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Abstract: Ship target identification is of great significance in both military and civilian fields. Many
methods have been proposed to identify the targets using tracks information. However, most of
existing studies can only identify two or three types of targets, and the accuracy of identification needs
to be further improved. Meanwhile, they do not provide a reliable probability of the identification
result under a high-noise environment. To address these issues, a Bayesian-Transformer Neural
Network (BTNN) is proposed to complete the ship target identification task using tracks information.
The aim of the research is improving the ability of ship target identification to enhance the maritime
situation awareness and strengthen the protection of maritime traffic safety. Firstly, a Bayesian-
Transformer Encoder (BTE) module that contains four different Bayesian-Transformer Encoders is
used to extract discriminate features of tracks. Then, a Bayesian fully connected layer and a SoftMax
layer complete the classification. Benefiting from the superiority of the Bayesian neural network,
BTNN can provide a reliable probability of the result, which captures both aleatoric uncertainty and
epistemic uncertainty. The experiments show that the proposed method can successfully identify
nine types of ship targets. Compared with traditional methods, the identification accuracy of BTNN
increases by 3.8% from 90.16%. In addition, compared with non-Bayesian Transformer Neural
Network, the BTNN can provide a more reliable probability of the identification result under a
high-noise environment.

Keywords: ship target identification; track; neural network; Bayes

1. Introduction

Ship target identification is an important step in obtaining battlefield situation infor-
mation. Moreover, in the civilian field, it can be used for maritime supervision, detection
of suspicious vessels, and protection of maritime traffic safety. The ships may deceive
supervision by tampering with identity information in Automatic Identification System
(AIS) system, thus hiding the real identity and causing hidden dangers to maritime safety.
In addition, with the development of autonomous ships, maritime traffic safety is a note-
worthy problem. In the course of sailing, the autonomous ships need to identify and evade
other targets effectively. Using tracks information to identify other targets can enrich the
ways of identification and improve the target identification capability of autonomous ships.

Most studies identify targets by utilizing radar target polarization characteristics [1]
and images [2,3]. However, when the radar target polarization characteristics are not obvi-
ous or target images are not clear, the above methods will be difficult to achieve. Therefore,
an auxiliary target identification method using other information is needed. Time-series
data are sequential data [4] which may make their features more discriminative [5]. The
tracks of the ship targets are a kind of time series and have obvious time ordering. The
tracks generated by different targets contain different motion information, which can help
to identify the targets. Indeed, the ship targets’ identification using track information is a
time series classification (TSC) task. The goal of TSC is to categorize time series into specific
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categories to facilitate better understanding and use of them. There are many methods
that have been proposed to solve TSC. One paper [6] showed a distance-based approach,
which used the Dynamic Time Warping (DTW) as the tool of similarity measurement. Time
series are transformed into another feature space where the discriminatory features are
more easily detected [7]. Another way to improve TSC performance is through assembling,
whereby 35 classifiers are combined to achieve higher accuracy, named COTE [4]. However,
target tracks are multidimensional time series and contain rich motion information, which
is more complex and difficult to extract discriminant features. The traditional methods
care less about the motion features and have no pertinence in solving the problem of
tracks classification.

A growing number of researchers are focusing on target identification using tracks
information. According to the characteristics of the track sequence, they have proposed
some specific methods. Stephen Noyes [8] used a fuzzy logic method to identify the target
as “wanted”, including aircraft, missiles, ships, and vehicles or “unwanted” including birds.
Although he used a multi-valued logic, the memberships were too few to cope with a refined
classification of targets. To address this shortcoming, Kouemou, G. and Opitz, F [9] made
an improvement in the fuzzy logic approach. They considered more parameters of tracks,
so more fuzzy membership functions were set up. Moreover, Doumerc et al. [10] added
contextual information in the membership values of fuzzy logic. The target identification
ability of fuzzy logic was enhanced. However, determining the fuzzy memberships and
their functions required a lot of empirical knowledge and was challenging, especially when
too many fuzzy memberships were considered. Wang Z.F et al. [11] built an air corridor
model and then classified the tracks into airway targets and non-airway targets. However,
it required a lot of prior information to establish airways, which was difficult to implement
in a real-world environment.

