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Abstract: Marine adaptive sampling is a technique that makes full use of limited observation re-
sources by selecting the optimal positions. Recently, the design of an adaptive sampling scheme
based on a mobile platform has become a research hotspot. However, adaptive sampling system
involves multiple subsystems, and the attributes as well as tasks are always different, which may lead
to different sampling scenarios. A great deal of research has been conducted for specific situations,
especially with fixed starting and ending points. However, systematic design and simulation experi-
ments under various circumstances are still lacking. How to design the adaptive observation system,
so as to cope with the observation task under different scenarios, is still a problem worth studying.
Aiming to solve this problem, we designed a systematic scheme design process. The process includes
setting up and verifying the background field, adopting the hierarchical optimization framework to
adapt to different circumstances, and variable adjustments for twin frames. The needs covered in
this paper include not having a fixed starting point and ending point, only having a fixed starting
point, having a fixed starting point and ending point, increasing sampling coverage, and simple
obstacle avoidance. Finally, the relevant conclusions are applied to the multi-platform simultaneous
observation scenario. It provides a systematic flow pattern for designing adaptive sampling scheme
of mobile platforms.

Keywords: adaptive sampling; intelligent optimization; data assimilation; ocean forecasting

1. Introduction

Adaptive sampling is a sampling strategy based on prior data, which reduce the
blindness of observation. Mobile platforms such as autonomous underwater vehicle (AUV)
and gliders provide new options for sampling tasks in complex ocean [1,2]. Logically, how
to design adaptive sampling scheme based on mobile platform is a question worthy of
investigation. The solution of this problem has high development potential and application
value in exploring ocean environment and obtaining ocean state. Indeed, it has been applied
to thermocline tracking [3] and marine environment analysis [4]. With the improvement of
modern coupling model forecasting capabilities [5,6], more accurate prior information will
be provided, and the technology will have a broader development prospect [7]. The overall
process is divided into two parts: forecast and observation. Forecast provides guidance for
the design of observation scheme, and observation information improves the quality of
forecast as return by providing more accuracy initial conditions for next forecast.

In an adaptive observation problem based on a mobile platform, Ref. [8] proposed
a deployment method through a genetic algorithm. It studies co-optimization of hetero-
geneous platform and has been validated in a twin experiment framework [7]. Due to
the limitation in the spatial and temporal resolution of the model and the observation
properties of the platform, it only becomes a rough track of the mobile platform. The work
provides a reference for follow-up studies. Ref. [9] used the Gaussian process regression
method instead of an ocean model to complete the sampling of multi-platforms systems in
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a dynamic ocean environment, which has also been proven useful. Ref. [10] improves the
optimization algorithm of adaptive sampling and achieves good results. It divides the sam-
pling into three scenarios according to whether the distribution point and recovery point
of the observation platform can be defined by users. Ref. [4] uses regional ocean model
system (ROMS) and ant colony algorithm to obtain the precise trajectory of the observation
platform when the starting and ending points are known. In this case, the problem is
equivalent to the multi-constraint path planning, and a large number of known algorithms
can be used directly, from the traditional artificial potential field [11] and random tree [12]
to the current popular deep Q network [13].

Adaptive observation is a field biased towards application, and previous studies have
focused on their actual requirements. Ref. [4] studied the fine observation path where the
distribution point and recovery point are known. The authors of [7] provide a refined path
design method. Ref. [10] proposes three scenarios under ideal application background.
However, adaptive sampling system contains multiple subsystems. How to connect the
subsystems and how different sampling scenarios will affect the sampling results still need
further study. There is a lack of systematic research on different scenarios and various
aspects of the system. To fill in the blanks, aiming at the practical problem of improving the
accuracy of forecast system, we realize a series of work from background field construction
and verification to observation scheme design and verification. Meanwhile, we realized
the transformation of the three scenarios based on the hierarchical optimization method.
The role of each part is evaluated in the twin experimental framework. Finally, relevant
conclusions are applied to design the observation network composed of multiple platforms.

