be very sensitive to the thickness of mesh adjacent to the structure
surface. A mesh sensitivity study is performed to check the validity of chosen mesh. Two
meshes with similar topology are used, the difference lies in that the thickness of grids
adjacent to the cylinder for one mesh is half of that for another mesh, the boundary layer
thicknesses close to the cylinder for these two cases are 0.25 mm and 0.5 mm, respectively,
these two meshes are referred to as fine mesh and coarse mesh respectively. From Figure 4 it
can be seen that the temporal evolution of moments are independent of the meshes chosen
and the numerical results can be used for further analysis.

The coefficients CD and CM are determined from numerical results with the method pro-
posed by Morison et al. [1] as mentioned in Section 2. The moment values at four specific phases
within one period are selected, which corresponds to wave phases 0,−π/2,−π,−3π/2, these
positions are marked as points A, B, C, and D in Figure 5 respectively. The empirical coefficients
are derived with Equations (8) and (9), the values are listed in Table 3. The missing values in
the table for the empirical coefficients are introduced as the terms with those coefficients are
zero at specific positions, e.g., for positions A and C, the terms including inertial coefficient
CM are zero, only the drag coefficient could be derived. These results could be rewritten in
the form of average values with uncertainties, CD = 1.234± 0.273 and CM = 1.695± 0.01. It
can be seen that the phenomenon observed in the original manuscript by Morison et al. [1]
is reproduced, namely, the uncertainties for drag coefficient are much larger than those for
inertial coefficient. Before exploring the reason for this discrepancy, the temporal evolution
of predicted moments with Equation (5), is shown in Figure 5 to estimate the accuracy of the
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Morison equation. As coefficients CD and CM are needed in the Morison equation, two sets of
combinations are used to illustrate their influence on the results. The solution 1 is predicted by
the Equation (5) with coefficients CD and CM determined from positions A and B, respectively,
while the solution 2 is based on the same equation and the corresponding coefficients for
positions C and D. Since the inertial coefficients CM derived from positions B and D are very
close, the differences between solution 1 and 2 are predominately induced by the distinct values
of drag coefficients. From Figure 5 it can be seen that the predictions with drag coefficient
determined by moment value at position A fail to fit the moment value at position C and
vice versa. Although both solutions could predict the general trend of calculated moments,
some gaps between the predictions and true values are evident, and the extreme value for
moments is obviously underestimated by the empirical equation, which is also observed in the
original manuscript [1]. It is beneficial to analyze whether these discrepancies could be reduced
or the influences of assumptions employed on the predictability of the Morison equation,
which could further help improve empirical equation.

Table 3. The empirical coefficients CD and CM derived with velocity field based on linear wave theory.

Position A B C D

Phase θ 0 −π/2 −π −3π/2
CD 1.506 - 0.961 -
CM - 1.685 - 1.705
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Figure 3. The comparison of surface elevations from numerical model and linear wave theory.
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Figure 4. Temporal evolution of the moments on cylinder.
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Figure 5. Comparison of moments calculated from model and Morison equation for θ ∈ [0,−2π].

One key assumption used by Morison et al. [1] is that the waves can be treated as
small-amplitude waves and the nonlinearity could be omitted, which could be partially
confirmed from the comparison of surface elevations as shown in Figure 3. It should be
noted for linear wave theory that the surface elevation is assumed to be negligibly small
that its temporal variations can be neglected for other physical quantities; this significantly
simplifies the theoretical formulation, without which analytical solution could not be
obtained. With this assumption, the upper boundary for theoretical wave parameters,
e.g., the orbital velocity, is shifted from free surface z = η to z = 0. This can also be
discerned in Equation (4), the total moment is derived by integrating the corresponding
value for each differential section from bottom to initial still surface, although the free
surface oscillates periodically.

The introduction of linear wave theory is to estimate velocity and acceleration field
at cylinder location, which are not available from laboratory experiments, the numerical
model can also be used to estimate velocity field and evaluate the accuracy of linear wave
theory. An accompanying numerical simulation without cylinder is performed to get the
corresponding velocity and acceleration field at cylinder location. The temporal evolution
of theoretical and numerical velocity field for one period are shown in Figures 6 and 7. It
can be seen that the theoretical formulation (Equation (2)) could depict the general trend of
the velocity field reasonably well, except for regions around the free surface. The theoretical
expression for velocity field neglects free surface oscillations, which could potentially
introduce errors at wave crest and trough, where the drag coefficient CD is determined.

The temporal evolution of theoretical and numerical acceleration fields for one period
are shown in Figures 8 and 9. The key differences for these two fields also mostly lie around
free surface regions. The acceleration data at phases −π/2 and −3π/2 are used to derive
inertial coefficient CM, as the actual surface elevations at these two moments are the same
as initial still water, the uncertainties for inertial coefficients are relatively smaller. This
partially explains why the uncertainties in drag coefficient are larger than those in inertial
coefficients with theoretical velocity and acceleration field.
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Figure 6. The temporal evolution of horizontal velocity at cylinder location (Analytical solution).

