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Abstract: Natural gas hydrate is widely spread in marine environments around the world. It has
great energy potential due to its high methane gas content. High-precision exploration and evaluation
of marine gas hydrate still face great challenges as it is affected by the complex reservoir control
mechanisms and distribution characteristics. Resistivity is widely used in geophysical logging and
theoretical research on gas hydrate-bearing reservoirs by utilizing the high sensitivity electrical
response. In this paper, based on the examination of the global marine gas hydrate occurrences,
resistivity logging results are summarized. Then the key remaining gas hydrate resistivity experimen-
tal concerns are reviewed. In summary, resistivity properties are a reliable means to derive the gas
hydrate reservoir characteristics, despite the effect induced by the anisotropic properties of hydrate
reservoirs and drilling technology. The overall resistivity change associated with the occurrence of
pore filling gas hydrate in reservoirs are relatively small, and the specific value is affected by sediment
lithology and hydrate saturation. On the other hand, fracture filling hydrate reservoirs have strong
anisotropy, and massive hydrate occurrences (i.e., layers of gas hydrate with no sediment) section
shows very high resistivity variation. Clay minerals are an important factor restricting the accurate
estimation of gas hydrate saturations from in situ resistivity measurements. Many experimental
studies have proposed the correction of Archie empirical formula, but widely representative models
have not yet been developed. It is worth noting that more complex resistivity measurements may be
able to provide additional electrical response information on various gas hydrate systems.

Keywords: marine gas hydrate; resistivity logging; electrical property; saturation

1. Introduction

During the natural gas migration from deep within the earth to the surface, the
migrating gas can combine with water molecules under certain temperature and pres-
sure conditions to form solid ice-like substances, which are usually called natural gas
hydrates [1,2]. Geological survey results show that there is a significant amount of natu-
ral gas hydrate in the ocean with water depth of more than 300 m [3–6], and their main
component is methane. It is estimated that the methane gas stored in global gas hydrate is
about 1.8 × 1016~2.1 × 1016 m3, twice the organic carbon reserves and as much as the sum
of coal, oil, and conventional natural gas globally [7–9]. Therefore, since the end of last
century, an upsurge of gas hydrate resource exploration and development has swept the
world. China, the United States, Japan, Canada, Germany, Russia, India, South Korea, and
other countries have formulated marine gas hydrate exploration and development projects
aimed at energy security, economic strategy, and environmental security [10–14].
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As can be seen from Figure 1, there are over 230 areas with direct or indirect gas
hydrate evidence in the world, 97% of them are distributed in oceanic areas, and only small
areas are distributed on terrestrial permafrost [15]. The research hotspots for marine gas
hydrate are concentrated in the South China Sea, Nankai Trough of Japan, Ulleung Basin of
East Sea, the sea out of Oregon on the east and west sides of the Pacific Ocean, the Gulf of
Mexico, and the Gulf of Oman in the Indian Ocean, and so on [16].
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Marine gas hydrate has accumulated special characteristics, such as greater water
depth, non-diagenesis, and irregular and uneven distribution. These characteristics lead
to great challenges in gas hydrate evaluation and exploitation [17–19]. The free gas layer
is often developed below the bottom boundary of the submarine hydrate stability zone.
Due to the velocity difference in sound waves at different media interfaces, an abnormal
phenomenon of “bottom simulating reflection” (BSR) is produced in seismic images, which
is an important sign for early gas hydrate identification. However, with the investigation
degree deepening, a consensus has been reached that there is no strict mutual correspon-
dence between BSR and hydrate reservoir, and it is also difficult to accurately characterize a
gas hydrate reservoir only by BSR [20–22]. Methods such as well logging and core analysis
are urgently needed to obtain full status data for the gas hydrate reservoir.

In the early 1970s, the deep-sea drilling program (DSDP) deployed a gas hydrate
survey and exploration for the first time [23]. In the mid-1990s, gas hydrate prospect area
explorations conducted by the United States, Russia, Japan, Canada, Germany, Netherlands,
and other countries, covered most of the continental margins. As the gas hydrate energy
potential was confirmed, Japan, China, India, and South Korea successively began their
own gas hydrate exploration. Expeditions were carried out in the South China Sea, Nankai
Trough, offshore Japan, the north of the South China Sea, the east coast of India, and in the
Ulleung Basin of South Korea [24–26]. Figure 2 shows the timeline of the major gas hydrate
drilling projects around the world. At present, there are more than 100 wells dedicated to
gas hydrate research.

