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Abstract: Control of flow past a circular cylinder using a rotating control rod is investigated by
conducting two-dimensional numerical simulations with a Reynolds number of 200, a rod-to-cylinder
diameter ratio of 0.2, a gap ratio of 0.2, position angles of the control rod between 0◦ and 180◦,
and rotation rates between −7 and 7. The rotation rate is positive if the cylinder rotates in the
anticlockwise direction. The aim of this paper is to discover the effects of the position angle and the
rotation rate on flow control. If the rod is placed at the side (position angle = 90◦) or nearly to the
side of the cylinder (position angle = 45◦ and 135◦), the rotating rod affects the flow in three ways,
depending on its rotation rate: (1) strong negative rotation of the rod weakens the negative free shear
layers and reduces the lift; (2) flow through the gap interferes with vortex shedding when the rotation
rate is small in either direction; and (3) strong positive rotation of the rod enhances the negative free
shear layers and increases the lift coefficient. Placing a rotation rod immediately in front of or behind
the cylinder (position angle = 0◦ or 180◦) causes a reduction in the lift coefficient for all rotation rates.

Keywords: flow control; rotating cylinder; control rod; circular cylinder; vortex shedding

1. Introduction

Suppression of vortex shedding in the wake of circular cylinders is of engineering
importance because vortex-induced vibration (VIV) is a hazard for many engineering
structures such as chimneys, offshore pipelines, power cables, heat exchanger tubes, etc.
Many flow control methods for suppressing vortex shedding have been proposed, and they
can be classified into two categories: active control and passive control. In active control,
external energy is used to modify the boundary layers on the cylinder surface. Examples of
active control include suction-based control [1], jet control [2,3], and controlled cylinder
rotation [4]. Passive control involves controlling the flow by attaching small objects to the
cylinder [5–7] or by modifying the geometry of the cylinder [8–10].

Proper placing of single or multiple control rods near a cylinder is believed to enable
effective suppression of vortex shedding [11–13]. One flow control target is drag reduction.
Firat et al. [7] conducted numerical simulations of flow past a square prism with an
upstream control rod at d/D = 4 and Re = 200, where D is the side length of a square prism
(also called a square cylinder) or the diameter of a cylinder, d is the diameter of the control
rod, and the Reynolds number is defined based on D. It was found that positioning a control
rod at 2D or 3D upstream of the square prism can reduce the drag by 74% and the lift by up
to 60%. Igarashi [14] conducted an experimental study of flow control by placing a control
rod upstream of a square prism with various rod diameters and rod-to-prism spacings and
derived an empirical formula to estimate the critical gap below which the vortex shedding
from the control rod disappears. Yen and Wu [15] conducted an experimental study of
a control rod upstream of a square cylinder and classified the vortex streets into single,
attached, and bi-vortex streets by varying the Reynolds number and spacing ratio.

Placing a control rod in the wake of a cylinder can reduce the lift by interfering with
the vortex dynamics. Gim, Kim et al. [16] conducted experiments on flow control in the
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wake of a circular cylinder by placing a control rod at the rearward stagnation point, using
the particle image velocimetry (PIV) technique for various rod diameters, and found that
d/D = 0.3 has an excellent effect on reducing turbulence intensity. Chauhan, Dutta et al. [17]
conducted an experimental study of flow control using two small control rods in the shear
layers behind a square cylinder, with d/D = 0.2 and Re = 485, and achieved a maximum
22% drag reduction. Lu, Liu et al. [18] and Silva-Ortega and Assi [19] conducted numerical
and experimental investigations of flow control using multiple control rods surrounding a
circular cylinder. Silva-Ortega and Assi [19] found that the configuration of four control
rods with a gap ratio of G/D = 0.05 (G is the gap between the control rod and the main
cylinder) and a diameter ratio of d/D = 0.06 produced the lowest drag, compared to all
other configurations. Lu, Liu et al. [18] classified the interference between the cylinder and
rods into four flow regimes with varying suppression effectiveness and flow characteristics.
Silva-Ortega and Assi [20] investigated the suppression of VIV using multiple rotating
control rods.