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

Time(s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
e

ig
h

t(
m

)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 7. The temporal evolution of horizontal velocity at cylinder location (Numerical solution).

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

Time(s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
e

ig
h

t(
m

)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 8. The temporal evolution of horizontal acceleration at cylinder location (Analytical solution).



J. Mar. Sci. Eng. 2022, 10, 702 10 of 16

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

Time(s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
e

ig
h

t(
m

)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 9. The temporal evolution of horizontal acceleration at cylinder location (Numerical solution).

From the above analysis, it can be seen that the theoretical formulations of veloc-
ity and acceleration neglect the influence of surface elevations, which could introduce
larger uncertainties in the empirical coefficients and predictability of the Morison equation.
The numerical solution for velocity field at cylinder location takes this into account and
could be used as an alternative for the coefficients determination. The moments for these
four-wave phases can be expressed as,

M = CD
ρD
2

∫ ±H/2

−h
(z + h)|u|udz θ = 0,−π (10)

M = CM
ρπD2

4

∫ 0

−h
(z + h)

∂u
∂t

dz θ = −π/2,−3π/2 (11)

The oscillations of free surface are taken into account in the determination of drag coef-
ficient CD. The integration on the right hand side of these equations could be approximately
expressed as algebraic summation of the corresponding discretized variables, e.g.,

∫ ±H/2

−h
(z + h)|u|udz ≈ ∑

k
(zk + h)|un

k |u
n
k ∆z (12)

∫ 0

−h
(z + h)

∂u
∂t

dz ≈ ∑
k
(zk + h)

un+1
k − un−1

k
2∆t

∆z (13)

where k is the grid index in the vertical direction, n is the time index, ∆t is the time step,
which is 0.01 s for the velocity, ∆z is the grid space in the vertical direction, which is equal
to 0.005 m. The summation index k starts from the bottom cell to the top cell that is cut
by the free surface. After the coefficients CD and CM are fixed, the temporal evolution of
moments could be predicted as,

M = CD
ρD
2

∫ η

−h
(z + h)|u|udz + CM

ρπD2

4

∫ η

−h
(z + h)

∂u
∂t

dz (14)

≈ CD
ρD
2 ∑

k
(zk + h)|un

k |u
n
k ∆z + CM

ρπD2

4 ∑
k
(zk + h)

un+1
k − un−1

k
2∆t

∆z (15)

The coefficients CD and CM determined with the numerically derived velocity and
acceleration field are shown in Table 4, from which it can be seen that the uncertainties in
drag coefficient are significantly reduced, CD = 1.151± 0.065, although they are still larger
than those for inertial coefficient CM = 1.641± 0.023. The linear wave theory is assumed
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in the coefficients determination method proposed by Morison et al. [1], the applicability
of this method for other wave scenarios, e.g., nonlinear waves or irregular waves, is thus
very limited. The least squares method (LS) is one widely used alternative for empirical
coefficients determination [32], which is also tested here for reference. All the data are
taken into account with the least-squares method and the minimum mean squared error
between model predictions and measurements is used as a metric to fix the coefficients.
From Table 4 it can be seen that larger drag and inertial coefficients are derived with the LS
method. Other coefficient determination methods, such as the Fourier average, are adopted
by Sarpkaya [15], which can only be used for two-dimensional oscillating flows, are not
discussed in this study.

Table 4. The empirical coefficients CD and CM derived with velocity field based on numerical simulation.