The first step of adaptive sampling is constructing the background field based on prior
information. Lots of ideas have been proved useful to deal with the problem [14–16]. When
the sampling duration is long or the model time resolution is high, the prior information
required in the adaptive sampling process of mobile platform is a sequence. In [4], the
background field is constructed by calculating the spatial variability in the mean of the state
sequence. Different prior information utilization methods can provide more references for
sampling. In this paper, we construct the background field based on the temporal variability
of variables, and the method is tested though experiments. Because the cause of error
is complex and the sampling simulation involves probability problem, an unsupervised
learning method(k-means) is used to roughly classify background fields. The k-means
method is effective and simple in principle and is widely used [17,18]. From [4,7], the
swarm intelligence algorithm proved to be useful in adaptive observation scheme designs
based on a mobile platform, and we use an improved bare-bone particle swarm optimiza-
tion (BBPSO) [19,20] algorithm with fewer parameters to solve the problem model. This
algorithm is an extension of the particle swarm optimization (PSO) [21,22] and has been
widely used in other fields and proved to be effective [23]. When the dimension of variables
is small, we use ensemble estimation to accelerate the computation. The deployment of
observation nodes is completed under unconstrained conditions to verify the effectiveness
of the algorithm. Then, the attribute constraint of the observation platform is added. After
completing the design of the observation scheme for single mobile platform, we evaluate
the observation scheme through cost function and sampling simulation under the twin
frame. The analysis after observation is conducted against the initial forecast. Finally,
the preliminary conclusion is applied to the condition of multi-platform simultaneous
observation.

This paper is organized as follows. Section 2 introduced the main components of the
adaptive observation system, including the numerical simulation method (intermediate
coupled circulation model, ICCM) [24], the data assimilation method (the ensemble adjust-
ment Kalman filter, EAKF) [25], constructing and testing methods of the background, and
problem model and intelligent optimization method. Section 3 showed the results of the
verification experiment of the background field as well as the optimization experiment of a
single-platform observation scheme. An observation scheme based on a single platform is
determined. In Section 4, the sampling schemes are tested with twin frames. After analyz-
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ing the role played by each layer of optimization, the method is applied to the condition of
multi-platform simultaneous observation. Section 5 gives the summary and discussion.

2. Adaptive Observation System
2.1. Numerical Simulation and Data Assimilation Method

Developed from the globally resolved energy balance (GREB) [26] model and the
model used by [27], the ICCM has the feature of energy conservation and spatial structure.
It is suitable for studying the evolution of ocean temperatures. Three components are
included, namely, the atmosphere, ocean, and land. Table 1 described the model briefly
and the details are given in [24].

Table 1. Multi-layer nested process of the coupled model.

Components Equations

atmospheric potential vorticity conservation equation
atmospheric temperature equation

ocean ocean surface temperature equation
subsurface temperature equation
oceanic stream function equation

land land temperature equation

ICCM has a low spatial resolution. The resolution is beyond the navigation capability
of the mobile platforms. Therefore, it is concentrated through multiple nestings before
being applied.

The analysis is tested through a biased twin experiment framework. In the twin exper-
imental framework, the “perfect” model is used as the “truth”, producing the observations
by adding a Gaussian noise. The “biased” model used to produce forecast. The difference
between the “biased” model and the “perfect” model is different physics simulation in
outgoing planetary longwave radiation. The “truth” model uses the method in [26] (de-
fined as DF11), while the “biased” model uses the method in [28] (defined as TW82). The
parameters and initial condition are set up as [29]. We define S0 to S6 to represent different
ocean states. The root mean square error (RMSE) between the estimated state and the real
state is used as the evaluation index. A simple flow chart of the twin experiment framework
is shown as Figure 1.

Figure 1. The flow chart of the twin experiment framework’s setup with ICCM.
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The data assimilation method used in the adaptive observation system is EAKF [25]
which has two steps. First, the observational increment at the observational location is
calculated. Second, the observational increment at the observational location is used to
adjust the states and parameters in the model [30,31]. There are also some improvements
introduced in EAKF. In order to prevent the expansion of the prior ensemble from being too
small, an expansion scheme based on parameter sensitivity is introduced [32]. In order to
remove spurious correlations, a localization scheme is introduced [33], where the distance
factor is calculated through the GC function in [34], and the observational impact radius is
set as in [24].

2.2. Constructing and Testing Method for Background

The background field is the core part of adaptive observation. In the sampling whose
purpose is improving the accuracy of the analytical data, assuming that the forecast of the
ocean elements is Y f = {y f

t | t ∈ [0, T]}, our goal is minimizing the mean of Equation (1):

Ea = {‖ya
t − ytruth

t ‖/
√
(Nbin) | t ∈ [0, T]} (1)

where ‖‖ represents the 2-norm. Nbin is the bins number. Ea represents the series of analysis
error, and t represents the index of time steps since the initial time. y f

t is the state forecasted
at time t. T means the maximum time steps in experimental period. The analysis of ocean
elements Ya = {ya

t | t ∈ [0, T]} is obtained by combining Y f = {y f
t | t ∈ [0, T]} and

observation information Yo = {yo
t | t ∈ [0, T]} through data assimilation. The truth state

of the ocean elements is defined as Ytruth = {ytruth
t | t ∈ [0, T]}. However, in engineering

problems, Ytruth is unknown. It is necessary to reconstruct the background field according
to prior information. The optimal sampling scheme should meet the following conditions:

X∗ = argminF( f (X)), X ∈ A (2)

where X represents an ensemble of sampling points, and f (X) is the mapping between
position and value. X∗means the optimal scheme. It is equal to an evaluation criterion of the
observation position. We assume that samples at locations with greater temporal variability
are more valuable. The background field is constructed based on the standard deviation of
the state series. The standard deviation is reciprocal and normalized to fit the cost function.
The assimilation process is set as follows: sampling results are reported back every 12 h,
and two samples are fed back at a time. In 5 days (i.e., 10 time-steps of the model), a total
of 20 samples are collected.