Electrical resistivity measurements are one of the most important parameters to iden-
tify gas hydrate, and it is widely used in gas hydrate reservoir logging [27–29]. Gas hydrate,
a natural electrical insulator, can significantly impact the resistivity properties of hydrate-
bearing sediments. In addition, hydrate also has a combined effect on the pore water
content, ion concentration, and formation skeleton structure, which are critical factors for
reservoir electrical properties [30–32]. However, the measured resistivity properties of
different logging sites around the world vary greatly because of unique tectonic conditions,
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reservoir mineral composition, gas hydrate stability conditions, and the form of gas hydrate
occurrence in sediments.
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In order to solve the problems encountered in the logging data interpretation, and to
reveal the geophysical properties of gas hydrate-bearing sediment, simulation experiments
and numerical analysis have been widely carried out. Scientists have been endeavoring to
discover the quantitative relationship between resistivity and gas hydrate saturation, reveal
the complex resistivity response of hydrate crystal formation and dissociation processes,
and establish a gas hydrate reservoir inversion technique based on resistivity imaging,
etc. [33–36]. However, it can be said that a significant amount of work is required to under-
stand the resistivity properties of hydrate-bearing sediments. The dynamic accumulation
and dispersion of gas hydrate in sediments involve the transformation of solid–liquid–gas
multiphase materials and core reconstruction at the pore scale, so the electric response
mode and control mechanism is complex, leaving many unsolved scientific problems.

Downhole resistivity logging technology is an important method for marine gas
hydrate exploration and energy potential evaluation. Affected by the geological factors
and the type of gas hydrate accumulation, the reservoirs’ resistivity logging results may
vary, and the derived gas hydrate saturation estimates may not be accurate without a
complete analysis of all the factors controlling the resistivity properties of the hydrate-
bearing sediments. Simulation experiments and theoretical research are effective means
to reveal the electrical response controls in different reservoirs. Therefore, this paper
gives a summary of the progress related to the marine gas hydrate resistivity logging and
experimental research, in order to provide additional insight into the electrical resistivity
properties of gas hydrate-bearing sediments.

2. Resistivity Logging Progress of Marine Gas Hydrate
2.1. The South China Sea

The northern slope of the South China Sea has high-quality gas hydrate reservoir
accumulations. China Geological Survey started marine gas hydrate investigations in
1999 [37]. In the past 20 years, exploration expeditions have been conducted from west to
east in the South China Sea, including Qiongdongnan Basin, Xisha Trough, Shenhu area,
and Dongsha area [38–41]. Different types of gas hydrate reservoirs were found in these
areas (Figure 3).
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Figure 3. Schematic diagram of main gas hydrate research areas in the north of South China Sea.

Shenhu, one of the most studied areas, has been chosen to be the trial production
location two times [11]. SH2 was drilled during GMGS1, the downhole logging operations
were conducted from about 38 to 245 m below sea floor (mbsf). The resistivity log values
increased slowly with the depth. There was a high resistivity anomaly in the depth interval
from 189 to 219 mbsf, with the resistivity greater than 3 Ω·m [41]. The W19 gas hydrate
research well was drilled during the GMGS3 expedition. The LWD curves of the pilot
hole clearly showed the gas hydrate response characteristics, such as high resistivity, high
acoustic velocity, and low natural gamma value. There was a 68 m thick resistivity anomaly
section between 134~202 mbsf, and the highest resistivity log value was about 8 Ω·m [39].
In addition, the logging results near sites of the two gas hydrate production tests in the
Shenhu area showed that the resistivity logging value increased from about 2.5 Ω·m at the
top of the hydrate layer to the highest 7.5 Ω·m [42,43].

The above described relatively low resistivity anomaly range indicates the presence of
pore filling gas hydrate. For the massive gas hydrate reservoir, the resistivity increase was
much higher. GMGS2 focused on the continental slope of the northeast Pearl River Mouth
Basin, and massive, layered, vein, and dispersed gas hydrates were found in five coring
sites [37,40]. The downhole logging data from the W08 well and core samples from the
same site confirmed the existence of massive gas hydrate (Figure 4), and the logging data
at the depth of 66 to 98 mbsf indicated that the maximum value was more than 2000 Ω·m.
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Figure 4. Massive gas hydrate core sample and logging data from the same interval [37] (a) data from
the pressure cored section of the W08 well; (b) X-ray image of pressure core; (c) Massive hydrate
samples as recovered in a pressure core.
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Qiongdongnan Basin is rich in oil and gas resources. The near-seabed pressure and
temperature conditions meet the requirements for the stability of gas hydrates [44]. With
the aim to image the gas hydrates, a marine controlled-source electromagnetic survey was
conducted along a 4.5 km profile, as shown in Figure 5. The inversion results showed
that there are numerous laterally discontinuous high resistivity anomalies from 60 to 330
mbsf, and the resistivity in these anomalous intervals ranged from 2 to 10 Ω·m. There were
also three additional high resistivity intervals (ranging from 2 to 4 Ω·m) in the W08 below
300 mbsf [45].
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Figure 5. Location of marine controlled-source electromagnetic survey of natural gas hydrate in
Qiongdongnan Basin.