Using rotating control rods was found to have great potential to further improve the
effectiveness of flow control. Mittal [21] conducted two-dimensional numerical simulations
of flow control using two small rotating rods on either side of the cylinder, with Re = 100
and 104, and found a significant reduction in the overall drag and lift forces. However, the
power required to rotate the cylinder at Re = 100 was much higher than that at Re = 104.
Using numerical simulations of flow control using twin control rods symmetrically placed
behind a circular cylinder at d/D = 0.2 and Re = 150, Goodarzi and Dehkordi [22] and
Goodarzi and Dehkordi [23] found the most effective positions for the rotating controllers
for perfect suppression of vortex shedding. They reported that the most effective positions
may vary for different engineering applications, and the presence of the rotating controllers
usually resulted in the separation bubbles remaining attached to the system of cylinders.
Schulmeister, Dahl et al. [12] conducted a similar study of flow control using two control
rods behind the cylinder but with a smaller rod-to-cylinder distance. They found a recir-
culation region around the control rod. The streamline reattached to the main cylinder
with greater pressure than at separation, resulting in increased base pressure and reduced
pressure drag. Placing two control rods in the wake of a cylinder was also found to be
effective for the suppression of VIV [24,25]. Oscillatory rotation of the circular cylinder
itself at the proper frequency and velocity also has the potential to weaken vortex shedding
and reduce lift [4,26].

The majority of the above-mentioned studies of flow control methods using control
rods focus on wake control, with control rods placed in the wake of the cylinder to control
the formation of wake vortices. It is expected that the mechanisms of flow control will be
different when the rod is placed in different locations around the cylinder. In this study, the
mechanisms of flow control using a small control rod at various angular positions along
the cylinder surface were investigated by conducting numerical simulations. Specifically,
the control effect of the rod on the fluid force was examined through its interference
with formation of the shear layer when the rod is upstream of the cylinder and with the
formation of the vortices when it is downstream of the cylinder. Extensive simulations with
a variety of position angles of the control rod relative to the cylinder were conducted, and
the reduction or increase in the coefficients of fluid force on the cylinder were quantified.

Figure 1a shows the use of a small rod (referred to as the rod hereafter) to control
the flow around a cylinder with a diameter D. The rod has a diameter d, and its position
relative to the cylinder is determined by a gap G and a position angle β. The angular
rotational velocity is denoted by σ, which is positive in the anticlockwise direction. The
nondimensional rotational speed is defined as α = σd/(2U), where U is the free-stream
velocity. This is referred to as the rotation rate hereafter. A Cartesian coordinate system
Oxy is defined, with its origin located at the center of the cylinder and with the x-direction
following the flow direction, as shown in Figure 1.
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Figure 1. (a) Sketch of flow past a cylinder with a rotating control rod; (b) computational mesh near
the cylinder and rod for β = 45◦.

In all the numerical simulations, the Reynolds number, the diameter ratio, and the
gap ratio were Re = 200, d/D = 0.2, and G/D = 0.2, respectively. The Reynolds number is
defined as Re = UD/ν, where U and ν are the fluid velocity and kinematic viscosity of the
fluid, respectively. Vortex shedding occurred as Re exceeded 40, and was two-dimensional
until the Reynolds number exceeded a critical value. The critical Re for transitioning from
two-dimensional to three-dimensional flow varied between 140 to 194, depending on the
disturbance in the flow in the experiments [27]. The three-dimensional numerical study by
Zhao, Thapa et al. [28] indicated that the flow was in the two-dimensional flow regime up
to Re = 200, and the lift coefficient of the cylinder increased with an increase in Re. In this
paper, a Reynolds number of 200 was studied, because this Reynolds number is the highest
Reynolds number with the largest lift coefficient in the two-dimensional regime. The focus
of the study was to investigate the effects of the position angle β and the rotation rate on
the wake flow and lift coefficient. To achieve this, simulations were conducted for β = 0◦,
45◦, 90◦, 135◦, and 180◦, with rotation rates (α) ranging from −7 to 7 and an interval of 0.2.
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2. Numerical Method