Because of the complex coupling relationship between variables, it is difficult to verify
the validity of the background field theoretically. Therefore, we propose an experiment-
based method. The K-means algorithm is used to cluster the background field. The
experiment is divided into two steps. First, the number of clusters is chosen as 4 to roughly
maintain the characteristics of the background field. Cluster centers are sorted according
to the value. Second, 20 points are selected randomly in each cluster used as observation
points. The sampling process is simulated in a twin experimental framework. If the sorting
of the analysis accuracy is consistent with the sorting of the cluster centers, the conclusion
is drawn that the background is effective.

2.3. Optimization Framework and Algorithm

For the convenience of expression, we define the three cases in Table 2.
We realized the transformation from high degree of freedom to low degree of freedom

through the hierarchical optimization method of determining variables step by step, and
finally determined the sampling scheme. The first level of optimization is used to determine
the starting point of the sampling platform. The second layer of optimization is used to
determine the endpoint of the sampling platform. The third layer optimization is the local
adjustment of the track nodes of the sampling platform.
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Table 2. Multi-layer nested process of coupled model.

Freedom Cases

High The distribution point and recovery point of
the mobile platform are both determined by

the users.

Medium Only one of the distribution points and
recovery

points of the mobile platform are determined
by

the users.

Low The distribution point and recovery point of
the mobile platform are known.

Assume that the deployment position is xs = [xs1, xs2], and the recovery position is
xe = [xe1, xe2]. r represents the distance between xs and xe. The relationship is described
as follows: [

xe1
xe2

]
=

[
xs1
xs2

]
+ r
[

cosθ
sinθ

]
(3)

The cost of scheme can be expressed as Equation (4):

fsp =
1

Lsp

∫
Norm((

1
T

T

∑
j=1

(yp
x,j − ȳp

x)
2)−1)dx (4)

where sp is the linear scheme, and Lsp is the length of sp. Norm() is the normalized function,
and in this work, it is linear. The purpose of optimization is minimizing Equation (4) by
finding optimal values of x∗s1, x∗s2, and θ∗, as in Equation (5):

[x∗s1, x∗s2, θ∗] = argmin fsp(xs1, xs2, θ) (5)

Since the influence of θ on fsp is independent at different locations. Before the opti-
mal position x∗s is determined, θ∗ must be concluded. The nested structure is shown in
Equation (6):

[x∗s1, x∗s2, θ∗] = argmin fsp(xs1, xs2, argmin fsp(θ | xs1, xs2)) (6)

fsp(θ | xs1, xs2) is calculated multiple times to obtain the optimal θ in xs. When [xs1, xs2] is
eliminated, θ needs to be recalculated. In the optimized structure, lots of invalid calculations
are generated. To avoid that, an optimal estimate of θ at point [xs1, xs2] (defined as θ∗

′
xs1,xs2

)
is used to determine [x∗s1, x∗s2]. The new optimal structure is described as follows:

[x∗s1 x∗s2 θ∗] = argmin fsp(argmin fsp
(

xs1, xs2
∣∣θ∗′xs1,xs2

)
, θ) (7)

where θ∗′xs1,xs2
is estimated through ensemble estimation method. This method can reduce

the calculation time to some extent.
BBPSO is a swarm intelligence algorithm. It abandons the speed update process of the

particle swarm optimization (PSO) and does not need to input parameters such as inertia
weight and update operator, which is more concise and proved to be derived from the
standard PSO algorithm [35]. The BBPSO used in this paper is combined with an adaptive
parameter adjustment strategy to improve [36,37]. The early form of the BBPSO algorithm
is shown in Equation (8):

Xid = N((Pid+Pgd)/2,
∣∣∣Pid−Pgd

∣∣∣) (8)
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In order to enlarge the searching range of particles, the position updating formula is
modified as follows:

Xid =

{N((rPid+(1−r)Pgd)

2 ,
∣∣∣Pid−Pgd

∣∣∣) r < 0.5
Pgd otherwise

(9)

where r is a random number that obeys a uniform distribution of (0,1). In this paper, the
random value in Equation (9) is regarded as a parameter, and the improved formula is
shown in Equation (10):

Xid = N(((1− c)Pid+cPgd)/2,
∣∣∣Pid−Pgd

∣∣∣) (10)

where c is an increasing function. It makes the particles rely more on the individual optimal
value in the initial stage to ensure the diversity of the particles. Then, it is increased
with time to speed up the convergence process. The sigmoid function is selected as the
adjustment function. It is shown in Equation (11):

c(i) = 1/(1 + exp(−(i− imax/2))); i ∈ [1, imax] (11)

The improved algorithm takes the diversity of particles and the convergence speed
into account. The number of particles is selected as 50.