2.2. Nankai Trough of Japan

The marine seismic surveys around Japan identified many BSRs. Among the seismic
inferred gas hydrate occurrences, the Nankai Trough proved to be the best-known gas
hydrate accumulation offshore of Japan. So far, based on the geological exploration and
drilling expeditions investigation, two gas hydrate trail production tests have been carried
out [12,14]. The Nankai Trough is the southwest portion of the Japanese island arc and was
formed by the subduction of the Philippine plate to the Eurasian plate before the Pliocene.
The deepest water depth of the trough ranges from 4500 to 4900 m [46]. At present, the
exploration locations are mainly distributed along the Daini-Atsumi Knoll (Figure 6) [47].

In 2004, a multi-well exploration campaign in the Nankai Trough was conducted as a
national project led by Ministry of Economy, Trade and Industry (METI) of Japan [48,49].
There were 30 wells drilled mainly for geological research purposes and 2 wells drilled
for engineering experiment during this campaign. The experimental wells are located
in the north end of the Daini-Atsumi Knoll. The formations can be classified into three
targeted resistivity log inferred reservoir sections. The muddy portion of the reservoir
yielded resistivity log values averaging about 1.5 Ω·m, which is underlain by interbedded
methane hydrate and mud layers. The alternated layers were several centimeters to meters
in thickness. The formation resistivity log values ranged widely from 2 Ω·m to 30 Ω·m
due to the presence of gas hydrate. The non-hydrate bearing formation was at the deepest
position, with the resistivity log values ranging from 1.5 to 1.8 Ω·m.
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2.3. Ulleung Basin of East Sea

Located on the eastern edge of the Eurasian plate, Ulleung basin is a continental
back-arc basin with many block-migration deposits growth. Natural gas hydrate mainly
exists in the sandy turbidite layer, which occurs in argillaceous deposits or as vain and
fracture-filled. South Korea conducted two gas hydrate expeditions in the Ulleung Basin in
2007 and 2010 (Figure 7) [50].
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During these expeditions, both vein-filling gas hydrates and pore-filling gas hydrate
existed in the reservoir [52]. The resistivity data was acquired by LWD operations [51]. The
LWD-tool string (provided by Schlumberger) contained the GeoVision (electrical imaging),
EsoScope (propagation resistivity, bulk density, and neutron porosity), TeleScope, and
Sonic Vision tools. Here the ring-resistivity log values acquired by the GeoVision were
used. The downhole resistivity log data from Sites UBGH1-9 and UBGH1-10 as an example,
there were pronounced increases in resistivity log values above the BSR. In UBGH1-9, the
resistivity values of the gas hydrates layer increased to over 12 Ω·m and greater values
were higher than 80 Ω·m at UBGH1-10. The values seen in these two logs were significantly
higher than the unconsolidated sediments of the East Japan Sea [53,54], with an average
value of 0.8 Ω·m. These high anomaly resistivity data not only indicate the existence of gas
hydrate but also suggest the different types of occurrences. The morphologies of massive
or fracture filling hydrate usually are vein, nodule, or lamina (Figure 8) [54], resulting in a
high degree of anisotropy, and the resistivity is extremely high.
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Figure 8. Gas hydrate samples collected from UBGH1-10B-19H [52].

Riedel et al. used the LWD data of UBGH2 to define the empirical Archie-constants
to estimate the gas hydrate saturation [51]. They pointed out that pore filling gas hydrate
was more suitable for Archie-based calculations, however, the Archie-constants were still
strongly dependent on reservoir properties. For sites located in the northeastern part of
the Ulleung Basin, changes in sedimentation patterns within the hemipelagic and turbidite
sequences can be linked to patterns in the acquired well log data curves and the correlated
to Archie interfered hydrate-bearing reservoirs, at sites located more in the western and
southern portion of the basin. The top veneer of hemipelagic and turbidite sediments
was mostly absent and the entire depth interval of the gas hydrate stability zone was
dominated by stacks of mass transport deposits (MTDs) and Archie inferred interbedded
gas hydrate-bearing reservoirs.

2.4. The Krishna–Godavari(K-G) Basin

The Krishna–Godavari Basin was formed along the rifted eastern continental margin
of India, the offshore K-G Basin is considered a potential gas hydrate province [55]. The
Ministry of Petroleum and Natural Gas began the National Gas Hydrates Program (NGHP)
in 1997 and implemented NGHP-01 and NGHP-02 in the year 2006 and 2015 [56]. NGHP-01
investigated 21 sites in total, including 12 boreholes for logging while drilling (LWD) and
13 boreholes for wireline logging (WL). NGHP-02 collected LWD and sediment core data in
Area B & C offshore of eastern India (Figure 9), to investigate controls on the distribution
and peak saturation of methane gas hydrate occurrences in the buried channel, levee, and
fan deposits [57].
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NGHP-02-07 targeted the upper continental slope channel deposit, NGHP-02-08 tar-
geted levee deposits, and NGHP-02-05 targeted a sequence of fan deposits. Coarse grained
sediment exists at each site, but the clay distribution is different. Clay plays an important
role in gas hydrate distribution and saturation. Electrical resistivity log data were obtained
with the Schlumberger LWD GeoVision resistivity at the bit (RAB) tool. The background
resistivity of Area C was about 1 to 2 Ω·m.