The fluid was assumed to be an incompressible Newtonian fluid. The velocity, the
time, and the pressure were nondimensionalized as (u, v) = (ũ, ṽ)/Um, t = t̃U/D, and
pressure p = p̃/

(
ρU2), where u and v are the fluid velocity components in the x- and

y-directions, respectively, U is the fluid velocity, and p is the pressure. In this paper, a wave
dash ‘~’ on top of a variable represents a dimensional value. The nondimensional and
two-dimensional Navier–Stokes (NS) equations are:

∂u
∂x

+
∂v
∂y

= 0 (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+
1

Re

(
∂2u
∂x2 +

∂2u
∂y2

)
(2)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −∂p
∂y

+
1

Re

(
∂2v
∂x2 +

∂2v
∂y2

)
(3)

The NS equations were solved by the finite element method (FEM) and the correspond-
ing in-house software developed by Zhao, Cheng et al. [29]. The detailed FEM formulae
can be found in Zhao, Cheng et al. [29] and will not be presented here. A rectangular
computational domain with a length of 60D and a width of 40D was used, and the cylinder
was located 20D downstream of the left boundary. Behr, Hastreiter et al. [30] reported that
the blockage ratio, i.e., the ratio of the cylinder diameter to the width of the computational
domain, must be less than 0.0625, to ensure there is no blockage effect from the two lateral
boundaries. The blockage effect in this paper was considered to be negligible, because the
largest blockage ratio at β = 90◦ was 0.03, which is less than half of the value recommended
by Behr, Hastreiter et al. [30].

The boundary conditions for solving the equations were specified as follows. On the
inlet boundary, the velocity was given and the pressure gradient in the x-direction was
zero. On the outlet (right) boundary, the pressure was zero and the gradient of the velocity
in the x-direction was zero [31,32]. On the top and bottom boundaries, free-slip boundaries
were used, i.e., the velocity in the y-direction was zero and the gradients in the y-direction
of the pressure and the x-velocity were zero. The fluid velocity was zero on the cylinder
surface and the same as the rod’s rotation velocity on the rod’s surface. The gradient of the
pressure normal to the wall surface was zero.

Figure 1b shows the computational mesh near the cylinder and rod for β = 45◦. The
whole computational domain was divided into 47,468 structured quadrilateral 4-node
linear finite elements. The surfaces of the cylinder and rod were divided into 288 and
136 finite elements, respectively, and the minimum nondimensional element size in the
radial direction on the wall surfaces was 0.002.

3. Numerical Validation and Mesh Dependency Study

The nondimensional computational time was ∆t = 0.00025. Zhao [33] and Zhao, Cheng
et al. [34] performed a detailed validation of the numerical model for flow past one and two
cylinders at Re = 200 and flow past a rotating cylinder at Re = 200, respectively. Data for
one cylinder with one control rod are not available for validation. However, we validated
our model using the numerical results for the flow past eight control rods presented by
Assi, Orselli et al. [35]. The additional numerical simulations of the flow past a circular
cylinder with eight control rods shown in Figure 2a were conducted for the purpose of
validation. The diameter ratio, the Reynolds number, and the gap ratio were d/D = 0.05,
Re = 100, and G/D = 0.05, respectively. The eight control rods rotated at the same rate, but
the top four rods rotated in the clockwise direction and the bottom four rods rotated in the
anticlockwise direction. The coefficients of drag and lift on the cylinder were defined as
CDC = FDC/(ρDU2/2) and CLC = FLC/(ρDU2/2), where FDC and FLC are the drag and
lift forces of the cylinder, respectively. The coefficients of drag and lift on the rod were
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defined as CDR = FDR/(ρDU2/2) and CLR = FLR/(ρDU2/2), where FDR and FLR are the
drag and lift forces on the rod, respectively. An overbar and a prime on a force coefficient
denote the mean value and the standard deviation (SD) of the force coefficient, respectively.
For example, CDC and CLC denote the mean drag and lift coefficients on the cylinders,
and C′DC and C′LC denote the standard deviations of the drag and lift coefficients on the
cylinder, respectively.
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Figure 2. Comparison between present numerical results and the numerical results in Ref. [35] for
flow past one cylinder with eight control rods at d/D = 0.05, Re = 100, and G/D = 0.05