With the development of the machine learning technology, many researchers tried
to classify the tracks based on machine learning ways. Ghadaki, H. and Dizaji, R. [12]
used a supervised learning technique named Support Vector Machines, which showed
that machine learning methods performed well in target identification. More statistical
features were extracted in [13]. L.P. Espindle et al. [14] used Gaussian mixture models to
identify the target as aircraft or non-aircraft, and achieved a high accuracy of identification,
but it needed the proportion of various target types. Kai Sheng et al. [15] proposed three
movement patterns and extracted the features from these three patterns, which was novel
and useful to extract more fine-grained features. Nevertheless, the features extraction
process was complex. Yumu, D. et al. [16] designed an autoencoder to extract features
and performed Principle Component Analysis (PCA) on them. Then, the Support Vector
Machines, Convolutional Neural Networks and SoftMax were used to identify the targets.
The method of feature extraction has been enriched. Considering that some targets were
easy to distinguish while others may be harder, a multistage identification method was
proposed in [17]. These methods enable machine learning to be well applied in track
classification and made progress in track classification. Although the machine learning
method is efficient and has been widely used, the construction and analysis of statistical
features are complicated.

Rapid development of deep learning has indeed revolutionized the field of computer
vision, especially with the advent of novel deeper architectures such as Residual and
Convolutional Neural Networks [18]. Many researchers have also been applying deep
learning methods to TSC. For instance, Hui Xing Tan et al. [19] used Long Short-Term
Memory (LSTM) to detect various gait instances in different scenarios and environments.
Kooshan, S. et al. [20] also used LSTM to achieve singer identification. Lai, C. et al. [21]
developed a multi-stage deep learning-based model to automatically interpret multiple
common ECG abnormality types. Meanwhile, the task of ship target identification by tracks
information can also be processed by deep learning. Bakkegaard, S. [22] tried to use a RNN
model to identify the ship target. Ichimura, S. and Zhao, Q. [23] proposed a MLP model
to classify the cargo, fishing and passenger ships. The deep learning was proved to be
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feasible to solve the track classification. Nevertheless, the accuracy of the classification
needs to be further improved. Moreover, a reliable predictive probability under high-noise
environment is also needed, which is meaningful for the decision maker.

In this paper, the Bayesian-Transformer neural network (BTNN) is proposed to achieve
more refined ship target identification (see Figure 1). Meanwhile, a reliable probability of
the result under a high-noise environment can be provided, which is extremely significant
in the fields of military and maritime surveillance. If the model misclassifies the sample
and the predictive probability is still high, the predictive probability is proved to be
unreasonable. On the contrary, if the model provides a low probability of the result, the
commander will be alerted. The wrong decisions due to misclassification by the model
will be avoided. The proposed model can capture both aleatoric and epistemic uncertainty.
The weights of network are not fixed but follow a distribution. The encoder part from
Transformer [24] is chosen with some simplification to build the Bayesian transformer
encoders (BTE) module. The Bayesian transformer encoder (BTE) module is designed
to get a discriminate representation of tracks in feature space, which can be seen as a
feature extraction process. The features extracted by BTE module are flattened into one-
dimensional feature vectors. Then, a Bayesian fully connected layer and a SoftMax function
complete the classification and output the probability distribution. The Variational Inference
(VI) [25] is chosen to train the BTNN. The model with the best performance during the
training is selected. After training, BTNN can be used to identify ship targets using tracks
information. BTNN performs well on a publicly available dataset Automatic Identification
System (AIS). Compared with the traditional methods, BTNN achieves a higher accuracy.
In addition, a more reliable probability of the result under a high-noise environment can
be provided.
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The main novelties are summarized as follows:

• The ship target is identified only by the track information.
• To extract the discriminative features of tracks, a Bayesian-Transformer Encoder

(BTE) module is proposed, which can deal with the long sequences and reduce
network parameters.
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• The Bayesian principle is applied to the transformer neural network, which makes it
possible to provide a more reliable probability that catches both aleatoric uncertainty
and epistemic uncertainty.

This paper is organized as follows. Section 2 presents the proposed method. Section 3
displays the experimental results and analysis. Section 4 draws some conclusions.

2. Methods
2.1. Mathematical Model of Ship Targets Identification Using Tracks

Track samples could be represented as follows:

Ti =
{

Pi1, · · · , Pij, · · · , Pin
}

, j ∈ [1, n] (1)

Ti represents the ith track in a track dataset T. n is the total number of track points in Ti. Pij
represents the jth track point in Ti.

