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Abstract: The geometrical dimensions and mechanical properties of composite materials exhibit
inherent variation and uncertainty in practical engineering. Uncertainties in geometrical dimensions
and mechanical properties propagate to the structural performance of composite cylindrical shells
under hydrostatic pressure. However, traditional methods for quantification of uncertainty, such
as Monte Carlo simulation and the response surface method, are either time consuming with low
convergence rates or unable to deal with high-dimensional problems. In this study, the quantification
of the high-dimensional uncertainty of the critical buckling pressure of a composite cylindrical shell
with geometrical and material uncertainties was investigated by means of sparse polynomial chaos
expansion (PCE). With limited design samples, sparse PCE was built and validated for predictive
accuracy. Statistical moments (mean and standard deviation) and global sensitivity analysis results
were obtained based on the sparse PCE. The mean and standard deviation of critical buckling pressure
were 3.5777 MPa and 0.3149 MPa, with a coefficient of variation of 8.801%. Global sensitivity analysis
results from Sobol’ indices and the Morris method showed that the uncertainty of longitudinal
modulus has a massive influence on the critical buckling pressure of composite cylindrical shell,
whereas the uncertainties of transverse modulus, shear modulus, and Poisson’s ratio have a weak
influence. When the coefficient of variation of ply thickness and orientation angle does not surpass
2%, the uncertainties of ply thickness and orientation angle have a weak influence on the critical
buckling pressure. The study shows that the sparse PCE is effective at resolving the problem of
high-dimensional uncertainty quantification of composite cylindrical shell with geometrical and
material uncertainty.

Keywords: sparse polynomial chaos expansion; high dimensionality; composite material; geometrical
uncertainty; material uncertainty

1. Introduction

The past several decades have witnessed a great increase in the number of underwater
vehicles manufactured using composite materials for both commercial and military pur-
poses [1]. Light weight is of great significance for underwater vehicle applications [2,3].
Therefore, high-performance composite materials have been increasingly applied due
to their high specific strength–weight ratio and stiffness–weight ratio, excellent design
flexibility, and corrosion resistance [4–6].

Cylindrical shells are a crucial component of underwater vehicles due to their resis-
tance to external hydrostatic pressure. For cylindrical shells with large radius–thickness
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ratios, buckling induced by external hydrostatic pressure dominates the structural failure
form when external hydrostatic pressure surpasses the critical load [7–10].

Composite cylindrical shells consist of layers with various orientation angles and thick-
nesses, and even with different fibers, and can fulfill the requirement of desired strength
and stiffness. As an effective tool for predicting the critical buckling load of composite
cylindrical shells, numerical solutions have been adopted by researchers to investigate the
effect of length [11], shell thickness [12], orientation angle, and stacking sequence [13–15].
Shen [16] studied the buckling and strain response of filament winding composite cylin-
drical shells under hydrostatic pressure by numerical analysis and experimental testing.
Rezaiee-Pajand and Masoodi [17–19] reviewed the progress of buckling and post-buckling
behavior of plates and shells, and performed nonlinear analysis of thin and moderately
thick panels of functionally graded material.

Several researchers [20–22] have performed numerical investigations on the influ-
ence of manufacturing defects on the buckling load of composite cylindrical shells and
conducted experiments. Zhang [23] studied the effects of the ovality and the thickness
eccentricity on the collapse of subsea cylindrical pipelines with imperfections. Teixeira [24]
conducted a reliability analysis of cylindrical pipelines with local defects. Geometrical
variation and uncertainty induced by manufacturing defects have a great influence on
structural performance.