3. Scheme Design for a Single Platform
3.1. Validation of the Background Field

The construction of background field is based on a hypothesis that the temporal vari-
ability in the ocean state can reflect the sample value. It is necessary to test the hypothesis.
Without loss of generality, the forecasts from 1 to 5 March, June, September, and December
are used in the experiment. The four-day data are evenly distributed over different seasons
of the year to eliminate the influence of seasonal factors. In the preliminary validation, two
sets of observation positions with the maximum background field value (BG_MAX) and
the minimum background field value (BG_MIN) are selected. These two sets of observation
positions are used to make the experimental results more obvious. Samples in BG_MAX
and BG_MIN are input into the “twin” experimental framework with tiny observation
error (obs_err = 10−3). The series, mean, and reduction percent of the root mean square
error (RMSE) of analysis are shown in Figure 2.

The panels (a, b, c, d) in Figure 2 clearly shows that the RMSE introduced samples in
BG_MIN is less than BG_MAX in most time. Exceptions also occur when the forecast error
is small enough. The reductions in RMSE with samples in BG_MIN in four months are
34.8%, 77.3%, 77.2%, and 43.1%, respectively. Compared to the reductions with samples in
BG_MAX (19.5%, 52.9%, 63.0%, 27.4%), the improvement is evident. However, in practical
application, the observation error is not going to be ideal. In order to be closer to the actual
situation, the experiment is repeated with the observation error (obs_err = 10−5), and the
error is greater than the mean of forecast error. The result is shown in Figure 3.
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(a) March (b) June (c) September

(d) December (e) Mean of RMSE series (f) Reduction rate of RMSE

Figure 2. Comparison of analysis accuracy after introducing samples in BG_MAX and BG_MIN with
obs_err = 10−3.

(a) March (b) June (c) September

(d) December (e) Mean of RMSE series (f) Reduction rate of RMSE

Figure 3. Comparison of analysis accuracy after introducing samples in BG_MAX and BG_MIN with
obs_err = 10−0.5.



J. Mar. Sci. Eng. 2022, 10, 664 8 of 22

When the observation error is increased, only Figure 3b retained the characteristics
consistent with the above conclusion, obviously. Compared to Figures 2a,c,d and 3a,c,d
show that observation error has great influence on the series of RMSE, and the case even
appears that observation information leads the analysis to be worse. Therefore, it is difficult
to extract information from series under the condition of big observation error. However,
the mean of the RMSE series still shows the regularity. From Figure 3e, the reductions in the
RMSE with the samples in BG_MIN are larger than with the samples in BG_MAX. Notice
that the result in December are not as obvious as the other months, and the reduction
percent is only 0.4% in BG_MIN relative to BG_MAX. Because the forecast error is small
enough, there is limited room for improvement.

After the preliminary conclusion is obtained, the effectiveness of the background field
will be further proven by the K-means algorithm. Because the correspondence between
background field and sampling value is not clear, the test is only for a rough zone partition.
The experimental area is divided into four zones by the K-means algorithm. The category
and clustering centers of background fields in four seasons are shown in Table 3.

Table 3. Multi-layer nested process of coupled model.

Months Category Centers

March BG_1 0.664387
BG_2 0.426747
BG_3 0.266542
BG_4 0.126797

June BG_1 0.667943
BG_2 0.477465
BG_3 0.343627
BG_4 0.150293

September BG_1 0.624139
BG_2 0.432476
BG_3 0.293865
BG_4 0.114702

December Var_1 0.711194
BG_2 0.478621
BG_3 0.298754
BG_4 0.117448

In each category, 20 points are selected as sampling points. The observation error is
defined as obs_err = 10−0.5. Experimental results are shown in Figure 4.

The four groups of experiments had consistent results. In June and September, the
mean of the RMSE series had an obvious downward trend, as the background value of
the sampling region decreases. In March and December, this trend has also been shown,
but the forecast has limited room for improvement and some out-of-trend values may
appear, such as BG_2 in December. After the above experiment, the conclusion is drawn
that the temporal variability in the forecast is positively correlated to sampling value to a
certain extent.
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Figure 4. The mean of the RMSE series analysis introduced different observation position sets in
four months.