Pij =

(
latitude, longitude, speed over ground,

course over ground, time

)
(2)

The task that ship target identification using tracks is to predict the ship target’s type
based on

{
Pi1, · · · , Pij, · · · , Pin

}
. The neural network is very sensitive to the singular value

of data and the different distribution of data dimension during training. To avoid this
adverse effect, 0–1 normalization is used to normalize track data. The formula of 0–1
normalization is shown in (3).

xij =
xij − xmin

xmax − xmin
(3)

where x represents one dimension of the jth track point. xmax = max
i∈[1,m],j∈[1,n]

xij, xmin =

min
i∈[1,m],j∈[1,n]

xij, i is the number of the track.

2.2. Overall Structure of BTNN

The tracks generated by ships contain a wealth of features of the targets. The main idea
of the proposed method is to predict the type of ship targets by tracks information. Tracks
are multidimensional time series. Every track belongs to a certain target type yi, which is
selected to be the label of the track Ti. The training of BTNN based on tracks is a supervised
learning process. BTNN consists of four parts: Position Encoding, Bayesian-Transformer
Encoder module, Bayesian Fully Connection (FC) and SoftMax. (see Figure 1), First, the
position of track points is encoded. Track is a discrete time series, so all points have a
definite order. By this, the position of the track points in “Position Encoding” is encoded.
The function of positional encoding is:

PE(p, 2i) = sin
(

p/100002i/d
)

PE(p, 2i + 1) = cos
(

p/100002i/d
) (4)

where the p represents the position, the i is the ith dimension of the position p. The d
is the dimension of one position. Second, the Bayesian-Transformer Encoder module is
used to extract features and obtain another representation of the track. Third, the new
representation is transferred in Bayesian FC layer. Finally, the SoftMax outputs probability
distribution and completes the classification. The weight parameters in the BTNN follow a
distribution p(w|T, Y ), which is to be obtained by variational inference [25]. The core part
of the BTNN is illustrated in detail in Section 2.3. The application of Bayes principal in the
BTNN is stated in Section 2.4.
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2.3. Bayesian-Transformer Encoder (BTE) Module

The transformer network [24] was originally designed for machine translation problem,
which is a sequence to sequence task. The transformer includes an encoder part and a
decoder part, which has eschewed recurrence and instead relies entirely on an attention
mechanism. Therefore, the transformer is capable of parallel computation. In view of these
advantages, the transformer structure is used to achieve the classification of track. However,
target identification is a classification task. The input is a multi-dimension sequence, and
output is the target type that can be represented as a number. Unlike machine translation
problem, there is no need to generate and output a new sequence. Therefore, a Bayesian FC
layer and SoftMax are used as the decoder. There are mainly two parts in the transformer
encoder layer: multi-head attention and feed forward. The attention mechanism is used
to capture relationship between different data points in the input sequence. The attention
function is defined as:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (5)

where the queries Q, keys K and values V are the linear projection of the input. The
attention mechanism can get the weights of every K to the Q, then the values corresponding
to the Q are computed by Equation (4). The function of multi-head attention is:

MultiHead(Q, K, V) = Concat(head1, · · · , headh)WO (6)

Headi = Attention(QWQ
i , KWK

i , VWV
i ) (7)

The WQ
i , WK

i , WV
i and WO are parameter matrices to realize the linear projection. The

multi-head attention makes it possible to care about different information in different sub-
spaces. The feed forward part consists two fully connection (FC) layers, where dimensions
of data increase first and then decrease to be the same as the input sequence. However, there
is no need to make the output and input dimensions of the Bayesian-Transformer encoder
the same; instead, the dimension in Bayesian-Transformer encoder output is changed. In
the second part of the BTNN, four Bayesian-Transformer encoders (BTE) are used (BTE I, II,
III, IV). There is only a Bayesian FC layer in the feed forward part. The output and input of
BTE I have the same dimensions, as does BTE III. However, the output and input of BTE II
have different dimensions. BTE IV also has different output and input dimensions. The
feed forward of BTE II only increases the dimension d1 of data, thus providing a higher
dimension input for BTE III. Increasing dimensions of data points in the input sequence can
provide richer information for the calculation of attention, and the encoder layers can better
extract the feature information among different points in the input sequence. Furthermore,
the number of parameters in feed forward part is also reduced. The output of BTE IV is
flattened out to get a discriminative feature vector, which is another representation of input.
The dimension d2 of the discriminative feature vector depends on the feed forward of BTE
IV. The experiment in Section 3.2 shows that the BTNN is both reasonable and effective.
Additionally, the best values of d1 and d2 are also selected.

