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Abstract: Surrogate models, also referenced as metamodels, have emerged as attractive data-driven,
predictive models for storm surge estimation. They are calibrated based on an existing database of
synthetic storm simulations and can provide fast-to-compute approximations of the expected storm
surge, replacing the numerical model that was used to establish this database. This paper discusses
specifically the development of a kriging metamodel for the prediction of peak storm surges. For
nearshore nodes that have remained dry in some of the synthetic storm simulations, a necessary
first step, before the metamodel calibration, is the imputation of the database to address the missing
data corresponding to such dry instances to estimate the so-called pseudo-surge. This imputation is
typically performed using a geospatial interpolation technique, with the k nearest-neighbor (kNN)
interpolation being the one chosen for this purpose in this paper. The pseudo-surge estimates
obtained from such an imputation may lead to an erroneous classification for some instances, with
nodes classified as inundated (pseudo-surge greater than the node elevation), even though they
were actually dry. The integration of a secondary node classification surrogate model was recently
proposed to address the challenges associated with such erroneous information. This contribution
further examines the above integration and offers several advances. The benefits of implementing
the secondary surrogate model are carefully examined across nodes with different characteristics,
revealing important trends for the necessity of integrating the classifier in the surge predictions.
Additionally, the combination of the two surrogate models using a probabilistic characterization of
the node classification, instead of a deterministic one, is considered. The synthetic storm database
used to illustrate the surrogate model advances corresponds to 645 synthetic tropical cyclones (TCs)
developed for a flood study in the Louisiana region. The fact that various flood protective measures
are present in the region creates interesting scenarios with respect to the groups of nodes that remain
dry for some storms behind these protected zones. Advances in the kNN interpolation methodology,
used for the geospatial imputation, are also presented to address these unique features, considering
the connectivity of nodes within the hydrodynamic simulation model.

Keywords: storm surge; surrogate model; metamodel; node classification; dry node correction;
hurricane hazards; storm damage; risk reduction; flood protected zones

1. Introduction

The use of surrogate models (also referenced as emulators or metamodels) and ma-
chine learning techniques has gained increasing popularity for coastal hazard assessment
applications [1–10]. These approaches represent data-driven predictive tools that are cali-
brated using a database of synthetic storm simulations, with the ultimate goal to establish
fast-to-compute emulators that approximate (emulate) the expected storm surge with high
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accuracy. The output of the emulator is the storm surge (peak values or time-history
evolution), and the input is the parametric features that can be used to uniquely describe
each storm within the available database, for example, the parameters of the storm wind-
field model. The emulator ultimately establishes an approximation of the input/output
relationship and, when properly calibrated, can replace the high-fidelity numerical model
utilized to develop the original synthetic storm database, offering predictions with similar
accuracy and vastly improved computational efficiency. This circumvents any computa-
tional challenges associated with using the aforementioned high fidelity numerical models
for real-time forecasting and storm surge risk assessment, ultimately allowing the develop-
ment of efficient and versatile hazard prediction tools for emergency response management
and regional planning [11,12]. Gaussian process emulators (kriging) have been proven
in several studies [2–4,13–15] to offer great versatility as a surrogate modeling technique
in this context, providing highly accurate storm surge predictions over large coastal re-
gions with thousands of nodes and for databases of various sizes (number of storms) and
characteristics (underlying features of the synthetic storms).

Given a database of synthetic storms, two essential steps are needed before the emu-
lator calibration. These steps correspond, respectively, to the establishment of the input
and output (observations) training data. First, a parameterization of the database is needed
to define a vector of storm features that will serve as the emulator input. These features
typically pertain to track, size, and intensity characteristics for each storm, and in order to
account for the time evolution of these characteristics, different approaches can be estab-
lished leading to a definition based on: (i) a specific reference instance (landfall or reference
landfall for bypassing storm) [3], (ii) averaged values over some time-window around
such a reference instance [16], or (iii) a description that considers the entire functional
dependence over time [9,17]. Second, for nearshore or onshore nodes that have remained
dry in some of the synthetic storm simulations, the imputation of the database to address
the missing data corresponding to such dry instances is warranted. This imputation pro-
cess provides the pseudo-surge [18], which then replaces the missing data in the original
database. Though both steps are important, the emphasis of this paper is on the second
step, the database imputation.