3.2. Three-Level Optimization under the Simple Cost Function

The global optimal solution calculated by BBPSO has inevitable random errors when
dealing with high dimension, multi-peak, and multi-constraints. To make the result closer
to ideal solution, multi-population strategies are used. Multi-population strategies are
equivalent to multiple independent repetition experiments. The result obtained by multiple
populations is closer to the ideal solution. Assuming that data assimilation processes were
completed nda times, the number of sampling positions shall be an integer multiple of nda,
i.e., (N = cnnda, cn ∈ N+). Considering the influence of path length and model resolution,
to avoid repeated observation, we take

√
2N ≤ r as a constraint. The number of sampling

positions is selected as 20. The optimization process of the algorithm is shown in Figure 5.
Figure 5a–c correspond to the optimization process of 10 populations in the high degree of
freedom, medium degree of freedom, and low degree of freedom. The line segments of
different colors in the figure represent 10 independent populations. Figure 5d represents
the iterative process of the optimal solution in the three-level optimization.

In Figure 5a, initial values of the cost function are about 0.2, and few populations
reached 0.25. This value is the global optimal solution searched by the whole population
at the beginning. Therefore, it is slightly less than the random choice. After the first
optimization, the value of the cost function all drop below 0.1, and xs1, xs2, and θ∗

′
xs1,xs2

have
been obtained, which leads to the small initial value of the second optimization. The second
optimization is essentially the re-optimization of the first optimization. Hence, the value
of cost function does not decrease much. In the first and second optimization, because
the particle dimension is less. The curve converges quickly. The curves of 10 populations
converge within 100 generations. However, in the third optimization, the curve does not
converge until the 200th generation. In the third optimization, the convergence value of one
population reached 0.04, which is significantly different from the other nine populations.
The difference is caused by the slight difference in the previous two optimizations. The
three-level optimization process of the population finding out the optimal solution is
shown in Figure 5d. The blue, red and yellow lines represent the first, second and third
optimization process respectively. In the first two optimizations, the optimal solution is
used as the initial condition for the next optimization.
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(a) First (b) Second

(c) Third (d) Optimal

Figure 5. Three-level optimization process based on the BBPSO algorithm.

Convergence values of three-level optimization are compared as Figure 6. Since the
results are similar in all four months, only the results in March are presented.

(a) Convergence values (b) Reduction rate

Figure 6. Convergence values of various populations in a three-level optimization process.
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From Figure 6a, the population that finds the optimal value in previous two opti-
mizations may not find the optimal value in the third optimization. The results after the
previous two optimizations can be used as a heuristic factor (similar to A*) of the third
optimization. Compared to previous optimization, the second optimization is improved
about 10−8 to 10−4. It shows that the ensemble estimation method used in the first opti-
mization is effective. The second optimization has less room for improvement. Compared
to the second optimization, the third optimization has obvious improvement. Because the
observation positions have changed significantly, the minimum after three optimizations is
between 0.04 and 0.05. And the improved effect on the previous optimization is between
10−2 and 10−1.

The observation scheme obtained after three optimizations is shown in Figure 7. The
color bar represents the value of the background field, and the red line on background
represents the observation scheme based on a single platform. Each column represents
an optimization, and each row represents a month. There are commonalities in the ex-
perimental results of four different months. For the observation scheme designed with
high degrees of freedom, the observation platform is placed in the northwest, which is
consistent with the background field. The scheme in Figure 7b,e,h,k is basically the same as
in Figure 7a,d,g,j, which drew a similar conclusion to Figure 6. In the absence of the obser-
vation platform attribute constraints, the sampling positions after the third optimization
are all concentrated in the area with small a background field value. The result accords a
simple cost function but does not meet the actual condition.

(a) March, First (b) March, Second (c) March, Third

(d) June, First (e) June, Second (f) June, Third

Figure 7. Cont.
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(g) September, First (h) September, Second (i) September, Third

(j) December, First (k) December, Second (l) December, Third

Figure 7. Three-times optimized observation schemes in different months based on a simple cost
function.

3.3. Improved Cost Function

In order to make the observation scheme meet the actual situation, more constraints
and the voyage function are added to the simple cost function. The global cost function can
be regarded as the linear combination of the local cost function after adding the constraints.
The global cost function contains the following function and constraints.

1. Temperature time variability function ( fσ)
2. Voyage function ( fL)
The range of mobile platforms is limited. Observation positions in remote area are

abandoned to sample well. fL is set to be a part of global cost function; when the voyage
exceeds the maximum voyage, the scheme will be re-planned. The maximum navigation
range of the mobile platforms is assumed as 1000 km, and the average speed is assumed as
4.5 knots.