The most significant pore-occupying gas hydrate accumulation at Site NGHP-02-07
occurred between 109 to 113 mbsf. Gas hydrate-filled fractures were in fine-grained
sediment above and below the primary reservoir unit, characterized by slightly elevated
resistivities. The most significant gas hydrate accumulations at Site NGHP-02-08 occurred
between 246 to 271 mbsf, but the thinly bedded nature of this site presents a challenge to
make direct depth correlations between the LWD results and the recovered sediment core.
The main gas hydrate accumulations at Site NGHP-02-05 were between 485 mbsf and the
consensus base of hydrate occurrence at 508 mbsf. At certain depths, gas hydrate layers
were associated with coarse-grained units, with resistivity as high as about 10 Ω·m.

2.5. The Blake Ridge

The Blake Ridge is a positive topographic sedimentary feature on the continental slope.
The crest of the ridge extends to the general trend of the continental rise from water depths
of 2000 to 4800 m. The thickness of the gas hydrate stability zone ranges from zero along
the northwestern edge of the continental shelf to a maximum thickness of about 700 m
along the eastern edge of the Blake Ridge (Figure 10) [59].

Leg 164 of the Ocean Drilling Program was designed to investigate the occurrence of
gas hydrate on the Blake Ridge. Electrical resistivity and other downhole logs from Sites
994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185
and 450 mbsf. The description of the logged intervals in Holes 994D, 995B, and 997B are
shown in Figure 11.
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Three units were divided on the base of obvious changes in physical properties. The
comparison of logging Units 1, 2, and 3 in these holes revealed that Unit 2 was characterized
by a distinct stepwise increase of about 0.1~0.3 Ω·m in resistivity. The deep reading
resistivity device revealed several anomalous high resistivity zones within the upper 100 m
of Unit 2 at all three sites: anomalous resistivities ranging from 1.4 to 1.5 Ω·m [60].
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2.6. Gulf of Mexico

The Gulf of Mexico is a tectonically active and geologically complex environment
characterized by faulting, folding, and other deformational processes that largely arise
due to the layering of thick sedimentary sequences over buoyant salt deposits [61]. It
has been a major location for the exploration of oil and natural gas resources for decades.
The first hydrate-focused drilling expedition in this area was the Chevron-led Gulf of
Mexico Gas Hydrate Joint Industry Project (JIP) Leg I in 2005, which drilled and cored
three sites to evaluate the sediment and borehole stability. During JIP Leg II in 2009, the
LWD measurements were used to detect gas hydrate occurrences in sand reservoirs [61,62].
A total of seven holes were drilled at three sites and hydrate was identified in the Green
Canyon and Walker Ridge sites in the sand and marine mud reservoirs. Figure 12 shows the
798 petroleum industry wells drilled in this area, including the gas hydrate JIP wells [63].
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The electrical resistivity properties of marine sediments are mainly controlled by the
conductivity and volume of pore fluids present in the sediment. Setting an appropriate
cutoff for the resistivity anomaly that is caused by the presence of gas hydrate is a major
challenge. In addition to gas hydrate, several additional factors also yield higher formation
resistivities, such as variations in pore–fluid salinities, lithology changes with depth, and
the over-compaction of sediments, and so on. Majumdar et al. suggested using the criterion
of 0.5 Ω·m or greater increases in formation resistivity as indicative of the presence of gas
hydrate [64].

A well from Alaminos Canyon Block 856 was taken as an example. The depth of the
base of the gas hydrate stability zone is 2898 m, with a background resistivity of 1 Ω·m.
The interpreted gas hydrate interval is at a depth of 2568 to 2611 m with an increase in
resistivity of 0.5 Ω·m to a maximum 1 Ω·m above background resistivity [63].

2.7. Cascadia Margin

The Cascadia subduction zone extends from northern California to offshore Vancouver
Island. The presence of gas hydrate has been established by widespread BSR. However,
the major advance in identifying gas hydrate comes from ODP sampling and downhole
measurements (Figure 13) [65].
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The electrical resistivity logs for Site 888 provide a reference location for a site with
no evidence of gas hydrate with an average resistivity log value of 1Ω·m. In contrast,
the resistivity for Site 889/890 increased steadily to a value of 2.1 Ω·m for the 100 m
above the BSR. There was no sharp resistivity discontinuity at the BSR, but a significant
downward decrease appeared in the resistivity log values below the BSR, to about 1.8 Ω·m.
The resistivity–depth log can be used along with porosity–depth logs to estimate hydrate
saturation [65,67,68].