Figure 2 shows the mean drag coefficient as a function of the rotation rate in compari-
son with the numerical results in [35]. The drag coefficient on the control rods is the sum
of the drag coefficients of all the eight rods in the figure. The mean drag coefficient of the
whole system is greater than that of a bare cylinder at α = 0 and 1. With an increase in α, the
mean drag coefficient continuously decreases, becoming slightly smaller than zero at α = 6.
The variation trend presented in the numerical results agrees with that in [35], with only
a very small difference. We further reduced the mesh density but did not obtain results
that were closer to those of [35]. The relative error between the two sets of results was
defined as di f f =

(
CD,present − CD,Assi

)
/CD,bar cylinder. In the whole range of 0 ≤ α ≤ 6, the

maximum values of di f f of the drag coefficients of the whole system, the main cylinder,
and the rods were 0.073, 0.045, and 0.060, respectively.
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To ensure the density of the mesh was sufficiently small to obtain a converged solution,
a mesh dependency study was conducted by performing simulations for β = 90◦ and the
largest rotation rate of α = 7, using three additional meshes, and the results for the force
coefficients are listed in Table 1. The density of each mesh is characterized by the total finite
element number Nelement, the element number along the cylinder Ne,cylinder, the element
number along the rod Ne,rod, and the mesh size in the radial direction on the cylinder and
rod ∆r1. The normal mesh is the one used for all the simulations in this study.

Table 1. Statistical values of the drag and lift coefficients in the mesh dependency study for β = 90◦

and α = 7.

Cylinder

Mesh Nelement Ne,cylinder Ne,rod ∆r1 CDC CLC C′DC C′LC

dense 81,468 320 136 0.001 2.402 −0.188 0.303 1.277

normal 47,468 288 100 0.002 2.421 −0.190 0.302 1.283

coarse 35,678 256 82 0.003 2.340 −0.186 0.290 1.240

coarser 30,185 224 80 0.004 2.300 −0.173 0.287 1.220

Rod

Mesh Nelement Ne,cylinder Ne,rod ∆r1 CDR CLR C′DR C′LR

dense 81,468 320 136 0.001 2.332 −0.324 0.836 0.376

normal 47,468 288 100 0.002 2.367 −0.329 0.840 0.381

coarse 35,678 256 82 0.003 2.233 −0.315 0.798 0.368

coarser 30,185 224 80 0.004 2.249 −0.299 0.803 0.370

It can be seen from Table 1 that the force coefficients from the dense and the normal
meshes were very close to one another. The differences in CD,CL, and C′L for the dense and
normal meshes were 0.78%, 1.05%, 0.33%, and 0.47, respectively. The results from the coarse
and dense meshes also showed little difference from one another. To prove that ∆t = 0.00025
was sufficiently small for obtaining accurate results, the effects of the nondimensional
computational time step ∆t on the results were also studied, by conducting simulations
at β = 90◦ and α = 7 using normal mesh under three different computational time steps of
∆t = 0.00025, 0.0005, and 0.001. As seen in Table 2, the differences in CD, CL, C′D, and C′L
for ∆t = 0.00025 and 0.0005 were 0.41%, 0.53%, 0.33%, and 0.07, respectively.