3. Constraint on the uniformity of sampling points ( fU)
The time interval of assimilation is constant. In order to reduce speed variation during

navigation, fU is introduced into the global cost function. The constraint is the standard
deviation of the distance between each sampling point and the previous sampling point.

4. Constraint on distance potential between sampling points ( fP)
fP is used to prevent multiple sampling points selected in the same area and collisions

when multiple platforms are sampling simultaneously. The fP is defined as Equation (12):

fP(Rxi ,xj) =
1

Nr
∑ Rxi ,xj

Nr = num(Rxi ,xj 6= 0)

Rxi ,xj = max{1−
Lxi ,xj

Lmax
, 0}

i, j ∈ [1, N] ∩ N+, i 6= j

(12)
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Rxi ,xj means the distance potential between xi and xj, and Lxi ,xj represents the distance
between xi and xj. fP is the mean of the distance potentials where the distance potentials
are not zero.

5. Boundary cost function (D)
D is used to prevent the observation platform from colliding with obstacles or leaving

the experimental area. The common feature of the boundary and obstacle is lack of
background information. As the observation platform passes through these areas, a penalty
value (two orders of magnitude greater than local cost function) is added to the global
cost function.

6. Global cost function (F)
The global cost function is the linear combination of local cost functions after adding

the constraints, which is defined as follows:

FG = W1 fσ + W2 fL + fU + D0 fP + D (13)

where W1 and W2 are weights. D0 is the coefficient used to ensure that fP is valid. The
purpose of adaptive sampling is sampling more valuable information. Therefore, the
weight of the local cost function used to evaluate the value of information should be as
large as possible. In this experiment, w1 is set to 0.9.

3.4. Three-Level Optimization under the Improved Cost Function

When the effective range of distance potential constraints Lmax ≤ r/N, the best
sampling scheme is the linear scheme obtained after the second optimization. First, in
Euclidean space, the straight line between two points is the shortest, which led to the
smallest value of fL. Second, the sampling points are uniformly selected, which led to the
0 of fU . Third, Lmax ≤ r/N means that the distance between pairs of sampling points is
less than Lmax, which led to fP = 0. Therefore, the linear path has obvious advantages in
minimizing cost function. When the effective range of distance potential is increased to
extend the spatial distribution range of sampling points, the sampling scheme designed by
using the global cost function is shown in Figure 8.

The color bar represents the value of the background field, and the red line on back-
ground is the observation scheme based on a single platform. Each column represents an
optimization level, and each row represents a month in Figure 8. The sampling points
calculated through the third-level optimization are roughly distributed around the linear
scheme. The range of observation is concentrated in the low value (blue) region, which is
consistent with the intuitive experience. The scheme is similar to the usual N-type. The
background fields constructed based on forecast in four months are similar, which lead the
schemes to also be similar across the four months.

The third optimization can also be used for obstacle avoidance in simple terrain. To
verify this feature, the midpoint of linear observation scheme is taken as the center of the
obstacle. The feature of obstacle avoidance by applying the third optimization is shown in
Figure 9.

The track of the mobile platform (red lines) bypasses obstacles (black circles area) in
four months successfully. The third optimization takes the background into account so
that there is a general plan for the direction where the mobile platform should navigate
around obstacles. Notice that in the condition of simple terrain, such as in Figure 9, the
initial conditions can be selected randomly. When the terrain is complex, it is necessary to
combine with other path planning algorithms to provide initial conditions.
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(m) March, First (n) March, Second (o) March, Third

(p) June, First (q) June, Second (r) June, Third

(s) September, First (t) September, Second (u) September, Third

(v) December, First (w) December, Second (x) December, Third

Figure 8. Three optimized observation schemes in different months based on improved cost function.

The three-level optimization method proposed can not only be used as a whole, each
layer can also be applied to different situations as an independent part. The result of
three-level optimization based on improved cost function is useful to find observation path
through sampling sensitive location, and it also works under simple terrain conditions
(with few obstacles).



J. Mar. Sci. Eng. 2022, 10, 664 15 of 22

(a) March (b) June

(c) September (d) December

Figure 9. Obstacle avoidance based on the third optimization.

4. Validation and Application of Design Methods
4.1. Verification of Single Platform Scheme

Results in Section 3.1 show that the observation error have accidental influence
on experiment. The influence is further analyzed before twin framework used. From
Figure 2, the mean of the RMSE series of forecast is between 0.2 and 0.35. In order
to make the analysis better than the forecast, the observation error standard should
be equal to or slightly smaller than the forecast. Meanwhile, to improve the experi-
mental efficiency, the observation errors are selected by the experiment. Four control
groups are set as ERR_1 = 10−0.5, ERR_2 = 10−1, ERR_3 = 10−1.5, and ERR_4 = 10−2.
Without loss of generality, observation positions set to BG_MAX and BG_MIN are both
used again in this experiment. After the sampling and data assimilation processes are
simulated, the RMSE of analysis is shown in Figure 10.