2.8. Brief Discussion

Gas hydrate is widely spread along the offshore continental slopes, and resistivity
measurements are commonly used in geophysical logging. Based on the summary of the
electrical resistivity logging results from seven different locations, it can be inferred that
the gas hydrate accumulation pattern is the strongest factor in the electrical conduction.
The resistivity value of pore-filling gas hydrate sediments is usually lower than 10 Ω·m,
while the resistivities of massive or fracture-filling gas hydrate systems are significantly
larger. Due to the uneven distribution of gas hydrate, fracture filling gas hydrate shows
resistivity anisotropic characteristics. The sedimentary properties also have a great impact
on electrical conduction, especially for pore-filling gas hydrate. The resistivity of clay-rich
sediment is relatively lower than the coarse sand reservoir.

Although resistivity logging is a reliable method for gas hydrate exploration, there
are still significant problems associated with the application of resistivity logging analysis
procedures. When the resistivity variation is small, such as in the low gas hydrate saturation
locations, the lithology change, over-compaction of sediments, and a pore water salinity
decrease can lead to an increase in resistivity logging data. So, a challenge is finding an
appropriate cutoff for the resistivity anomaly that could be likely taken as the presence
of gas hydrate. Moreover, how to classify the very thin resistivity increases anomaly is
another challenge. Taking the Gulf of Mexico resistivity logging as an example where
some increases above background occurred as thin spikes, less than 1 m, it is critical to
deal with such variability. In addition, precisely evaluating the gas hydrate saturation is
always an important challenge. Archie’s equation is suitable for gas hydrate saturation
calculations on pore-filling sand reservoirs, but the clay content can make the electrical field
distribution more complex, leading to a deviation in Archie’s equation result. Furthermore,
there is still a lack of an effective method to calculate the gas hydrate saturation of fractural
filling reservoirs.
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3. Simulation Experimental Study on Electrical Characteristics of Natural Gas Hydrate

Hydrate crystal growth consumes free water in sediments and fills the pores and
fractures of unconsolidated reservoirs, which leads to the highly resistive (i.e., low conduc-
tivity) sedimentary sections and reservoirs [69–71]. Limited to conditions of deep water,
high pressure, and low temperature, gas hydrate reservoirs are difficult and costly to study.
Simulation experiments are widely used as an economic and effective research method.

3.1. Simulation Experiment on Electrical Characteristics of Gas Hydrate Bearing Sediments

By analyzing the resistivity data of pure gas hydrate, gas hydrate bearing sediments
and permafrost areas, Halleck et al. pointed out that there is a direct correlation between
resistance and gas hydrate saturation, so resistivity measurements could be used to detect
the presence of gas hydrate in the field [72]. Yousif et al. conducted gas hydrate simulation
experiments with a Berea consolidated core. Their results showed that the rate of gas
hydrate synthesis and decomposition can be identified by resistivity change [73]. Zatsepina
et al. used resistivity change to analyze the nucleation and microcrystalline process of
CO2 hydrate [74]. Chen et al. also took advantage of the conductivity of CO2 solutions to
detect the nucleation of CO2 hydrate. They found that there is a slight resistivity increase
associated with crystal nucleation, which happened before hydrate formation that is also
accompanied by a temperature rise [75].

Relative to marine sediment pore water systems, resistivity measurements can also
give good information on gas hydrate formation and dissociation processes. Chen et al.
tested the resistivity changes during the gas hydrate formation process to analyze the re-
sponse between gas hydrate distribution and resistivity in marine sediments (Figure 14) [76].
It could be seen that during the gas hydrate formation process, the resistivity experienced
four stages of formation from stable to rapidly increasing then relatively decreasing re-
sulting in an overall increase in the measured resistivity as shown in Figure 14. The
controlling mechanism behind this phenomenon is a function of temperature, pressure,
water saturation, salinity, and gas hydrate distribution.
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Figure 14. Gas hydrate resistivity laboratory test in the presence of sea water showing evolution
resistivity during gas hydrate formation [76].

In the initial stages of gas hydrate formation, if the sediment is saturated with brine,
the ion mobility decreases with temperature drop, and pressure has relatively little effect
on the resistivity. If the sediment is unsaturated, pore space is partially occupied by saline
water. Due to the existence of free gas, when the temperature-drop leads to gas bubble
contraction, the fluid connectivity in pores could be improved. In this case, the resistivity
change is a product of free gas saturation.

Gas hydrate formation consumes methane molecules and water molecules in pore
solution, and salt ions are excluded by this process (Figure 15). Stimulated by the reaction
heat, ion mobility is also accelerated. Therefore, even if the connectivity of pores become
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weak as the insulated hydrate crystal grows, the resistivity still shows a decreasing trend
during the gas hydrate formation process [77]. However, with hydrate formation continu-
ing, most of the pore water is replaced by solid hydrate, and the resistivity will continue
to increase.
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Figure 15. Schematic of salt expulsion effect during hydrate formation.