2.4. Bayesian-Transformer Neural Network (BTNN) Training and the Predictive
Probability Calculation

In Bayesian-Transformer Neural Network (BTNN), predictive uncertainty comes from
two different sources: aleatoric uncertainty and epistemic uncertainty. Aleatoric uncertainty
captures the inherent uncertainty in data and epistemic uncertainty expresses the model
uncertainty [26]. BTNN can reflect both epistemic uncertainty and aleatoric uncertainty,
while Non-Bayesian Transformer Neural Network (NBTNN) can only express aleatoric
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uncertainty. The reason is that NBTNN has fixed weight parameters, but the weights of
BTNN follow a distribution p(w|T, Y ), which satisfies the following Bayes formula:

p(w|T, Y ) =
p(T, Y|w)p(w)

p(T, Y)
(8)

where w is the set of model parameters, T is the track dataset, Y is the label of the track.
p(w|T, Y ) is the posterior. It is the probability of the w conditioned on the data (T, Y).
p(w|T, Y ) is difficult to compute by Equation (8). Jordan, M.I. et al. [25] provided a
variational inference (VI) method to approximate the complicated posterior distribution
p(w|T, Y ) by a simpler one called variational distribution qθ(w). θ is the set of variational
parameters describing the proposed distribution. The process of BTNN training is finding a
qθ(w) to approximate p(w|T, Y ). The Kullback–Leibler (KL) divergence is used to measure
the similarity between qθ(w) and p(w|T, Y ).

KL{qθ(w)||p(w|T, Y )} =
∫

qθ(w) log
qθ(w)

p(w|T, Y )
dw (9)

The goal is to minimize KL{qθ(w)||p(w|T, Y )}. The right side of Equation (9), p(w|T, Y )
can be replaced by p(w, (T, Y))/p(T, Y), and the Evidence Lower Bound (ELBO) can
be obtained:

ELBO=Eqθ(w)[log(p(T, Y|w))]−KL[qθ(w)||p(w)] (10)

Maximizing the ELBO is the goal to optimize. The parameters in the VI model are
replaced by Gaussian distributions:

w ∼ qθ(w) = N
(
µw,σ2

w

)
(11)

According to [27], reparameterize the random variable w as:

w = µw + εσw, ε ∼ N(0, 1) (12)

Thus, the backpropagation can be achieved through w because ε ∼ N(0, 1) has no
tunable parameters and does not need to be updated.

After the model has been trained, it can be used to predict the category of the
tracks. Here, the calculation of predictive probability is stated. The same inputs Ti
are predicted for H times. Every time a multinomial conditional probability distribu-
tion (CPD) is obtained p(Yi|Ti,wt) = Multinomial distribution with n target classes (MN)(

pt
1
(Ti, wt), · · · , pt

k
(Ti, wt), · · · , pt

c(Ti, wt)
)

, where t ∈ [1, 2, 3, · · · , H]. Every time the MN
under BTNN is corresponded to a sampled weight constellation wt [28]. For each class
m ∈ [1, 2, 3, · · · , c], the mean probability can be determined by:

pm(Ti, w) =
1
H

H

∑
t=1

pt
m(Ti, wt) (13)

Then, the class of the target is predicted by the highest mean probability max(pm(Ti, w)).
Now, the predictive probability is achieved:

ppred = max

(
1
H

H

∑
t=1

pt
m(Ti, wt)

)
(14)

As the Figure 2 intuitively shows, the aleatoric uncertainty is expressed in the dis-
tribution across the classes, which is zero if one class receives a probability of one. The
epistemic uncertainty is expressed in the spread of the predicted probabilities of one class,
which is zero if the spread is zero [28]. Therefore, the BTNN can provide a more reliable
predictive probability calculated by Formula (10) that captures both aleatoric and epis-
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temic uncertainty. The advantage will be further demonstrated through experiments in the
Section 3.4.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 7 of 17 
 

 

( ) ( ) ( )( ) 
1

, , , , ,
k

t t t
i t i t c i tp p pT w T ,w T ,w , where ∈ [1,2,3, , ]t H . Every time the MN 

under BTNN is corresponded to a sampled weight constellation tw  [28]. For each class 

∈   1,2,3, ,m c , the mean probability can be determined by: 

=
= 

1

1( ) ( )
H

t
m i m i t

t
p p

H
T , w T , w  (13)

Then, the class of the target is predicted by the highest mean probability 
max( ( ))m ip T , w . Now, the predictive probability is achieved: 

=

 
=   

 


1

1max ( )
H

t
pred m i t

t
p p

H
T , w   (14)

As the Figure 2 intuitively shows, the aleatoric uncertainty is expressed in the distri-
bution across the classes, which is zero if one class receives a probability of one. The epis-
temic uncertainty is expressed in the spread of the predicted probabilities of one class, 
which is zero if the spread is zero [28]. Therefore, the BTNN can provide a more reliable 
predictive probability calculated by Formula (10) that captures both aleatoric and epis-
temic uncertainty. The advantage will be further demonstrated through experiments in 
the Section 3.4. 