Table 2. Statistical values of the drag and lift coefficients in the time-step dependency study for
β = 90◦ and α = 7.

Cylinder

∆t CD CL C′D C′L

0.00025 2.421 −0.190 0.302 1.283

0.0005 2.420 −0.189 0.301 1.284

0.0010 2.411 −0.189 0.303 1.271

Rod

∆t CDR CLR C′DR C′LR

0.00025 2.367 −0.329 0.840 0.381

0.0005 2.360 −0.320 0.841 0.388

0.0010 2.360 −0.300 0.841 0.388

4. Results

Figure 3 shows the variation in the standard deviations (SD) of the lift and drag
coefficients with rotation rate. The total drag and total lift coefficients were defined as
CD = (FDC + FDR)/(ρDU2/2) and CL = (FLC + FLR)/(ρDU2/2), respectively. The mean
and SD of the force coefficients were obtained using the data within 10 vortex shedding
periods. The variation in the SD of the lift coefficient of the cylinder was very similar to
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that of the total lift coefficient for all the position angles of the rod, except that the SD of
the total lift coefficient was slightly greater than the SD of the lift coefficient of the cylinder.
The best reduction in the SD of the lift coefficient occurred for α ≤ −4, for all the position
angles of the rod.

To give a clear view of the very small SD of the drag coefficients for all the negative
rotation rates, a view with a small vertical axis scale is presented in Figure 3d. It can be
seen that C′D, in the range of α ≤ −4, was increased by around 50% to 100% for β = 0◦,
135◦, and 180◦. However, the increase in the SD of the drag coefficient was minimal, since
it was insignificantly smaller than the SD of the lift coefficient. The SD of the drag on the
cylinder (C′DC) was increased significantly for −4 ≤ α ≤ −3, but the SD of the total drag
(C′D) was not, because the drag coefficients on the cylinder and rod were out of phase with
each other.

The SD of both the drag and lift coefficients were increased dramatically when the
rotation rate was positive with a high magnitude. Positive rotation rates have not been
considered in many studies of flow control using rotating rods [12,22]. If vortex-induced
vibration is utilized for energy harvesting, using a positive rotation of the rod would
increase the energy significantly [36].

When a uniform flow approaches the cylinder, shear layers generated on the cylinder
surface form vortex shedding, which causes oscillation of the fluid force on the cylinder. To
explain the effects of the control rod on the drag and lift coefficient, the flow was visualized
using the contours of vorticities and streamlines. The nondimensional vorticity is defined
as ω = ∂v/∂x − ∂u/∂y. In the following discussion, shear layers whose vorticities are
positive and negative are referred to as positive and negative shear layers, respectively. At
β = 180◦, the SD of the drag and lift coefficients reduced suddenly as the rotation rate α
increased from 3.2 to 3.4, as shown in Figure 3. The instantaneous flows at α = 2.4 and 3.6
shown in Figure 4 explain the sudden reduction. In Figure 3a,b, where α = 2.4, the rotating
control rod did not have a significant effect on the shear layer formed on the cylinder
surface, and the vortex shedding from the cylinder resembled that of a cylinder without
control rods. The SD of the lift coefficient of the cylinder in Figure 3a was close to that of a
single cylinder at α = 2.4. In Figure 3c,d, where the total lift coefficient of both cylinders
reached its maximum and minimum values, respectively, the rotation rate of the control rod
was so large that it caused the negative shear layer to separate from the top side surface of
the cylinder, forming a vortex and finally reattaching to the cylinder surface again behind
the vortex, as indicated in Figure 3c,d. The separation and reattachment of the shear layer
on the top surface of the cylinder weakened the vortex shedding, and the lift coefficient
was weakened significantly.
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efficients with rotation rate. The total drag and total lift coefficients were defined as 
)2//()( 2

DRDCD DUFFC ρ+=  and )2//()( 2
LRLCL DUFFC ρ+= , respectively. The 

mean and SD of the force coefficients were obtained using the data within 10 vortex shed-
ding periods. The variation in the SD of the lift coefficient of the cylinder was very similar 
to that of the total lift coefficient for all the position angles of the rod, except that the SD 
of the total lift coefficient was slightly greater than the SD of the lift coefficient of the cyl-
inder. The best reduction in the SD of the lift coefficient occurred for 4−≤α , for all the 
position angles of the rod. 
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Figure 4. Streamlines and the contours of the nondimensional vorticity of instantaneous flows when
the lift coefficient reaches its maximum and minimum values for β = 180◦.