Geospatial interpolation techniques, such as kriging [14] or k nearest-neighbor (kNN)
interpolation [16] have been proven as appropriate for performing this imputation, lever-
aging the spatial correlation between nodes in order to infer missing data based on the
surge values of other inundated nodes in close proximity. The selection of the exact type of
geospatial interpolation depends on the number of nodes for which surge data is available,
whether they correspond to the original numerical grid, which may include hundreds of
thousands of nodes, or to some selected, few (up to a couple of thousand) save points. In the
former case, a weighted kNN interpolation [16] has been shown to provide good accuracy
and computational efficiency, whereas for the latter case, advanced geospatial interpolation
techniques, such as kriging, can be explored [14] since the smaller size of the database
(smaller number of nodes) does not pose insurmountable computational challenges for
such techniques. Independently of the approach adopted to perform the imputation, the es-
tablished pseudo-surge estimates may provide an erroneous classification for some storms,
with the node classified as inundated based on the pseudo-surge (pseudo-surge value
larger than node elevation), even though it is known, based on the original database, that
the node is actually dry. Some adjustment of the imputed pseudo-surge is required for such
instances, since the direct use of the erroneous pseudo-surge training data will ultimately
lead to a poor emulator performance, over-predicting surge values for such cases. On the
other hand, the type of this adjustment is also important since it can generate gaps in the
input/output data, as demonstrated later, impacting the emulator calibration process and
its predictive capabilities.

This paper examines this specific problem of appropriately adjusting the imputed
pseudo-surge values for the accurate, emulator-based prediction of peak storm surge. The
integration of a secondary node classification surrogate model was recently proposed [16] to
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address the challenges associated with the erroneous pseudo-surge values generated at the
imputation stage. The proposed secondary surrogate model couples logistic principal com-
ponent analysis (LPCA) [19] with a kriging emulator on the resultant natural parameters
of the logistic process to establish an efficient classifier, even for applications with a large
number of nodes. For any node that has been misclassified at least once during the database
imputation, termed as a problematic node, the final surge predictions are established by
combining the predictions of the secondary classification surrogate model and the primary
storm surge surrogate model, which is established using the imputed database. It was rec-
ommended in [16] to adopt the predictions of the secondary classification surrogate when
the primary surrogate provides the condition of the problematic node to be as inundated
(surge estimate larger than the node elevation), in order to counteract the propensity of the
latter to overestimate the surge. This contribution considers a number of critical advances
for integrating such a node classification setting in storm surge surrogate modeling. The
accuracy established from this integration is examined for groups of nodes with different
characteristics, instead of averaging over the entire geographical domain, providing an
in-depth analysis of the benefits that such an integration can offer and of the cases for
which such benefits are critical for coastal hazard assessment. A detailed comparison to an
alternative implementation, considering the direct adjustment of any erroneous pseudo-
surge imputations, is also considered. Furthermore, potential advantages of combining
the two different surrogates (node classification and surge prediction) are discussed across
all nodes, without constraining only to the problematic ones. Finally, the probabilistic
characterization of the node classification (condition), instead of a deterministic one, is
examined for the surrogate model combination. This probabilistic characterization for the
secondary surrogate model is facilitated directly using the underlying logistic regression,
while for the primary surrogate model, it is developed utilizing the uncertainty quantifi-
cation offered by the corresponding Gaussian process emulator. All these advances are
illustrated using a 645 synthetic tropical cyclones (TCs) database developed for a flood
study in the Louisiana region. Various flood protective measures are present in the region,
creating interesting scenarios with respect to the group of nodes that remain dry behind
them for many of the database storms. Some adjustments in the kNN interpolation used
for the geospatial imputation are also discussed, considering the node grid connectivity
within the hydrodynamic surge simulation model when deciding on the selection of the
neighboring grid point locations, rather than basing any decisions solely on the closest
distance. The development of different surge surrogate models for parts of the database
with different surge behavior is also incentivized and investigated through some of the
examined comparisons.