Position A B C D LS

Phase θ 0 −π/2 −π −3π/2 -
CD 1.086 - 1.215 - 1.352
CM - 1.618 - 1.664 1.935

The temporal evolution of moments predicted by Equation (15) with three different
combinations of empirical coefficients and the directly calculated moments are compared
in Figure 10. The drag coefficient determined by position A and the inertial coefficient
determined by position B are employed by solution 1, the corresponding coefficients for
positions C and D are used by solution 2, while the coefficients determined by the least-
squares method are utilized by solution LS. It can be seen that solutions 1 and 2 are very
close to each other, more specifically, solution 1 could fit the moments at positions C and D
reasonably well; this is also true for solution 2 at positions A and B, which exhibits superior
performance than those shown with the theoretical formulation in Figure 5. However,
there exhibit obvious distinctions between these two solutions and calculated moments
for different wave phases. These two solutions could fit the calculated moments quite
well for some phase ranges, e.g., ranges A–B and C–D, while significant discrepancies
exist for other phase ranges, e.g., ranges B–C and D–E. The solution LS is anticipated to
perform better as the coefficients are determined by minimizing the differences between
predictions and true values. The solution LS with larger drag and inertial coefficients could
predict higher maximum moment values, however, there still exist significant discrepancies
between predictions and true moments. Furthermore, the solution LS fails to fit most of the
selected positions, e.g., positions A, B and D.
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Figure 10. The comparison of moments estimated by different coefficients determination method.
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The numerical data at four times (t = 2.75 s, 3.2 s, 3.65 s, and 4.1 s) are chosen to
investigate the mechanism for this phenomena further. The surface elevations around the
cylinder for these four times are shown in Figure 11. The surface elevations are derived
by calculating vertical coordinates of isosurface α = 0.5 with linear interpolation and
these elevations are then mapped to one regular grid with bilinear interpolation. It can
be seen that for the times t = 2.75 s and 3.65 s, the isolines of the free surface around the
cylinder location are approximately parallel to those away from it, although some noises
exist around the cylinder, which could be induced by weak wave-cylinder interactions.
This confirms the assumption that the surface wave is not disturbed by the cylinder,
and the predictions with the Morison equation could fit the calculated moments quite well.
The surface elevations for the other two times t = 3.2 s and 4.1 s, however, exhibit distinct
characteristics, the isolines of the free surface around the cylinder are out of shape, resulting
in wave run-up on one side of the cylinder. The wave run-up phenomenon is induced by
the existence of a cylinder, which could be discerned as an elevated water surface as the
local flow is blocked by obstacles as shown in Figure 12.

Figure 11. The surface elevations around the cylinder at different times.

These wave run-up processes produce additional local forces and moments on the
cylinder, which could explain the discrepancies between predictions by the Morison equa-
tion and directly calculated values, as the wave run-up process is not taken into account
in the Morison equation. The physical mechanism for wave run-up could be readily ex-
plained. For the time ranges B–C and D–E, the wave induced velocity and acceleration field
at cylinder location are in the same direction, in other words, the water particles are moving
towards cylinder with increasing velocity, the wave-cylinder interaction, or blocking effect
by cylinder produces an additional amount of elevated water adjacent to the cylinder.
For the time ranges A–B and C–D, the velocity and acceleration at cylinder location are in
opposite directions, the water particles move towards cylinder with decreasing velocity,
the wave run-up is not generated or negligibly small for this scenario. As a short summary,
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the local wave run-up process results in an additional loading on the cylinder, the scale of
which is approximately the diameter of the cylinder, as can be discerned in Figure 11.

Figure 12. The surface elevations around cylinder at 4.1 s.

Morison et al. [1] proposed that if the diameter of the pile is much less than the wave
length, D/L ≤ 0.15 , the incident wave field could be treated as not being disturbed and
the existence of the cylinder can be neglected. The ratio of cylinder diameter to wave length
for the present configuration is about 0.007, which is one order of magnitude smaller than
the criterion assumed by Morison et al. [1]. The numerical results show that for such a
small cylinder, the influence of the cylinder on wave field is quite small, except for a region
adjacent to the cylinder with a scale of cylinder diameter. Although the length of this region
is significantly smaller than the wave length, the influence by local wave run-up could
not be neglected as the integrated wave loads highly depend on the flow field adjacent to
the cylinder.

This is not the first manuscript that notices the influences of local wave surface dis-
tortions on the forces and moments exerted on the cylinder. Several previous studies
have noticed these phenomena, which are expected to cause high-frequency loads on the
cylinder [19,20,23,25], although different terms are used to describe this, e.g., ‘mound’ [20]
or ‘upwelling’ [25]. Previously this phenomenon is primarily studied for nonlinear waves,
e.g., fifth-order Stokes waves [25] and irregular waves [19,20,23,33,34]. The cylinder di-
ameters in these studies are also much larger than that in this study, e.g., the minimum
non-dimensional radius ka in the experiments by Li et al. [33,34] is 0.32, while the quantity
from the present study is 0.023. In this study, it is found that the wave run-up process
also exists for linear waves, and the scale of this phenomenon is approximately cylin-
der diameter, as shown in Figure 11, which is the same as those observed for nonlinear
waves [19,23,25]. The frequencies of local wave run-up, however, are different among these
scenarios. For nonlinear waves, the local wave run-up is only prominent at one side of the
cylinder and occurs once per period, which can be explained as the incident velocity at
the free surface is quite different if there comes an incident wave crest or wave trough [25].
For the linear wave scenario, the differences between incident velocity accompanied with
wave crest and trough are marginal, the wave run-up could exist at both sides of the cylin-
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der, and their magnitudes are comparable, two wave run-up processes can be observed
within one period.