Figure 10a,b are the results with samples in BG_MAX, and Figure 10c,d are the results
with samples in BG_MIN. From Figure 10a,c, there is also an obvious downward trend
of the mean of RMSE series as the observation error decreases. Figure 10d shows the
connections between months are more concentrated with ERR_2, ERR_3, and ERR_4. It
suggests that the range of change gradually diminishes, starting from ERR_2. Therefore,
the value of observation error is chosen as 0.1 in follow-up experiment. Forecast system
in this paper can be used for qualitative analysis of ocean environment, but there is a gap,
compared to operational forecasting system. Hence, the setting of the observation error is
different from the real situation.

After completing the setting of experimental errors in the twin frame, we selected
five linear paths evenly in the experimental area as the control group. These are shown in
Figure 11. The observation range of the control group is large enough. Meanwhile, it is
consistent with the actual observation without prior information.
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(a) RMSE,BG_MAX (b) Rate,BG_MAX

(c) RMSE,BG_MIN (d) Rate,BG_MIN

Figure 10. The mean and reduction rate of RMSE in different observation error conditions.

Figure 11. The control group used to test the observation scheme.

When single-platform sampling scheme is verified, we take the first path (from top
to bottom) as control group. And the first two paths (from top to bottom) are selected as
control group, when two platforms simultaneous sampling scheme is verified. This setup
has an advantage that control group with more platforms included control group with
fewer platforms. The influence of the number of observation platforms can be studied
through the control group. The experimental results under the twin frame are shown in
Figure 12.
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Figure 12. The influence of the number of observation platforms on the mean of RMSE series of
analysis.

From Figure 12, there is no obvious correspondence between the accuracy of analysis
and the number of observation platforms. In March, a downward trend is roughly reflected.
However, observation information sampled in the third path has a negative effect on the
accuracy of analysis. A similar phenomenon occurred in June. Observation information
sampled in the fifth path also has a negative effect. Figure 12 proves the observation position
has a great influence on sampling and that adaptive observation is a key technology in
ocean observation.

After completing the setup of the twin frame and the control group, the sampling
scheme design method of the single platform is verified. The verification is divided into two
steps: verification based on cost function and verification based on simulation experiment
in the twin framework. Comparison results of cost function between the experimental
group and control group are shown in Figure 13a. The mean of the RMSE series about the
analysis obtained from different schemes are shown in Figure 13b.

(a) Cost function (b) RMSE

Figure 13. Verification of design methods based on a single platform.

From Figure 13a, for the value of the cost function, the observation scheme optimized is
reduced 1.0%, 9.8%, 8.3%, and 3.7% in March, June, September, and December, respectively.
The gap with the experimental group is small because the observation positions of the
control group are almost all located in the small value region of the background field (blue
area). From Figure 13b, in the sampling simulation experiment based on the twin frame, the
sampling results after each optimization are all better than the control group. The means of
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the RMSE series obtained according to the optimized scheme are 0.15, 0.17, 0.16, and 0.15
in March, June, September, and December, respectively. Compared to the control group,
these are reduced by 6.1%, 28.3%, 26.3%, and 14.6%, respectively. Compared to the forecast,
these are reduced by 26.3%, 49.3%, 49.1%, and 34.8%, respectively. The difference in the
three optimizations is less than 0.01. This phenomenon shows that the optimal observation
position has the characteristics of regionalization and that the sampling effect is more
dependent on the selection of protection position and recovery position of the platform. In
sensitive areas, it is difficult for local adjustment of the observation points to achieve the
purpose of improving the sampling effect.

4.2. Application of Design Method in Multi-Platform Observation

The scheme design for simultaneous observation based on multiple platforms is more
complicated. On the one hand, a design scheme for multiple platforms needs more compu-
tation. Meanwhile, it is also necessary to prevent collisions and repeated sampling between
platforms. Some conclusions in Section 3 are helpful for this problem. Firstly, from Figure 6
it can be seen that the ensemble estimation method not only reduces the computation
time but also does not reduce the accuracy obviously. Secondly, sometimes, limited by
energy carrying capacity and communication conditions, the observation platform cannot
change direction frequently. Thirdly, the linear scheme is optimal when deployment points
and recovery points are planned and Lmax ≤ r/N. The set of Lmax > r/N is determined
for expanding the search scope, but its improvement on sampling results is limited from
Figure 13b.

Two additional constraints are added to the cost function, aiming at the problem
characteristics of simultaneous observation of multiple platforms.