The remaining of the paper is organized as follows: Section 2 establishes the notation
formalism used in this manuscript, with Section 3 presenting an overview of the database
used in this study. Section 4 reviews the kNN imputation process and motivates the need
to consider the node classification surrogate model. Section 5 reviews the fundamentals
of the primary and secondary surrogate model developments, while Section 6 discusses
details of the combination of the two surrogate models, distinguishing between different
approaches based on the node characteristics at the database imputation stage. Finally,
Section 7 considers a detailed presentation of results from the application of the combined
surrogate model implementation to the Louisiana case-study database.

2. Notation Formalism

A database of n synthetic storms is available that provides surge predictions for a
total of nz nodes within the computational domain. For the surrogate model development,
each of the synthetic storms is parameterized through the nx-dimensional vector x ∈ Rnx ,
which will serve as the emulator input, with xi denoting the ith input component. Further
details on the selection of x for the case study database will be provided in Section 3. The
input vector for the hth storm will be denoted as xh. Let zh

i denote the peak surge for
the ith node and the hth storm. Notation zi(x) will also be used for the surge of the ith
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node when the explicit dependence on the storm input vector needs to be highlighted. Let
z ∈ Rnz denote the nz-dimensional surge vector, with its components corresponding to
the surge values for all individual nodes of interest. All notations, including the subscript,
superscript, and input dependencies, extend to the vector notation z as well. For example,
zh = z(xh) corresponds to the vector of peak surge for all nodes for the hth storm, which
is described through the input vector xh. The classification of the ith node condition for
the hth storm is denoted by Ih

i or Ii(xh) when the dependence on the storm input needs
to be explicitly noted, with the convention that Ii(xh) = 1 corresponds to the node being
inundated (wet) and Ii(xh) = 0 to the node being dry. The dry instances Ih

i = 0 correspond
to missing data in the original database, with no predictions for the corresponding storm
surge zh

i . The nodes for which Ih
i is equal to 1 across all storms correspond to nodes that

have been inundated across the entire database and will be referenced as “always wet”
nodes, whereas the inland nodes for which Ih

i is equal to 0 for at least one storm will be
referenced as “once dry” nodes. The latter node group has at least one missing value (the
surge is not provided for at least one storm) across the suite of storms. The number of at
least once dry nodes will be denoted as nr. Additionally, let the elevation of the ith node be
ei, and for each node define the surge gap as:

ηi = minh(zh
i )− ei (1)

where minh(.) denotes the minimum of the quantity inside the parentheses across all the
storms in the database. The surge gap will be used later on to distinguish the dry nodes
into different groups.

Finally, assembling the data across all storms, let X, Z, and It denote the matrices for
the storm input, surge, and node classification, respectively, whose rows correspond to the
characteristics for individual storms. Across the manuscript, lower case variables denote
characteristics for specific storms, and upper case variables refer to characteristics across
the entire database. Matrix X has dimension n× nx, with rows corresponding to xh; Z has
dimension n× nz, with rows corresponding to zh; and It has dimension n× nz, with the
{h, i} element (hth row and ith column) corresponding to Ih

i . The instances/elements in
matrix It that correspond to value 0 represent the missing data in the original Z matrix.
The database for the peak storm surge ultimately provides the parametric input matrix
X and the peak surge matrix Z. The classification matrix It is derived based on Z, with
0 representing instances of missing surge values (node is dry) and 1 the rest (node is
inundated, so surge prediction is available).