 
Figure 2. Multinomial distribution with nine target types: MN ( ) ( ) ( )( ) 

1 9, , , , ,
k

t t t
i t i t i tp p pT w T ,w T , w . 

3. Experiments and Analysis 
3.1. Data Preparing and Experimental Setup 

A real-world maritime dataset is used to validate the proposed method. The Euro-
pean Automatic Identification System (AIS) dataset is a heterogeneous integrated dataset 
for maritime intelligence, surveillance and reconnaissance. It covers a time span of six 
months, from 1 October 2015 to 31 March 2016, and provides ships positions within the 
Celtic sea, the Channel and Bay of Biscay (France). There are 41 vessel types in the Euro-

Figure 2. Multinomial distribution with nine target types: MN
(
pt

1
(Ti, wt), · · · , pt

k
(Ti, wt), · · · , pt

9(Ti, wt)
)
.

3. Experiments and Analysis
3.1. Data Preparing and Experimental Setup

A real-world maritime dataset is used to validate the proposed method. The European
Automatic Identification System (AIS) dataset is a heterogeneous integrated dataset for
maritime intelligence, surveillance and reconnaissance. It covers a time span of six months,
from 1 October 2015 to 31 March 2016, and provides ships positions within the Celtic sea,
the Channel and Bay of Biscay (France). There are 41 vessel types in the European AIS
dataset with over 19 million AIS recordings. Nine vessel types from the European AIS data
are chosen: Fishing, Military Ops, SAR (Search and Rescue), Tug, Passenger, Cargo, Tanker,
Pleasure Craft and Other. The data points’ total number in each track is 30. Additionally,
80% of the dataset is divided into a training dataset and 20% is divided into a testing
dataset, on which the following experiments are based.

The ship type distribution of trajectories is shown in Figure 3. The y-coordinate means
the count of trajectories of each ship type. The abscissa means the ship types. There are a
total of 212,508 trajectories in both the training dataset and testing dataset. The fishing type
has 72,298 trajectories, which is the largest number among all ship types, while the pleasure
craft only has 1060 trajectories. The number of trajectories of fishing, SAR, passenger and
cargo is much higher than other ship types. The number of trajectories of different target
types is not evenly distributed, which is consistent with most of the actual situation. As
a data-driven method, the training of deep learning model requires plenty of samples to
update the parameters of the model and learn the rules of dataset. Therefore, the dataset
greatly affects the performance of the model. However, in the real world, data are always
unevenly distributed. Only when the method can overcome the disadvantage of an uneven
number of samples can it be meaningful to solve practical problems. Although the numbers
of military ops, tug, tanker pleasure craft and other target types are much less than others,
there are more than 1000 trajectories of each type, which are available to train the BTNN.
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Figure 4 shows some examples of tracks of different ship types. The tracks are drawn
by selecting longitude and latitude from the track information, and the shapes of tracks
are displayed intuitively on the two-dimensional plane. Some tracks have similar shape
characteristics while some are quite different. Specifically, the tracks of fishing ships are
more tortuous, which are obviously different from other tracks. This means that the fishing
ships change the course more frequently than other types of ships. The passenger ship,
cargo ship and tanker ship usually travel long distances from one port to another, so their
tracks are clearly directional. However, the distance between passenger ships’ track points
is generally larger than that of cargo ships. These are some of the differences that can
be directly observed. More advanced motion characteristics still need to be extract by
the model. The deep learning model has advantages to extract the advanced features.
There are many factors that affect the characteristics of a ship’s motion, such as the ship’s
power system, displacement and navigation tasks. Thus, different types of ships have
different motion characteristics, which will be reflected in the track information. The
difference makes it possible to predict the type of ships using tracks information by the
deep learning model.

All experiments are implemented under PyTorch deep learning framework on a 64-bit
station with Ubuntu20.04.2, 16GB of RAM, 8 Intel(R) Core (TM) i7-9700 CPU and NVIDIA
RTX 2080Ti.