In order to further establish the accurate correlation between gas hydrate and sediment
electrical resistivity, and reveal the micro response mechanism, Spangenberg et al. measured
the resistivity of gas hydrate formation and the decomposition process in fully water-
saturated artificial porous media, and indirectly calculated saturation through free water
consumption [78]. They assumed various occurrence modes of gas hydrate in porous media
such as cementation and suspension and discussed the main factors leading to resistivity
changes in different filling modes (Figure 16).
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Figure 16. Relationship between resistivity and gas hydrate distribution in sediment [78].

With the development of X-CT imaging technology, it is possible to acquire the in situ
micro distribution information of gas hydrate bearing sediment. A method was established
to determine the sediment porosity and identify gas hydrates based on the analysis of
X-CT images [79]. Chen et al. carried out a series of simulation experiments to study the
resistivity variation during gas hydrate formation in different porous media [80]. During
X-CT detection, the nano ray source was selected according to the size of the sample,
with a working voltage of 110 kV and working current of 100 µA. The exposure time
was 333 ms, the number of X-CT slices was 1000, and the resolution was 28.55 µm/voxel,
magnification 7.01.
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For each X-CT image of gas hydrate bearing sediment, by counting the calibrated gray
values of each image pixel, the gray histogram of the scanning area can be obtained. In
order to identify the content and get the micro-distribution of gas hydrate, the threshold
between gray adjacent two-phase substances is calculated with the combination of scanning
image and gray histogram. The final formula used to calculate gas hydrate saturation is
listed below:

Sw =

n
∑

i=1
Pw(i)

n
∑

i=1
Pg(i) +

n
∑

i=1
Ph(i) +

n
∑

i=1
Pw(i)

where Sw is the gas hydrate saturation, Pg(i) is the pixel of free gas, Ph(i) is the pixel of gas
hydrate, Pw(i) is the pixel of pore water.

Figure 17 shows the system resistivity variation under different gas hydrate distribu-
tions, where the sediment is clay-free sand particles. According to the resistivity change,
when gas hydrate saturation increased from 0 to 7.99%, the measured resistivity increased
slowly with the increase in gas hydrate saturation, and the resistivity increased from
1.50 Ω· m to 1.63 Ω· m. The X-CT image (stage I) showed that gas hydrate grew along the
sediment surface, mainly in the “hydrate–sediment contact” mode.
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Figure 17. The resistivity and gas hydrate micro distribution in clean non-clay-bearing sediments.

As gas hydrate saturation increased from 7.99% to 39.24%, and the resistivity increased
from 1.63 Ω·m to 3.61 Ω·m. As shown in X-CT images of stage II and III, there were signifi-
cant gas hydrate particles suspended in pore water, so the gas hydrate micro-distribution
mode turned to the coexistence of contact and suspension. In this period, gas hydrate
particles have a greater blocking effect on the pore water connection, which results in higher
resistivity values. [81].

Figure 18 shows the system resistivity variation under gas hydrate distribution in
clay-bearing silt sediments. According to the resistivity measurement changes, in the initial
stage of gas hydrate formation, the resistivity first increases and then decreases as the
gas hydrate saturation rose from 0 to 10%. The X-CT image during stage I showed that
gas hydrate grew along the clay layers in a contact distribution mode, and the amount of
gas hydrate was relatively small. As the formation process continued, with gas hydrate
saturation increasing from 10% to 25%, the resistivity increased slowly with the increasing
gas hydrate saturation. As shown in X-CT image stage II, gas hydrate appeared to have
formed disseminations (suspension) in the sediment pore space and coexisted with contact
formed gas hydrate. In the final stage, the gas hydrate saturation increased from 25% to
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33%, and the resistivity increased from 3.3 Ω·m to 6.0 Ω·m. Compared with the clay-free
sediment, the resistivity change rate was greater. It is possible clay particles occupied
both the large and small pore spaces. Therefore, even at the same gas hydrate saturation,
the degree of gas hydrate blocking the pores in clay-bearing sediment was higher and
the blocking effect of gas hydrate on pores was stronger, leading to the observed rapid
resistivity increase [81].
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Figure 18. The resistivity relative to the nature of gas hydrate pore-space distribution in clay-
bearing sediments.