Composite materials exhibit variations and uncertainties with respect to their geomet-
rical dimensions and material properties. Geometrical and material uncertainties propagate
to the structural performance of composite cylindrical shells under hydrostatic pressure.
Cai [25,26] performed reliability-based load and resistance factor design for composite
cylindrical shells under hydrostatic pressure, and later conducted a probabilistic analysis
by means of Monte Carlo simulation and the response surface method. Ly [27] performed
uncertainty quantification on the critical buckling load of columns under axial compression
with uncertain random materials. Gerhardt et al. [28] performed numerical and experimen-
tal structural instability analysis of composite tubes considering manufacturing parameters
and imperfections. Zhou [29] reviewed the stochastic multiscale analysis of FRP composite
structures and found that uncertainties at different scales should be considered simultane-
ously. Considering the uncertainties of winding angle, fiber volume fraction, mechanical
and strength properties, Solazzi and Vaccari [30] performed a reliability analysis of a pres-
sure vessel made with steel and carbon and glass fiber composite materials, it was found
that weight reduction was reduced greatly for the composite pressure vessel, with the
reliability being comparable to that of the vessel made of aluminum and steel. Rafiee [31]
implemented Monte Carlo simulation to predict the burst pressure of composite pressure
vessels. The results showed that the composite pressure vessel was highly likely to experi-
ence burst below the average burst pressure. Hocine et al. [32] employed the maximum
stress and Tsai-Wu failure criteria for the failure analysis of composite tubular structures
and performed a sensitivity analysis. It was found that winding angle and ply thickness
had a significant influence on pressure load. Balokas [33] conducted inverse uncertainty
quantification of the transverse tensile response of carbon fiber-reinforced composites, and
the results showed that the uncertainty was greatly reduced. Kalfountzos [34] used the
probabilistic finite element method to determine the probabilistic buckling response of
fiber–metal laminate panels under uniaxial compression and found that realistic struc-
tural uncertainties could substantially affect the buckling strength. Yetgin [35] utilized
Monte Carlo simulation to investigate the first ply failure and burst pressure of a filament
wound pressure vessel taking into account the uncertainty of the material properties and
winding angles. The results showed the importance of considering the uncertainties of the
material properties and the winding angle when predicting the mechanical performance
of composite pressure vessels. On the basis of the literature review, uncertainty analysis
concerning long composite tubes and composite pressure vessels subjected to internal
pressure has been investigated, while uncertainty analysis for composite cylindrical shells
under external hydrostatic pressure has rarely been thoroughly studied. It was also found
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that geometrical and material uncertainties are important factors affecting structural perfor-
mance. Composite cylindrical shells consist of layers with various orientation angles and
thicknesses, and the geometrical uncertainties of orientation angle and thickness for each
ply are not simultaneously considered due to the increasing dimensionality and complexity.

Composite cylindrical shells are a vital component of underwater vehicles due to their
ability to withstand external hydrostatic pressure. However, existing studies on composite
cylindrical shells in underwater vehicles have mainly focused on deterministic analysis,
without taking into account the inherent uncertainties of geometrical dimensions and
material properties associated with composite materials. In fact, geometrical uncertainties
(ply thickness and orientation angle) and material uncertainties greatly affect the structural
performance of the composite cylindrical shell. Composite cylindrical shells are stacked
by ply during the manufacturing process, and considering the geometrical uncertainties
of each ply results in increasing dimensionality and complexity. Confronted with a high-
dimensional problem, for simplicity, a certain orientation angle (positive or negative values)
and total shell thickness are considered, rather than ply thickness, for each ply [25,26,30,34].
Thus, sparse PCE is adopted to resolve the high-dimensional problem while taking into
account the uncertainties of ply thickness and orientation angle for each ply.

This paper investigates the effects of uncertainties of material properties and geo-
metrical dimensions on the critical buckling pressure of composite cylindrical shells in
underwater vehicles under hydrostatic pressure. The longitudinal elastic modulus, trans-
verse modulus, shear modulus, Poisson’s ratio, orientation angle and ply thickness of
the composite material are treated as random input variables, and the critical buckling
pressure is treated as a random output variable. Random input variables are sampled
by the Latin hypercube method for the purpose of design of experiment (DOE), and the
critical buckling pressure is evaluated by finite element (FE) analysis. A data-driven sparse
polynomial chaos expansion (PCE) for high-dimensional uncertainty quantification of com-
posite cylindrical shell is constructed and validated. Global sensitivity analysis based on
the constructed sparse PCE is performed to identify the most influential random variables.