1. Constraint on cross track
When tracks cross, there is a risk of collision between observation platforms. This

situation is avoided by imposing a penalty value into the cost function.
2. Constraint on anchor point
In order to prevent the track of the mobile platforms from overlapping or being too

close, multiple anchor points are added to the track. When the distance between anchor
points is too small, penalty values are also added to the cost function.

Simultaneous sampling scheme based on 2, 3, 4, and 5 platforms in high freedom
degree are shown in Figure 14. The subgraphs in the same column correspond to the same
month. And the subgraphs in the same row correspond to the same number of observation
platforms. From Figure 15, no matter the platform’s number and month, all platforms are
concentrated in the low value region (blue or light blue areas) of the background field. A
distance between the sampling paths makes the sampling range enlarged. That is what a
constraint on an anchor point does.

According to the scheme above, the sampling process is simulated in a twin framework.
The means of the RMSE series of analysis are compared to the control group in Figure 15.
Figure 15a–d describe the improvement of the forecast by sampling based on two platforms,
three platforms, four platforms, and five platforms. Compared to the control groups (blue
bar), the optimized scheme (red bar) has a certain improvement in the different months
and the different number of platforms. For example, in Figure 15a, the means of the RMSE
series of optimized analysis are 0.14, 0.15, 0.15, and 0.14. Compared to the control group,
they decrease by about 9.1%, 35.3%, 24.6%, and 26.1% in March, June, September, and
December, respectively. Compared to the original forecast, it decreased by about 32.3%,
53.5%, 53.8%, and 38.3%. The same results are found on a different number of platforms.
When designing a multi-platform simultaneous observation scheme, the conclusion of a
single platform hierarchical optimization is applied. Compared with the control group
under the condition of a high degree of freedom, the observation effect of the adaptive
observation scheme is improved in different months and different numbers of platforms.
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(a) March, Two (b) June, Two (c) September, Two (d) December, Two

(e) March, Three (f) June, Three (g) September, Three (h) December, Three

(i) March, Four (j) June, Four (k) September, Four (l) December, Four

(m) March, Five (n) June, Five (o) September, Five (p) December, Five

Figure 14. Optimal sampling scheme based on 2, 3, 4, and 5 platforms in the high degree of freedom.

(a) Two (b) Three

Figure 15. Cont.
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(c) Four (d) Five

Figure 15. Average RMSE and its reduction rate of analysis in the control group and the experimental
group of multi-platform optimization.

5. Summary and Discussions

We designed a systematic process for adaptive sampling on mobile assets. Through
the three-layer optimization framework, multiple sampling scenarios are connected in
series. Factors affecting sampling are studied in a twin experimental frame. Finally, the
conclusions of these studies are applied to the situation of simultaneous observations of
multiple mobile platforms.

We first constructed the background field according to the time variability of bins.
Due to the probability of sampling process and the complexity of internal dynamics, the
background field and sampling error cannot correspond completely. In order to solve this
problem, we use a k-means algorithm to classify the background field region and test it
through comparison between categories. The series of RMSE are more easily affected by
observation error. Therefore, we set the mean of the series as the criterion to evaluate
the analysis. Then, for multi-case transformation, we propose a hierarchical optimization
framework. BBPSO is used for the optimization problem. In the high degree of freedom
situation, we use ensemble estimation to speed up the calculation. Experiments show
that this method is effective in low dimensional problems. In the low degree of freedom
situation, we improved the cost function by adding sampling constraints. The result is
similar to the common N-type sampling path. The method under constraints has a simple
obstacle avoidance ability. The sampling scheme is simulated in the twin framework. We
find that in a certain area, especially when the difference of the background field is small,
local adjustment of the sampling position does not affect the sampling effect. Therefore,
in the follow-up experiment, we pay more attention to the location of deployment and
recovery. During the experiment of simultaneous multi-platform observation, we obtain
the conclusion that under the twin framework used in this paper, the number of assets
has little influence on the sampling effect. Finally, the optimized multi-platform scheme
is simulated in the twin framework, and the result is superior to the control scheme in
different times and numbers of platforms.

However, the experiment is based on the multi-layer nested coupling model, whose
simulation of the real situation is limited. The conclusion needs to be verified further by
a more accurate model. The hierarchical optimization framework proposed in this paper
has some limitations, resulting in the separation between the layout point, recovery point,
and key nodes. As a result, sampling schemes tend to search along or around a straight
line. Subsequently, we will complete the integrated design between the starting points,
ending points, and observation nodes by improving the cost function. In addition, the
method can be combined with a path planning algorithm to realize obstacle avoidance in
complex terrain environments. Moreover, there are many methods to construct an adaptive
sampling background field, which can provide effective reference information for sampling.
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How to combine these messages and obtain a background field that can better reflect the
sampling value also needs to be further studied.
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