Chen et al. discussed the numerical simulation of the resistivity of gas hydrate bearing
sediment based on the fractal pore model, which can more accurately reflect the actual
pore structure [82]. Considering the self-similar characteristic of natural sediments, the
Sierpinski Carpet method was selected, with a total side length of three and particle side
length of one as the fractal pore model (Figure 19). The effects of porosity, interstitial
water conductivity, and sediment skeleton conductivity were analyzed for the relationship
between the sediment resistivity and gas hydrate saturation. The results indicated that the
resistivity of hydrate bearing sediment can be expressed using this fractal model, especially
in the 0 to 40% gas hydrate saturation range. The model is in line with experimental data
and logging data with a high degree of accuracy.
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Figure 19. Simulation of electrical resistance of gas hydrate bearing sediments by fractal pore
model [82]. (in (b,c), black stands for sediment particle, grey stands for pore water, white stands for
gas hydrate).
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Frequency is another critical factor impacting the resistivity response of different ma-
terials. Frane et al. studied the electrical frequency response of the gas hydrate formation
process in the range of 20 Hz to2 MHz through a set of complex frequency measurements
and analyzed the electrical properties of different system components by the method
of equivalent circuit [35,83]. Xing et al. found that the resistivity of gas hydrate bear-
ing sediment showed unique features under different frequencies or types of excitation
sources [84,85]. The complex resistivity of hydrate bearing sediment was measured in the
frequency range of 20 Hz to 100 kHz (Figure 20). It was demonstrated that the complex
resistivity exhibited significant frequency-dispersion characteristics, and the polarization
mechanism was dominated by double-layer polarization and interfacial polarization at
20 Hz to 1 kHz and 1 to 100 kHz, respectively. The electrical double-layer polarization of
hydrate bearing sediments was enhanced by the deformation of the electrical double layer
on the surface of clay particles.
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Wang et al. analyzed the complex resistivity parameter based on the impedance
spectroscopy of hydrate–porous media and brine system [86]. According to the equivalent
circuit model, the relationship between complex resistivity and frequency was established
(Figure 21). Then a correlation between the gas hydrate saturation and characteristic
parameters of frequency dispersion was found, and finally a new saturation model was
proposed with the experimental data fitting results.
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Although significant progress has been made to clarify the electrical property of
hydrate bearing sediment, the effect of clayey silt on the resistivity properties is still not
understood, which restricts the development of gas hydrate saturation evaluation. The
clay surface adsorbs cations, and its fine particle size leads to complex pore structure,
resulting in more complex electric field distribution. Winsauer et al. proposed that rock
resistivity is the result of clay mineral double-layer properties together with parallel of free
electrolytes [87]. The effect of the cation exchange in clay minerals on rock resistivity was
confirmed by Hill et al. [88], and the cation exchange capacity was used to represent the
clay content. Afanasyev et al. analyzed the experimental data and believed that the total
resistivity of argillaceous sandstone is the result of parallel conduction of “free ions” and
“non free ions” in the pores [89].

In addition, the formation and decomposition of gas hydrate in clayey silt sediments
also change the relative content of free water and bound water. This phenomenon was
confirmed by test results of samples from offshore gas hydrate reservoirs in the South
China Sea [90]. A high-speed centrifuge was used to test the Shenhu sediment pore water.
First, a relationship between centrifuge speed and the pressure was established, which
was used to evaluate the free and irreducible water of the reservoir at different pressures
during hydrate dissociation. Figure 22 shows the free water and irreducible water variation
trends under different pressures. At 0.3 MPa the ratio of free water was very low, and more
than 99% pore-water was bounded by sediment. As the pressure increased, irreducible
water was released step by step. From 1.9 to 4.9 MPa, the water releasing speed was fast, at
7.9 MPa, there was still 59% of pore water was bounded with sediment.
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3.2. Gas Hydrate Saturation Evaluation Models Based on Electrical Property

Archie proposed an equation for calculating oil and gas saturations in sandstone reser-
voirs with resistivity variation data. It was then improved and applied to the interpretation
of gas hydrate resistivity logging data [29,30]. Resistivity of water-saturated formations
is directly proportional to the pore water resistivity, and resistivity of hydrate-bearing
sediment is proportional to the water-saturated formation. If the formation is composed of
sand, the formula of gas hydrate saturation and reservoir resistivity can be defined as:

Sh= 1 − Sw = 1 −
(

abρw

φmρt

) 1
n
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where Sh is the gas hydrate saturation, Sw is the pore water saturation, ρw is the resistivity
of pore water, ρt is the resistivity of hydrate bearing sediment, φ is the porosity fraction of
sand, a and b are the fitting coefficients, m is the exponent, n is the saturation index.

It is known that the saturation index of the Archie equation is affected by various
rock properties (such as pore morphology, connectivity, pore network), and the basic
electrical conductivity assumption of Archie equation does not consider the effect of
clayey sediments, which adds a complexity when considering normal marine gas hydrate
system. In order to optimize the application of the Archie equation in non-sandstone
reservoirs, a series of modifications and alternative models have been gradually developed,
including the Simandoux model [91], Waxman-Smits model [92], Indonesia equation [91],
and Dual-Water model [93]. Taking the Waxman-Smits model as an example, which
assumed that the formation resistivity is controlled by clay particles and pore water, and
their connection pattern is parallel, then a resistivity model suitable for unsaturated clay
containing sediments is proposed.

ρ =
aρwφ−mSw

1−n

Sw + ρwBQ

where ρ is the sediment resistivity, B is the charge conductivity with an opposite electrical
property to the clay surface particles in the electric double layer, Q is the cation exchange
capacity per unit sediment pore, BQ is the conductivity of electric double layer on the
surface of clay particles.