3. Louisiana Database Overview

The database used in this study is part of the U.S. Army Corps of Engineers’ (USACE)
Coastal Hazards System (CHS; https://chs.erdc.dren.mil (accessed on 15 April 2022)) [12].
The CHS Louisiana Coastal Study (CHS-LA) was conducted for quantifying storm hazards
and coastal compound flooding in Louisiana, including areas in the vicinity of the Greater
New Orleans Hurricane Storm Damage Risk Reduction System (HSDRRS). The storm suite
developed for CHS-LA consists of n = 645 synthetic tropical cyclones (TCs), separated
into eight main tracks, referenced herein as master tracks (MTs), as shown in Figures 1
and 2. The grouping of the different tracks is based on the storm heading direction at
the final approach before landfall. Figure 1 shows all unique storm tracks, separated into
the MTs based on color, whereas Figure 2 presents separately the tracks within each MT,
additionally establishing a magnification closer to landfall. All storms are characterized by
unique combinations of the following parameters: landfall location, defined by the latitude,
xlat, and longitude of the storm track, xlon; heading direction during final approach to
landfall, β; central pressure deficit, ∆P; translational speed, vt; and radius of maximum
wind speed, Rmw. The heading direction (β) dictates the MT (as shown in each of the
subplots in Figure 2), and the combination of latitude (xlat) and longitude (xlon) the
specific track within each MT. The remaining parameters dictate the strength (∆P), size
(Rmw), and speed (vt) characteristics of each synthetic storm, further distinguishing storms

https://chs.erdc.dren.mil
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that might correspond to the same track. These characteristics have been held relatively
constant prior to landfall, as shown in Figure 3, illustrating the variation of these storm
parameters for a typical storm of the database. Table 1 summarizes the range of the TC
parameters that constitute the database. The reported values for each parameter correspond
to the ones of peak storm intensity in each case.

The simulation of the 645 synthetic TCs in the CHS-LA database was performed using
high-resolution, high-fidelity atmospheric and hydrodynamic numerical models. The
parameters of the synthetic TC suite were first used as input to drive a Planetary Boundary
Layer (PBL) model on a nested grid to generate the wind and pressure fields used as
forcing in the hydrodynamic modeling. The hydrodynamic simulations were performed
by coupling the ADCIRC (Advanced Circulation) model [20] and the SWAN (Simulating
Waves Nearshore) wave model [21]. The ADCIRC mesh grid, corresponding to the v14a
grid including the 2023 update of the coastal protection systems for the greater Louisiana
region, consists of close to 1.6 million nodes and 3.1 million triangular elements. A subset
of the entire domain will be considered for the metamodel development, focusing on areas
around New Orleans, constrained by latitude (28.5◦, 40◦) N and longitude (86◦, 93.5◦) W.
This corresponds to a total of nz = 1,179,179 nodes, with nr = 488,216 being dry in at
least one storm. Figure 4 presents the dry/wet information for nodes and storms using
histograms of (a) the percentage of storms that each node is inundated for, and of (b) the
percentage of nodes that are inundated for each storm. Both histograms are presented as
relative frequency plots, with the total number of elements per bin divided by the total
number of elements, which is nz for part (a) and n for part (b). Note that for part (a) of
Figure 4, percentage equal to 1 corresponds to the always wet set.

The geographic domain includes various flood protection systems around the Greater
New Orleans area. Within the ADCIRC numerical model, some of these systems were mod-
eled using disconnected grids (no elements connecting nodes) with appropriate constraints
across nodes to couple the water elevation.

Related to the storm parameterization, the characteristics at landfall are chosen to
define x, taking into account the aforementioned small variability of the size, intensity, and
speed along the synthetic storm track (demonstrated in detail in Figure 3). This leads to
an input vector that includes the latitude, xlat, and longitude, xlon, for reference landfall;
the heading direction for the storm MT, β; the central pressure deficit, ∆P; the radius of
maximum winds, Rmw; and the translational speed, vt: x = [xlat xlon β ∆P Rmw vt].
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Figure 1. All the master tracks for the considered database, along with the linearized coastal boundary
(white line) for the reference landfall definition.
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Figure 2. Storm tracks per master track (MT). Heading direction (β) per MT group also shown.

A simplified, piece-wise linear coastal boundary is utilized for defining the reference
landfall, also shown in Figure 1 (white solid line). The boundary simplification is chosen
based on the recommendations in [14] to avoid any ambiguous definition of landfall due to
the existence of bays. The input parameters xlat and xlon are defined when the synthetic
storm track crosses this boundary.



J. Mar. Sci. Eng. 2022, 10, 551 7 of 36J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 7 of 36 
 

 

 
Figure 3. The variation of the storm—size, translational speed, and strength—parameters along the 
track for a specific storm within the database. 