To further understand the effects of the rotating rod on the flow and the force co-
efficients, the streamlines and the contours of the vorticity based on the mean flow are
discussed, and the correlation between the flow and force coefficients analyzed. The mean
flow is the averaged flow over one vortex shedding period. Because the vortex shedding
flow is periodic for all the simulated cases, one vortex shedding period of flow data is
sufficient to obtain the time-averaged mean flow. The flow structures for the three position
angles β = 45◦, 90◦, and 135◦ are discussed together because they share similar flow char-
acteristics and vortex dynamics. Figures 5–7 show the streamlines and nondimensional
vorticity contours of the mean flow for β = 45◦, 90◦, and 135◦, respectively. The nondi-
mensional vorticity is defined as ω∗ = (∂v/∂x− ∂u/∂y)/(U/D), where u and v are the
velocity components in the x- and y-directions, respectively.
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Figure 5. Streamlines and the contours of the nondimensional vorticity of the mean flow for β = 45◦.
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Figure 6. Streamlines and the contours of the nondimensional vorticity of the mean flow for β = 90◦.
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Figure 7. Streamlines and the contours of the nondimensional vorticity of the mean flow for β = 135◦.

The wake vortex shedding was mainly caused by the separated negative shear layers
from the top of the cylinder and rod, and the positive shear layer from the bottom of the
cylinder. For β = 45◦, the negative shear layer from the top of the rod could be one that
had separated from the cylinder previously and had reattached to the rod (Figure 5). The
rotation of the rod affected the flow by modifying the negative shear layers from the tops
of the rod and cylinder. Positive vorticity around the rod caused by negative rotation
weakened the negative shears and vice versa. The rotation of the rod at an excessively
high negative rotation rate caused disappearance of the separated negative shear layer, as
shown in Figure 7a. The rotation of the rod at a very large positive rotation rate caused the
disappearance of the positive shear layer, and as a result, the negative shear layer from the
rod became stronger, as shown in Figure 7f. By observing the mean flow structures and the
lift coefficient in Figures 5 and 6, the rotation of the rod can be seen to affect the flow via
the following three mechanisms:

• Strong negative rotation of the rod weakens the negative free shear layers;
• Flow through gap interferes with vortex shedding;
• Strong positive rotation of the rod enhances the negative free shear layers.

In one case, two of the above three mechanisms may co-exist and affect the flow. In
the following, these three mechanisms will be discussed in detail.

4.1. Reduction of the Negative Free Shear Layers by Strong Negative Rotation of the Rod

Negative rotation of the rod generated positive vorticity, which in turn weakened the
negative shear layers from both the cylinder and the rod. In Figures 6a and 7a,b, the magnitude
of the negative rotation rate was so high that the negative shear layer from the rod was totally
cancelled out. As the result, the shear layer regenerated behind the rod did not have sufficient
strength to form vortices, and the vortex shedding was fully suppressed. The full suppression
of vortex shedding is evidenced by the zero standard deviation of the lift coefficient in Figure 3.
In the study of flow control using two rotating rods, with d/D = 0.05 on either side of the
cylinder at Re = 100, Mittal [21] also found a steady flow condition at α = 5.