2. Finite Element Method
2.1. Finite Element Modeling

A composite cylindrical shell for an underwater vehicle subjected to external hydro-
static pressure is investigated. The composite cylindrical shell has a length of 800 mm, a
diameter of 324 mm, and a thickness of 6 mm. Abaqus, a commercial program, is used for
finite element (FE) analysis. The S4R element is used to model the composite cylindrical
shell, as shown in Figure 1. As sufficient and good-quality data are lacking, the values
of the variables are determined on the basis of a review of the references, testing, and
engineering judgment. The material properties of the carbon fiber–epoxy composite and
its statistical information are listed in Table 1. The stacking sequence of the composite
cylindrical shell is [90/60/−45/−60/90/0/0/30/60/90] s, with a ply thickness of 0.3 mm;
both the orientation angle and the ply thickness are subject to normal distribution with
a coefficient of variation of 2%, as presented in Table 2. The right end cover is made of
ASTM A36 steel (E = 200 GPa, Nu = 0.26), with a thickness of 20 mm, and is modeled using
the C3D8R element. As for constraints, the composite cylindrical shell and the right end
cover are tied. The right end cover has greater stiffness and is chosen as the master surface,
and the composite cylindrical shell is chosen as the slave surface. As for the boundary
conditions for the finite element analysis, the left end of the composite cylindrical shell is
clamped, allowing axial displacement at the right end cover. As for the load for the finite
element analysis, the composite cylindrical shell is subjected to external uniform pressure.
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Figure 1. Finite element mesh of the composite cylindrical shell.

Table 1. Statistical information of the material properties of the carbon fiber–epoxy composite material.

Symbol Unit Mean Coefficient of Variation Distribution

E1 GPa 121 10% Normal
E2 GPa 8.6 6% Normal
E3 GPa 8.6 6% Normal

Nu12 - 0.253 8% Normal
Nu13 - 0.253 8% Normal
Nu23 - 0.421 8% Normal
G12 GPa 3.35 8% Normal
G13 GPa 3.35 8% Normal
G23 GPa 2.68 8% Normal

Table 2. Statistical information of the geometrical dimensions of the composite cylindrical shell.

Property Symbol Unit Mean Coefficient of Variation Distribution

Ply thickness Ti (i = 1, 2, . . . , 10) mm 0.3 2% Normal
Orientation angle Ai (i = 1, 2, . . . , 10) degree θ 2% Normal

The modeling strategy described above was adopted for the finite element analysis
of 12 models in Ref. [36]. The stacking sequences of the 12 models were [±30/90] FW,
[±45/90] FW, [±60/90] FW, with four models for each stacking sequence. The average criti-
cal buckling pressures for the stacking sequences [±30/90] FW, [±45/90] FW, [±60/90] FW
in Ref. [36] were 4.76 MPa, 6.12 MPa, 7.82 MPa, respectively. The results obtained by
Abaqus for models with the stacking sequences [±30/90] FW, [±45/90] FW, [±60/90] FW
were 4.88 MPa, 5.84 MPa, 8.17 MPa, respectively. Therefore, the correctness of the modeling
strategy was validated.

Mesh sensitivity analysis is conducted for composite cylindrical shell, as shown in
Figure 2. For the composite cylindrical shell, a total of 25,160 elements are used for the
finite element model, taking into account both computational time and accuracy.
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2.2. Finite Element Analysis Results

Finite element analysis is performed to obtain the buckling mode shape for the com-
posite cylindrical shell subjected to external hydrostatic pressure, as shown in Figure 3. It
can be seen that the first buckling mode has three half-waves in the circumferential direction
and one half-wave in the axial direction. The critical buckling pressure is 3.6439 MPa.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 5 of 14 
 

 

Figure 2. Mesh sensitivity analysis for composite cylindrical shell. 

2.2. Finite Element Analysis Results 

Finite element analysis is performed to obtain the buckling mode shape for the com-

posite cylindrical shell subjected to external hydrostatic pressure, as shown in Figure 3. It 

can be seen that the first buckling mode has three half-waves in the circumferential direc-

tion and one half-wave in the axial direction. The critical buckling pressure is 3.6439 MPa. 