 
Figure 4. Information about wet/dry conditions for nodes and storms, expressed as histograms of 
(a) the percentage of storms that each node is inundated for, and of (b) the percentage of nodes that 
are inundated for each storm. Both histograms are presented as relative frequency plots (making 
the y-axis also a percentage of the corresponding characteristic, nodes or storms, respectively). 

 

 

(70.33 [km],4.27 [m/s],5.3 [mb])

(69.29[km],4.27 [m/s],9.0 [mb])

(67.90 [km], 4.27 [m/s],15.1 [mb])

(65.68 [km],4.27 [m/s],25.5 [mb])

(61.06 [km],4.27 [m/s],43 [mb])

(51.22[km], 4.27 [m/s],72.6 [mb])

(49.95[km], 4.27 [m/s],75.9 [mb])

(49.19 [km], 4.27 [m/s],78 [mb])

(49.19 [km],4.27 [m/s],78 [mb])

(49.19 [km], 4.27 [m/s],78 [mb])

(49.19 [km], 4.27 [m/s],78 [mb])

(49.19 [km],4.27 [m/s],78 [mb])

(49.19 [km], 4.27 [m/s],78 [mb])
(49.19[km], 4.27 [m/s],78 [mb])

(49.19 [km], 4.27 [m/s], 78 [mb])
(49.19 [km],4.27 [m/s],71.5 [mb])

(49.19 [hr], 4.27 [m/s],55.2 [mb])
(49.19 [km],4.27 [m/s],39 [mb])

(R [km], v [m/s], ΔP [mb])tmw

Point Information Format

Storm Track

30o00’ N

90
o 0

0’
 W

0

10

20

30

40

50

60

0 20 40 60 80 100 60 65 70 75 80 9085
0
1

2

3

4

5

6

7

8

9
10

Percentage of storms each node is inundated (%)

R
el

at
iv

e 
fr

eq
ue

nc
y 

 (%
 o

f n
od

es
)

Percentage of nodes inundated per storm (%)

R
el

at
iv

e 
fr

eq
ue

nc
y 

(%
 o

f s
to

rm
s)

(a) (b)

Figure 3. The variation of the storm—size, translational speed, and strength—parameters along the
track for a specific storm within the database.
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Figure 4. Information about wet/dry conditions for nodes and storms, expressed as histograms of
(a) the percentage of storms that each node is inundated for, and of (b) the percentage of nodes that
are inundated for each storm. Both histograms are presented as relative frequency plots (making the
y-axis also a percentage of the corresponding characteristic, nodes or storms, respectively).
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Table 1. Characteristics of the database per master track (MT).

MT ID
Storm Heading

β (◦)

Number of
Different Tracks

(Landfall Locations)

Number of
Storms per MT

Storm Parameter Range

∆P
(mbar)

Rmw
(km)

vt
(m/s)

1 −80 6 48 [8 148] [9.3 115.5] [2.4 10.60]

2 −60 9 70 [18 138] [11.8 127.5] [2.4 12.50]

3 −40 13 104 [8 148] [8.5 133.1] [2.2 13.9]

4 −20 15 105 [18 138] [9.1 116.5] [2.4 11.80]

5 0 15 120 [8 148] [8.0 130.0] [2.4 13.05]

6 20 14 98 [18 138] [8.6 138.2] [2.3 12.65]

7 40 9 72 [8 148] [9.6 141.3] [2.3 12.85]

8 60 4 28 [18 138] [9.4 119.4] [2.5 13.4]

4. Dry node Imputation and Identification of the Challenges Associated with the
Pseudo-Surge Estimates

This section describes the database imputation process, in order to estimate the pseudo-
surge values, and discusses the challenges associated with erroneous classification based
on such estimates.