When β = 45◦, as shown in Figure 5a,b, the negative shear layer, which was developed
over a longer distance on the cylinder surface before it reached the rod, was not fully
suppressed at α = −6 and −4, though it was significantly weakened. The weakened
negative shear layer from the top of the rod reduced the strength of the vortices and the lift
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coefficient. For β = 135◦, the upstream location of the rod allowed a new negative shear
layer to be regenerated from the upstream surface of the cylinder, as shown in Figure 7a,b,
and allowed it to exist over a long distance along the cylinder. As a result, full suppression
of the vortex shedding was not observed.

As the magnitude of the negative rotation rate was reduced, the negative shear layer
from the top of the rod became stronger, and so did the negative vortices formed. As a
result, the lift coefficient increased, as shown in Figure 3a. However, the lift coefficient
started to decrease at α ≥ −2 for β = 90◦ and α ≥ −2.2 for β = 45◦. This was due to the
interference of the flow through the gap.

4.2. Interference of Flow through Gap with Vortex Shedding

When the rod rotated in the negative direction with a sufficiently large rotation rate,
no fluid flowed through the gap. Fluid flowed through the gap when the magnitude of the
negative rotation rate was reduced to a certain level, i.e., α > −1, −4 and − 3.4 for β = 45◦,
90◦, and 135◦, respectively. Fluid flow through the gap generated positive and negative shear
layers from the rod and the cylinder, respectively. The gap flow increased as the magnitude of
negative α decreased. The strong positive shear layer from the bottom of the rod interfered
with and weakened the vortex shedding process, as shown in Figures 5d, 6d and 7d. The
minimum values of the lift coefficient at α = 0.4 and α = −0.8 for β = 45◦ and 90◦, respectively,
were caused by the interference of the flow through the gap.

For β = 135◦, the positive shear layer from the bottom of the rod did not affect the
vortex shedding process as much as for β = 90◦, because it was weakened significantly
before it reached the topmost point of the cylinder. Nevertheless, its interference resulted
in the lift coefficient increasing with α much more slowly in the range of −2 ≤ α ≤ −1. For
β = 135◦, the interference of the gap flow with the vortex shedding was very weak, because
the position of the gap allowed only very small volumes of fluid to flow into the gap. As
a result, the minimum value of the lift coefficient caused by the interference of the flow
through the gap was not observed.

4.3. Enhancement of the Negative Free Shear Layer by Strong Positive Rotation of the Rod

When the rotation rate of the rod was positive, the lift coefficient increased with an
increase in the rotation speed, because the positive rotation enhanced the negative shear
layer from the top of the cylinder, which was responsible for the generation of negative wake
vortices, and at the same time weakened the positive shear layer from the bottom of the rod.
When the positive shear layer in the gap was sufficiently weak (Figures 5e, 6f and 7e), the two
negative shear layers combined and formed a stronger negative shear layer. If the positive
rotation rate of the rod was sufficiently large, strong negative vorticity around the rod fed into
the negative shear layer on top of the cylinder, as shown in Figures 5f, 6i and 7f, resulting in a
significant increase in the wake vortices and the lift coefficient.

Placing the rod in the wake of the cylinder (β = 0◦) reduced the lift coefficient by half
or more, regardless of the rotation direction or rotation rate, because the rod mitigated the
interaction between the negative and positive vortices in the wake [16].

For β = 180◦, the reduction in the lift coefficient caused by the rotation of the rod was
found to be significant for |α| greater than 3.4 and very small for |α| smaller than 3.2.
The lift coefficient was reduced significantly when |α| ≥ 3.4, because the positive shear
layer on the bottom side of the cylinder separated and reattached to the cylinder surface,
as indicated in Figure 8d–f. The separation of the shear layer for a certain distance before
it reattached to the cylinder reduced its strength and consequently weakened the vortex
shedding. For |α| ≤ 3.2, the rotation of the rod did not cause a large change in the lift
coefficient, because it enhanced the positive shear layer and at the same time weakened the
negative shear layer on the cylinder surface.
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Figure 8. Streamlines and the contours of the nondimensional vorticity of the mean flow for β = 0◦

and 180◦.