3.2. Dimension Analysis and Choice

This section is aim at analyzing the influence of different dimensions of d1 and d2 on
the identification accuracy. After the dimension analysis, the most suitable dimensions of d1
and d2 are chosen. The dimensions of encoder layer d1 and final feature vector d2 have great
influence on the identification ability of BTNN. Dimensions that are too high may cause
dimension redundancy, increasing network parameters and lengthen the training time,
while those that are too low will lose track information. In this section, the identification
accuracies under different values of d1 ∈ [5, 10, 15, 20] and d2 ∈ [30, 60, 90, 120, 150, 180, 210]
are compared (see Table 1). There are 28 experiments at all. The accuracies of target
identification in both training data and testing data are listed. The best values of d1 and d2
were chosen. Firstly, the results between training data and testing data are similar, which
shows that the model does not overfit. The model has good generalization ability. Secondly,
according to Table 1, high values of d1 and d2 make the BTNN perform better. When
the value of either d1 or d2 increases, the identification accuracy also increases, especially
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when the values of d1 and d2 are low. This can be explained by the BTNN architecture.
The track input contains only basic motion information (timestamp, latitude, longitude,
speed and course). With a high dimension of the encoder layer, the multi-head-attention
module in it can get the motion connections among track points better and the encoder
module can extract more advanced motion features. There is a great similarity among
tracks of different targets. Therefore, if the dimension of the final feature vector is low,
interclass distances among tracks in the feature representation space are short. When the
distance between different targets’ features is long, the targets are more available to be
classified. With longer interclass distances, the features among different targets are more
discriminative. Therefore, high values of d1 and d2 result in high identification accuracy.
However, too high dimensions would contain redundant feature dimensions and have no
obvious improvement on BTNN performance. With the accuracy under different values
of d1 and d2 shown in Table 1, d1 = 10 and d2 = 180 are selected. The results show that the
proposed method is effective.
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Table 1. The accuracy of target identification in training data and test data under different values of
d1 and d2.

d2 = 30 d2 = 60 d2 = 90 d2 = 120 d2 = 150 d2 = 180 d2 = 210

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

d1 = 5 0.3613 0.3402 0.8646 0.8657 0.9155 0.8791 0.9342 0.9046 0.9500 0.9130 0.9630 0.9160 0.9494 0.9076
d1 = 10 0.3625 0.3402 0.9131 0.8746 0.9321 0.8804 0.9669 0.9273 0.9675 0.9265 0.9747 0.9396 0.9592 0.9226
d1 = 15 0.3699 0.3402 0.9310 0.9007 0.9312 0.9020 0.9601 0.9199 0.9664 0.9240 0.9737 0.9351 0.9721 0.9354
d1 = 20 0.3670 0.3402 0.9005 0.8864 0.9604 0.9255 0.9661 0.9337 0.9699 0.9218 0.9744 0.9343 0.9636 0.9340

3.3. Accuracy Analysis and Comparison

In this section, the Precision, Recall and F1-score of the proposed method with results
from ED_SVM [29], RNN [22], LSTM [19] and MLP [23] are compared. Precision, Recall
and F1-scores are used to evaluate the dichotomous model which are defined as:

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1− score =
2× Precision× Recall

Precision + Recall
(17)

where TP is the true positive, the number of positive samples that are correctly identified.
FP is the false positive, the number of samples incorrectly identified as positive. FN is the
false negative, the number of positive samples incorrectly identified as negative samples.
F1-score evaluates the identification by combining Precision and Recall, and the closer to 1,
the better BTNN deals with a multi classification problem.

Figure 5 demonstrates the results of class-level indicators, from which it can be ob-
served that BTNN outperforms the ED_SVM [29], RNN [22], LSTM [19] and MLP [23]. The
precision and recall of BTNN are higher than that of other methods in most target types.
For the training set, the indicators of all target types that identified by BTNN are higher
than 0.9 except the tanker target, while some of other methods’ indicators are lower than
0.8. The precision of tanker that identified by BTNN is 0.8903, the recall is 0.8586 and the
F1-score is 0.8742, but those indicators of tanker that identified by other methods are far less
than BTNN. For the testing set, the indicators of most target types are declined. However,
compared with other method, the BTNN achieved better results. Although BTNN has
a lower precision for pleasure craft than other methods, the F1-score is almost equal to
others. Considering the recall and precision comprehensively, it can be concluded from the
F1-score calculated by Equation (17) in Figure 5e,f that BTNN performs better than other
methods in identifying each target type.
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After the analysis of the identification results on the class-level, the overall performance
of the methods is summarized on the Table 2. The statistical metrics used to evaluate the
overall performance of methods are Weighted-Precision, Weighted-Recall and Weighted-
F1-score, which are defined as:

Weighted− Precision =
n

∑
i=1

ωi × Precisioni (18)

Weighted− Recall =
n

∑
i=1

ωi × Recalli (19)

Weighted− F1− score =
n

∑
i=1

ωi × F1− scorei (20)

where ωi represents the proportion of the i target type in all samples, n is the total number
of target types. Precision, Recall and F1-score reflect the ability of methods to identify
each target type. Weighted-Precision, Weighted-Recall and Weighted-F1-score can indicate
the overall Precision, Recall and F1-score of methods. In addition, weighted scores take
into account the imbalance of the number of target types. Thus, the Weighted-Precision,
Weighted-Recall and Weighted-F1-score are used as overall evaluation indicator of methods.
As shown in Table 2, the BTNN achieves higher values in each indicator than others, which
indicates that BTNN performs better on overall identification. Although some indicators of
BTNN on the class-level are similar to other methods, the weighted indicators of BTNN
are apparently higher than other methods. The results show that the BTNN can extract
the features more effectively, which could classify the tracks of different ship targets
more accurately.

Table 2. The Precision, Recall and F1-score of target identification in training data and test data by
different methods.

Weighted Precision Weighted Recall Weighted F1-Score Accuracy

Train Test Train Test Train Test Train Test

ED_SVM [29] 0.9154 0.8784 0.9170 0.8806 0.9084 0.8652 0.9355 0.8958
RNN [22] 0.9324 0.9014 0.9328 0.9016 0.9322 0.8968 0.9328 0.9016
LSTM [19] 0.9455 0.9107 0.9468 0.9124 0.9451 0.9053 0.9468 0.9124
MLP [23] 0.8988 0.8757 0.9016 0.8822 0.8925 0.8679 0.9016 0.8822

BTNN (ours) 0.9704 0.9303 0.9704 0.9313 0.9703 0.9282 0.9747 0.9396

3.4. Network Anti-Noise Testing

In the real world, noise is everywhere, and so is the track data collected by different
resources. In this section, the model is tested under different noise levels. Meanwhile, the
BTNN is also compared with Non-Bayesian Transformer Neural Network (NBTNN) to
show the improvement in the anti-noise ability of BTNN. Gaussian noise with a mean of 0
and standard deviation f from 0.05 to 0.3 are added to the dataset, respectively. A larger
number of f indicates a higher level of noise. Figure 6 shows the result of the identification
accuracy of BTNN and NBTNN under different values of f . Due to the noise, the motion
characteristics of the tracks will not be obvious. As shown in Figure 6, the recognition
accuracy remains above 0.75 for f less than 0.28. It can be deduced that BTNN has a good
anti-noise ability. In addition, when faced with noisy dataset, BTNN performs better than
NBTNN, which shows that it is meaningful to apply Bayes’ principle in neural network.
Furthermore, if the model misclassified the samples and the predictive probabilities are
still high, the predictive probabilities are proved to be unreasonable. The samples that
misclassified under a high-noise environment are selected to analyze their prediction
probabilities. First, the probability values are equally divided into 10 segments with an
interval length of 0.1, ranging from 0 to 1. Then, the number of misclassified samples are
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counted (numij, i ∈ [BTNN, NBTNN]) that fall into each interval j and get the percentage
of samples in each segment:

percentageij =
numij

numi
× 100% (21)J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 14 of 17 
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The results are presented in two bar charts in Figure 7a. Only 0.4% of the samples
misclassified by BTNN have predictive probabilities greater than 0.9, but for NBTNN, the
percentage was 3.5%. This means that NBTNN still provides exceptionally high predictive
probabilities for the 3.5 percent of the misclassified samples. Moreover, the interval length of
the segments is reset. In Figure 7b, the interval length is 0.2. In Figure 7c, the interval length
is 0.5. Figure 7b shows that 2.3% of the samples misclassified by BTNN have predictive
probability greater than 0.8; for NBTNN, the percentage is 13.2%. Figure 7c shows that
40.2% of the samples misclassified by BTNN have a predictive probability greater than 0.5;
for NBTNN, the percentage is 59.2%. It can be concluded that most of the samples that
are misclassified by BTNN have low predictive probabilities. In other words, the BTNN
is not very confident about the classified results of these misclassified samples, which is
significant for the commanders. Thus, for misclassified samples, the lower the predictive
probabilities, the better the model performs. Compared with NBTNN, the samples that
were misclassified by BTNN and have low predictive probabilities are more common. Thus,
the BTNN performs better than NBTNN.
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4. Discussion