  

(a) (b) 

Figure 3. Buckling mode shape for composite cylindrical shell: (a) front view; (b) left view. 

3. Sparse Polynomial Chaos Expansion 

3.1. Modeling and Validation 

Polynomial chaos expansion (PCE) is a surrogate model that mimics the true input–

output relationship of a stochastic system, and the assessment of PCE is much faster than 

that of finite element analysis. PCE is computationally intensive for high-dimensional 

problems, and thus sparse PCE is employed instead, which takes into account both the 

convergence rate and the numbers of models assessed [37–39]. 

For a stochastic system Y with M independent components X described by the joint 

probability density function fX, Y has a finite variance; then, the PCE of Y is defined as 

follows: 

Figure 3. Buckling mode shape for composite cylindrical shell: (a) front view; (b) left view.

3. Sparse Polynomial Chaos Expansion
3.1. Modeling and Validation

Polynomial chaos expansion (PCE) is a surrogate model that mimics the true input–
output relationship of a stochastic system, and the assessment of PCE is much faster than
that of finite element analysis. PCE is computationally intensive for high-dimensional
problems, and thus sparse PCE is employed instead, which takes into account both the
convergence rate and the numbers of models assessed [37–39].
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For a stochastic system Y with M independent components X described by the joint
probability density function fX, Y has a finite variance; then, the PCE of Y is defined
as follows:

Y = ∑
α∈NM

yαψα(X) (1)

where yα refers to the expansion coefficients, ψα(X) refers to the multivariate polynomi-
als orthonormal with respect to the joint probability density function fX, and α is a M
dimensional multi-index that identifies the components of the multivariate polynomials
ψα(X).

The multivariate polynomials ψα(X) are obtained as a product of univariate polyno-
mials ϕ

(i)
αi (xi):

ψα(X) =
M

∏
i=1

ϕ
(i)
αi (xi) (2)

where ϕ
(i)
αi (xi) is the univariate orthogonal polynomial of the ith variable with degree αi.

Classic polynomials correspond to specific probability distributions; for instance, the Her-
mite polynomial corresponds to Gaussian distribution, the Legendre polynomial corresponds
to uniform distribution, and the Jacobi polynomial corresponds to Gamma distribution.

For practical applications, the sum in Equation (1) needs to be truncated to a finite sum:

Y ≈ YPCE = ∑
α∈A

yαψα(X) (3)

where A ⊂ NM is the truncation set of multiple indexes of multivariate polynomials.
After applying the least angle regression algorithm to compute the expansion coeffi-

cients, the polynomials that have the greatest effect on the model output are retained and
sparse PCE is obtained. Due to the orthonormality of the polynomial basis, the moments of
the sparse PCE are encoded in the coefficients. The mean and variance of the sparse PCE
can be computed as:

µPCE = y0 (4)

VPCE = ∑
α∈NM,α 6=0

y2
α (5)

where the mean is the constant y0, and the variance is the sum of squares of all of the
coefficients for the polynomials.

First-order Sobol’ indices measure the effect of the input variable alone:

Si =
Vxi

[
Ex−i (Y

∣∣xi)
]

V(Y)
(6)

where V is the variance and E is the expectation. x−i represents the set of all vari-
ables except xi. Total Sobol’ indices measure the effect of the input variable as well as
higher-order interactions:

ST
i =

Ex−i (Vxi (Y
∣∣xi))

V(Y)
(7)

On the basis of the sparse PCE, the first-order Sobol’ indices can be obtained as follows:

Si =

∑
a∈Ai

y2
α

V(Y)
(8)

where Ai =
{

a ∈ NM, ai > 0, ai 6=j = 0
}

.
Total Sobol’ indices share the same expression as first-order Sobol’ indices, except that

Ai =
{

a ∈ NM, ai > 0
}

.
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According to the general framework of uncertainty quantification proposed by Su-
dret [40], quantification of the uncertainty of composite cylindrical shells includes three
steps, as shown in Figure 4.
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Figure 4. General framework for uncertainty quantification.