Figure 9 shows the variation in the mean lift and drag coefficients with rotation rate.
An overbar on CD and CL denotes the mean value. Both the mean lift coefficient of the
cylinder and the total lift coefficient were significantly increased at large rotation rates,
either in the negative or positive directions. The mean lift coefficient for the highest |α|
was greater than the mean drag coefficient for β = 45◦. A net lift coefficient could be avoided
by placing two control rods either side of the cylinder. The mean total drag coefficient at
large negative rotation rates was reduced compared with the case without a control rod.

Figure 10 shows the position angle of the stagnation point upstream of the cylinder
(θs), which is referred to as the stagnation angle. The stagnation angle is 180◦ if the control
rod does not exist. It can be seen that for β = 0◦, 45◦, and 90◦, the stagnation point in front
of the cylinder shifted downwards (θs > 180◦) if α was negative and upwards (θs < 180◦) if
α was positive. The downward and upward shift of the stagnation point caused positive
and negative net lift coefficients, respectively. The effect of the rotation direction on the
stagnation point for β = 135◦ and 180◦ was opposite to that for β = 0◦, 45◦, and 90◦, i.e., a
negative and positive α caused an upward and downward shift of the stagnation point,
respectively, on the front surface of the cylinder.
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5. Conclusions

The effectiveness of flow control using a rotating control rod was investigated through
two-dimensional numerical simulations for Re = 200, d/D = 0.2, G/D = 0.2, and β = 0◦,
45◦, 90◦, 135◦, and 180◦. Simulations were conducted for a wide range of rotation rates
between −7 and 7. The study was focused on the interference of the rod with the shear
layers in cases where the rod was very close to the cylinder. The main conclusions can be
summarized as follows.

When the rod was placed at the side (β = 90◦), or nearly to the side of the cylinder
(β = 45◦ and 135◦), its rotation interfered with the shear layers in the following three
ways, depending on the rotation rate: (1) strong negative rotation of the rod weakened
the negative free layers, and as a result, the lift coefficient was reduced strongly; (2) the
interference of the flow through the gap weakened the vortex shedding and reduced the
lift coefficient; and (3) strong positive rotation of the rod enhanced the negative free shear
layers and increased the lift coefficient.

The SD of the lift coefficient was significantly reduced for a rotation rate |α| ≤ −4
for all the position angles. The vortex shedding could be fully suppressed for β = 90◦ and
45◦ if the magnitude of the negative rotation rate was sufficiently large. A positive rotation
rate caused a significant increase in the SD of the drag and lift coefficients if β = 45◦, 90◦,
or 135◦. Rotation of the rod with β = 0◦ and 180◦ caused a reduction in the SD of the lift
coefficient, regardless of rotation rate.

The rotation of the cylinder in either the negative or positive direction created a mean
lift coefficient on the cylinder, which increased as the rotation rate increased. The mean
total drag coefficient at a large negative rotation rate was reduced compared with the case
without a control rod.
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Nomenclature

CD Drag coefficient
CL Lift coefficient
CDC Drag coefficient of the cylinder
CDR Drag coefficient of the control rod
CLC Lift coefficient of the cylinder
CLR Lift coefficient of the control rod
D Diameter of the cylinder
D Diameter of the control rod
FD Drag force
FL Lift force
FDC Drag force of the cylinder
FDR Drag force of the control rod
FLC Lift force of the cylinder
FLR Lift force of the control rod
G Gap between the cylinder and the control rod
P Pressure
U Free-stream flow velocity
Re Reynolds number
SD Standard deviation
U Velocity in the x-direction
v Velocity in the y-direction
x Coordinate in the streamwise direction
y Coordinate in the crossflow direction
α Rotational rate
β Position angle of the control rod
σ Angular speed of the rotating rod
ν Kinematic viscosity of the fluid
ω Viscosity
∆t Computational time step
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