To predict the type of the ship target, a Bayesian-Transformer Neural Network is
proposed. The experiments above indicate that the proposed method performs well. The
best values of dimension parameters are selected after the 28 experiments under different
dimension parameters. The feature representation space is proved to be effective to classify
the tracks of different target types. To demonstrate the generalization performance of
the model, the testing dataset is set to test whether the model could identify the target
using new track that does not appear in the training dataset. By analyzing the results of
experiments, it can be seen that the accuracy of the training set and testing set are similar.
It shows that the proposed model has good ability of generalization. The trained model
can be used to identify the target using its track information.

By comparing the results of the proposed method with the ED_SVM [29], RNN [22],
LSTM [19] and MLP [23], it can be concluded that the proposed method outperforms other
methods. Firstly, the class-level experiments are implemented. The results show that the
proposed method performs well in identifying each type of ship target. Meanwhile, the
indicators of the proposed method are higher than others. Secondly, the overall ability of
BTNN is compared with others. The results are shown in Table 2, which prove that the
BTNN also outperforms other methods in terms of overall performance. The model can
effectively extract features of tracks and classify the tracks in the feature space. However,
there are also some shortages. For example, the BTNN is similar to other methods in its
ability to identify some types of targets. Although the BTNN can identify the tug target
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more accurately than other methods, the recall for tug is still low, which means that many
tug targets in the dataset are not being identified by BTNN.

The experiments of network anti-noise testing prove the efficiency of the application of
the Bayes principle. The noise under different level is added to the data. The results show
that the proposed method can maintain a high accuracy of identification and outperforms
the Non-Bayesian Transformer Neural Network. In addition, most of the samples that
are misclassified by BTNN have low predictive probabilities. Therefore, the BTNN could
provide a more reliable predictive probability. On the contrary, the NBTNN has higher pre-
dictive probabilities for the misclassified targets, which means that the NBTNN is confident
of the misclassified results. This will have serious consequences. The suspicious targets
will thus evade supervision. In current studies, researchers tend to ignore this impact.

There are still some shortcomings that should be noticed. The proposed method is
a data driven model with high requirements on the dataset. The neural network needs
to learn the history data. Only after training with the history data can the model be used
to identify targets of unknown types. Therefore, the accumulation of historical data and
the establishment of datasets are also significant undertakings. In addition, the proposed
method can only predict the type of the ship target. If the concrete information of the
ship target is required, the BTNN will not be competent. Therefore, methods to combine
the proposed method in this paper with the ways that identify the ship target by other
information are one of the future focuses.

5. Conclusions

In this paper, a Bayesian-Transformer Neural Network (BTNN) is proposed to identify
the ship target using tracks information. The tracks generated by ship target contain a
wealth of features. Firstly, the discriminate features are extracted and another representation
of the tracks is obtained using a Bayesian-Transformer Encoder (BTE) module. Then, a
Bayesian fully connection layer and SoftMax complete the classification. BTNN belongs to
the Bayesian Neural Network. The variational inference (VI) method is used to approximate
the posterior distribution. In the experiments, the proposed method is evaluated on a
publicly available dataset, Automatic Identification System (AIS). The experiments show
that the proposed method can successfully identify nine types of ship targets. Compared
with methods described in ED_SVM [29], RNN [22] and MLP [23], the identification
accuracy of BTNN increased by 3.8% from 90.16%. The results of dimension analysis and
choice demonstrate that the BTNN has a good generalization. In the class-level experiments,
the proposed method achieves better indicators than other methods, which shows the
efficiency of the method to identify each type of the ship target. The results of weighted-
Precision, weighted-Recall and weighted-F1-score indicate that the BTNN also performs
well in the overall level. In addition, the BTNN could provide a more reliable predictive
probability under a high-noise environment. The anti-noise experiments show that the
BTNN has a higher accuracy than NBTNN of identification under a noise environment.
Meanwhile, the predictive probability provided by BTNN is more reliable than NBTNN,
which proves that it is meaningful to apply Bayes’ principle in the neural network.
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