Step A: The FE model is adopted to obtain the system response or output Y (critical
buckling pressure) for the random input parameters X (longitudinal modulus, transverse
modulus, shear modulus, Poisson’s ratio, orientation angle, and ply thickness).

Step B: As a consequence of the inherent uncertainties of geometrical dimensions
and material properties associated with composite materials, the probabilistic method is
adopted to model the random variables subjected to a specific probability distribution of
the inherent uncertainties.

Step C: The uncertainties with respect to the mechanical properties and geometrical
dimensions are propagated to critical buckling pressure. With the aim of evaluating the
influence of the uncertainties in the mechanical properties and geometrical dimensions on
the critical buckling pressure, uncertainty quantification is conducted and the statistical
moments (mean, standard deviation) of critical buckling pressure and global sensitivity
analysis results are obtained.

With respect to the data-driven sparse PCE established in this study, design of exper-
iment (DOE) was first conducted, and the samples of random input variables subject to
specific probability distributions were obtained and evaluated using FE analysis. Then, the
data-driven sparse PCE was constructed and validated with respect to predictive accuracy.
Statistical moments and global sensitivity analysis can be obtained instantly using the
constructed sparse PCE.

For the data-driven sparse PCE, the material properties of the composite material
and the geometrical dimensions were random input variables, while critical buckling
pressure determined on the basis of FE analysis was the random output. On the basis of
the constructed sparse PCE, uncertainty quantification of was conducted for the composite
shell; the flowchart for the data-driven sparse PCE is shown in Figure 5.
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As for DOE, the Latin hypercube method was adopted for sampling the random input
variables. The sampling data were split into training and testing data sets, with sample sizes
of 350 and 100, respectively. Based on the training data set, the data-driven sparse PCE was
trained, and it was tested on the testing data set in order to validate its predictive accuracy.

The accuracy of the constructed PCE was validated using a testing data set with
100 samples. The critical buckling pressures obtained by means of the finite element method
YFEM and PCE prediction YPCE obtained using the PCE model are shown in Figure 6. The
horizontal axis indicates the value of YFEM, while the vertical axis indicates the value of
YPCE. The blue point indicates the predicted critical buckling pressure YPCE obtained using
PCE for a certain YFEM. Nearly all blue points lie near the line y = x, indicating that YPCE
is approximately equal to YFEM for all of the testing data. This shows good agreement
between the finite element method YFEM and the PCE prediction YPCE; therefore, it can be
concluded that the PCE predicts the critical buckling pressure with high accuracy.

The normalized histogram of critical buckling pressure obtained using the finite
element method YFEM and PCE prediction YPCE on the basis of the testing data set is shown
in Figure 7. The total area under the normalized histogram is 1. The histogram of critical
buckling pressure obtained using the finite element method YFEM is colored blue, and the
histogram obtained using PCE prediction YPCE on the basis of the PCE model is colored
orange. The results indicate good matches.
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3.2. Uncertainty Quantification

As presented in Table 3, the sparse PCE converges at polynomial degree 1. The
sparse PCE was trained on the training data set and tested on the testing data set in
order to validate its predictive accuracy. The validation error on the testing data set was
2.8282 × 10−4. Hence, the constructed PCE was found to be accurate. Moreover, the
number of input variables was 29, and the sample size of training data set was 350, which
is about 12 times the number of input variables. The sparse PCE was able to effectively
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handle the high-dimensional problem with a relatively small data set, while still achieving
the desired accuracy. The mean critical buckling pressure was 3.5777 MPa, the standard
deviation of critical buckling pressure was 0.3149 MPa, and the coefficient of variation
of critical buckling pressure was 8.801%. The critical buckling pressure obtained using
deterministic analysis was 3.6439 MPa, and the mean critical buckling pressure obtained
using the PCE was 3.5777 MPa, with these results indicating good matches.

Table 3. Sparse PCE results.