While effectively improving the accuracy of oil and gas saturation estimation of clay
bearing reservoirs, these models also expose new problems. For example, some of them are
empirical equations based on macro scale rock models, which are too idealized to deal with
the pore structure of low porosity and low permeability reservoirs. Some ignore the actual
distribution, geometric shapes, or electrochemical characteristics of clayey components.

In order to further solve the above problems, a skeleton conductivity resistivity model
based on HB equation was applied. Song established a general HB model of effective media
by treating dispersed mud, rock skeleton, and oil/gas as the dispersed phase with parallel
connection [94]. Hu et al. first introduced the HB model to estimate gas hydrate saturation
in the Qilian Mountain permafrost area [95]. In addition, Garcia et al. used a high-resolution
CT scanner to determine the network geometry and connectivity of clay-bearing cores and
proposed a set of resistivity models for oil saturation prediction based on clay composition
and rock structure [32]. The new resistivity model incorporates directional pore network
connectivity of each conductive component of the rock. The directional connectivity is
calculated as a function of the volume fractions and rock fabric features. Clay-bearing cores
are scanned using X-CT, and trainable segmentation is performed on each set of 2D raw
images to identify different rock components and pores. The 2D-segmented images are
then converted into a 3D volume. Finally, the network connectivity and tortuosity from the
3D binary images can be input into the model. The results comparison against conventional
methods showed that saturation estimates were improved by up to 50% in more than 60%
of the samples after considering the spatial distribution of the clay network.

3.3. Brief Discussion

Simulation experiments play an important role in the gas hydrate-bearing sediment
electrical conduction research and field resistivity logging. The experiment findings of
resistivity response provide a theoretical basis for the establishment of logging technology.
Moreover, the microscopic and mesoscopic-scale resistivity experiment results are very
helpful for field logging data explanation. With the assistant of X-CT, resistivity characteris-
tic during gas hydrate growth and dissociation in porous media can be acquired, and it has
been found that at different hydrate saturations, the resistivity shows different response
sensitivity. At the beginning of gas hydrate formation, high resistance gas bubbles are
converted into hydrate particles; the system resistivity changes little, so the amount of gas
hydrate would be underestimated by resistivity interpretation.
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Archie’s empirical law and its empirical parameters work well in water and oil/gas
reservoir systems, but they should be revised in gas hydrate prediction in different reservoir
conditions. It has been confirmed that clay minerals have strong effects on electrical
conduction and Archie’s equation needs to be modified. Based on experimental results,
several fixed models have been proposed to correct for the clay effect on gas hydrate
saturation calculations. However, most of them are established under significant restrictive
conditions. A universal model has still not been proposed.

Experimental results showed that the utilization of a single frequency current does not
completely isolate the different contributions during electrode polarization. The complex
resistivity method, such as the electrochemical impedance spectroscopy, has significant
potential to separate electrode effects and reveal the conduction mechanisms of sediments
with hydrate and clay. More information may be gleaned by measuring the impedance
spectroscopy over a broad range of frequencies, which could become a new research
hotspot in future. In addition, several experiments on the resistivity data imaging have
made progress in gas hydrate sediment, which can provide effective support for the
establishment of new technologies to monitor gas hydrate reservoir conditions.

4. Conclusions

Electrical resistivity logging is one of the most useful methods to examine the petro-
physical nature of gas hydrate reservoirs and the distribution and concentration of gas
hydrates within complex reservoir systems. The logging sensors provide important in-
formation on the nature of the sediments and the occurrence of gas hydrate. Integrated
sediment coring and well-log research have confirmed that logging data such as electrical
resistivity can yield accurate gas hydrate saturations in pore filling reservoirs such as sand
reservoirs with isotropic gas hydrate distribution, but more advanced log analysis models
are required to characterize gas hydrate in anisotropic fractured reservoirs. According
to the logging results of marine gas hydrate reservoirs around the world, the resistivity
of pore-filling gas hydrate reservoir is about 1 to 10 Ω·m, clayey silt layers are about
1 to 5 Ω·m or less, and lower than coarse sand layers are about 10 Ω·m. The resistivity
of fracture-filling reservoirs are often orders of magnitude higher, usually varying from
hundreds Ω·m to thousands Ω·m.

It is worth noting that the anisotropy of natural gas hydrate reservoirs have a direct
impact on the resistivity logging results. Most logging tools predominately measure the
change in current or electromagnetic waves in the formation of normal to borehole walls.
In a vertical hole with flat-lying sediment, measured resistivity is parallel to the bedding
planes. Therefore, if sediments and gas hydrate are thinly layered and have dramatically
different resistivities, the local resistivity will be underestimated.

A simulating experiment is a useful method to reveal the resistivity control mechanism
of gas hydrate-bearing sediments, which is necessary to establish more accurate gas hydrate
saturation calculation models. So far as we know, clay induced electrical influence factors
such as effective pore-network conductivity and electrical double layer need more study
in future.
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