MacCamy and Fuchs [35] analyzed the wave forces on the pile with a diffraction
theory, the assumption adopted therein was very close to the configurations of this study,
e.g., the small ratio of wave height to its length, the diameter of the cylinder was small
compared to the wave length. Large deviations exist between the theoretical predictions
and experimental results. The reason for this rather large discrepancy was discussed and
attributed to the inviscid fluid assumption, the fluid motion was symmetrical around the
cylinder and no separation occurred, resulting in zero drag contribution.

It can be seen from Table 4 there exist distinct discrepancies between the empirical
coefficients derived with different methods for one set of measurements, which are also
confirmed for irregular waves [32]. For the two methods used in the present study, e.g., the
method proposed by Morison et al. [1] and the widely used least-squares method, it is
beneficial to discuss the pros and cons of these two methods. The least squares method is
the best choice if mean squared error is used as the metric, however, as certain physical
process, e.g., wave run-up, is not taken into account in Morison formula, the coefficients
are unavoidably influenced by the unresolved process. The coefficients derived with this
method perform better for the available data, but their generalization for unseen data is not
reliable. For the alternative method proposed by Morison et al. [1], the data at selected times
are used to fix drag and inertial coefficients when the wave run-up effects are negligibly
small. The coefficients derived with this method behave better than those inferred with
least-squares counterpart for the temporal ranges when wave run-up is relatively small
and fail to fit the true values when wave run-up dominates, as shown in Figure 10.

Morison equation has now widely accepted in the industry to estimate wave loads
on cylinder structure, although the coefficients proposed in the original manuscript are
seldom used. Sarpkaya [15] proposed that the inertial and drag coefficients were functions
of Reynolds and Keulegan–Carpenter numbers, however, it should be noted that their
coefficients were based on measurements in a U-shaped oscillating-flow tunnel, wherein
surface elevations were suppressed. In industry standard, e.g., American Petroleum Insti-
tute (API) Recommended Practice, constant values for the coefficients are suggested for
realistic scenarios, CD = 0.65 and CM = 1.6, which are close to the results by Sarpkaya [15]
for high Reynolds numbers. The wave run-up processes are therefore not taken into account
with these coefficients, which could potentially underestimate realistic forces and moments.

Recently Zan and Lin [12] examined the applicability of the Morison equation on the
force estimation by internal solitary waves on cylindrical structure, and found that the total
acceleration should be used as the nonlinearity could not be neglected. The significance of
nonlinearity is also evaluated for this study, which is indeed negligibly small and the result
is not shown for brevity.

Lastly, it should be noted that moments were measured in Morison et al. [1], in later
studies, the forces on cylinder could also be readily measured. The theoretical formula for
integrated forces is much simpler than that for integrated moments. Similar conclusions
could be drawn if the forces are used to determine the empirical coefficients and are not
shown here for brevity. The moments are used in this study to make it consistent with the
study by Morison et al. [1].

5. Conclusions

In this manuscript, the empirical equation proposed by Morison et al. [1] is revisited
and numerical simulation is utilized to reproduce the corresponding laboratory experiments
with similar configurations. The primary purpose is to address some issues observed
in the original paper, e.g., larger uncertainties for drag coefficient and underestimated
maximum moments.

The larger uncertainties for drag coefficient are successfully reproduced with model
results and coefficients determination method proposed by Morison et al. [1], in which
linear wave theory is adopted to derive the velocity and acceleration field in Morison
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equation. The surface elevations are neglected in the velocity expression for linear wave
theory, which could potentially introduce larger uncertainties in the drag coefficient. The
numerical model is utilized to reproduce the velocity field at cylinder location, which
are more realistic as the temporal variations of surface elevation are taken into account.
The uncertainties of drag coefficients derived with model-based velocity and acceleration
field are significantly reduced, which confirms the influences of linear wave theory on the
determined empirical coefficients.

The numerical model could also reproduce the phenomenon that maximum moments
are underestimated by the Morison equation, the analysis reveals that the additional loads
are caused by local wave run-up. The run-up is not restricted to the immediate vicinity
of the cylinder, but extends about the length of cylinder diameter, which is the same as
those for nonlinear wave scenarios. There are two prominent and comparable wave run-up
processes around the cylinder within one period for linear wave case, while there exists
only one distinct wave run-up process for nonlinear waves. The Morison equation should
be used with caution as it does not consider the influence of the wave run-up process, which
could potentially underestimate the loads by surface waves on the cylindrical structure.
The present study reveals that although most recent studies are focusing on the mechanisms
of high-frequency loads introduced by nonlinear waves on cylinders, there are still some
issues to be addressed for the linear waves. Further studies are required to analyze the
dependence of additional loads induced by the wave run-up process on the wave and
cylinder parameters, the results of which could strengthen the reliability of the Morison
equation and provide dependable predictions for the industry during designing stage.
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