Sparse PCE Result Value

Number of input variables 29
Maximal degree 1
Size of full basis 30

Size of sparse basis 23
Full model evaluations 350

Leave-one-out error 2.9839 × 10−4

Validation error 2.8282 × 10−4

Mean value 3.5777
Standard deviation 0.3149

Coefficient of variation 8.801%

Global sensitivity analysis was performed on the basis of analysis using the Morris
method and Sobol’ indices, respectively; meanwhile, on the basis of the validated sparse
PCE, the effects of the material properties and geometrical dimensions on the variations in
the critical buckling pressure of composite cylindrical shells were assessed.

On the basis of the total and first-order Sobol’ indices, as shown in Figure 8, the first-
order Sobol’ indices of the random input variables (material properties and geometrical
dimensions) were used to measure the marginal variance contribution of individual random
variables to variances in the output, depicted in blue. Total Sobol’ indices were used to
measure the total variance contribution of individual random variables, including the
interactions with all of the other random variables, as depicted in orange. E1, namely
longitudinal elastic modulus, had the greatest influence on variations in the critical buckling
pressure of composite cylindrical shells, with Sobol’ indices approaching 1, whereas the
other material properties and geometrical dimensions had smaller effects, as their Sobol’
indices were close to 0. The first-order Sobol’ indices were nearly the same as the total
Sobol’ indices for all random variables, implying that there were almost no interactions
between the random variables. From the subfigure of Figure 8 depicted in red, it can be
seen that E2, G12, A2, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10 were the most influential
random variables for the variation in output other than E1.

With respect to the Morris method of sensitivity analysis, the greater the value µ* of a
random variable, the more sensitive the random variable is. σ represents the interaction
between the random variables, and the greater the value σ of a random variable, the greater
the interaction occurring among the random variables. The results of the global sensitivity
analysis using the Morris method are shown in Figure 9. E1, namely longitudinal elastic
modulus, has a relatively high µ* and low σ, whereas the other random variables have low
values of both µ* and σ. Hence, E1, namely longitudinal elastic modulus, has the greatest
influence on variations in the critical buckling pressure of composite cylindrical shells,
whereas the other material properties and geometrical dimensions only have a small effect.
All of the random variables have low values of σ, indicating that the interactions among
the random variables are small.
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The values of µ* for all random variables except E1 are shown in Figure 10, where it
can be seen that E2, G12, A2, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10 are the most influential
random variables for the variation in output apart from E1. This is in agreement with the
results of the Sobol’ indices. The results of g the lobal sensitivity analysis using the Morris
method are consistent with those obtained using the Sobol’ indices. The correctness of the
global sensitivity analysis results is thus validated.
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4. Conclusions

Traditional methods of uncertainty quantification, such as Monte Carlo simulation
and the response surface method, are either time consuming with low convergence rates or
unable to deal with high-dimensional problems. This study aims at the quantification of
high-dimensional uncertainty for composite cylindrical shells while taking into account
uncertainties regarding material properties and geometrical dimensions. Sparse PCE
was built and validated with respect to predictive accuracy on the basis of limited design
samples, following which the mean and standard deviation of critical buckling pressure and
global sensitivity analysis were instantly available. In light of the global sensitivity analysis,
the influences of the material and geometrical uncertainty on critical buckling pressure were
discussed. Sparse PCE is effective for the quantification of high-dimensional uncertainty
in composite cylindrical shells with the desired accuracy. Some crucial conclusions can be
drawn, as follows.

1. The uncertainty of the longitudinal modulus of composite materials has a significant
influence on the critical buckling pressure of composite cylindrical shells, whereas the
uncertainties with respect to the transverse modulus, shear modulus, and Poisson’s
ratio have a weak influence. When the coefficient of variation of ply thickness and
orientation angle does not surpass 2%, the uncertainties regarding ply thickness and
orientation angle have a weak influence on the critical buckling pressure.

2. E2, G12, A2, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10 are the most influential random
variables on variations in critical buckling pressure other than E1.

3. Sparse PCE is effective for the 29-dimensional problem with a limited design sample
consisting of 350 samples (about 12 times the dimensionality), and normalization did
not need to be performed for input variables ranging from 0.421 to 121 in this study,
indicating the robustness of sparse PCE.

4. The critical buckling pressure obtained using FEM and sparse PCE indicates
good matches.
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