4.1. Imputation Using Weighted kNN with ADCIRC Connectivity

A weighted kNN interpolation is adopted for the surge imputation, utilizing the same
formulation as in [16]. The proximity of the nodes in the ADCIRC grid, also shown in
subplot (a) of Figure 5, promotes high accuracy for the kNN interpolation in this setting,
since neighboring nodes are short distances from one another, accommodating reliable
predictions based on information from only the closest neighbors. Let dij denote the geo-
distance between nodes i and j and Ah

k [i] the set of k closest nodes to the ith node for the
hth storm, based on the calculated dij. Only nodes with known surge values are included
in set Ah

k [i]; these may correspond to inundated nodes for the hth storm (nodes for which
Ih
i = 1), or to nodes with already imputed values within the iterative formulation discussed

next. The ADCIRC connectivity can be incorporated using instead of the closest nodes
based purely on dij, the closest connected nodes, where the latter is defined by the number
of ADCIRC element edges between nodes i and j in the graph representing the ADCIRC
numerical grid. Figure 5b illustrates this concept; for a specific node of interest (red dot),
the one (magenta), two (yellow), and three (cyan) edge connectivity neighbors are shown.
Evidently, nodes with a higher edge connectivity cannot be included in set Ah

k [i] before all
other neighbors with lower edge connectivity (irrespective of their distance) are included.
This way, nodes that might appear close based on dij but belong to different or disconnected
sections of the ADCIRC grid, for example, due to the presence of bays and/or riverine
systems (complex geomorphology) or due to flood protection systems, are not utilized in
the kNN implementation.

Based on the information in set Ah
k [i], the pseudo-surge estimate, z

˜
h
i , for the ith node

and the hth storm based on the weighted kNN interpolation is given by:

z
˜

h
i =

∑
j∈Ah

k [i]

w(dij)zh
j

∑
j∈Ah

k [i]

w(dij)

w(dij) =

 e
−
(

dij
q

)p

if dij < d
0 if dij ≥ d

(2)
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where w(dij) is a distance-dependent weight taken as a power exponential expression
with parameters d, q, and p [16]. A cut-off distance d is introduced in the definition of
weights w(.) to avoid faraway nodes influencing the kNN interpolation in any irregular
parts of the grid. The set of [k d q p] parameters of Equation (2) corresponds to the hyper-
parameters for the weighted kNN interpolation that need to be calibrated. This calibration
can be performed using information for the wet nodes [16], a process briefly reviewed in
Appendix A.

As suggested in [16], an iterative imputation can be adopted for each storm to better
accommodate hydraulic connectivity. This iterative kNN implementation examines the
imputation separately for each storm. At each iteration, the imputation is done only on dry
nodes that have at least k wet (imputed and genuine) neighbors in a larger set of kc nodes.
If fewer than k wet neighbors are available, no value is imputed in the current iteration.
The value of kc is chosen equal to twice the value of k in this study, adopting the same
recommendation as in [16]. This implementation facilitates a gradual, spatial imputation
propagating surge values gradually from offshore to onshore nodes, mimicking the physical
wetting process. The use of the ADCIRC connectivity in the nearest neighbor selection,
discussed earlier, incorporates additional considerations of the hydraulic connectivity close
to any zones with protection systems (i.e., disconnected parts of the grid).
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Figure 5. (a) Part of the grid of nodes that are included as output locations in the database focused
on the New Orleans area, and (b) the process of identifying the closest nodes to an arbitrary node of
interest using the node connectivity established by the ADCIRC triangular grid elements.
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4.2. Issues Related to Misclassification Based on the Pseudo-Surge

The kNN-based imputation is not guaranteed to lead to pseudo-surge values, z
˜

h
i , that

are smaller than the node elevation, ei, since no such constraint is explicitly enforced into
the formulation. Nodes for which the imputed surge is projected to be higher than the node
elevation are falsely classified as wet based on the pseudo-surge values. For addressing
such erroneous information, two solutions can be considered [16]: (a) artificially modify
the estimated pseudo-surge so that it is smaller than the node elevation (e.g., 5 cm below
the node elevation, ei), guaranteeing that the node is correctly classified even based on the
pseudo-surge values; or (b) maintain the pseudo-surge values obtained directly through the
geospatial imputation, but consider a classification surrogate model to provide predictions
for the node condition based on the original database (condition classification matrix It)
to address the erroneous information in the pseudo-surge database. The set of nodes
that have been misclassified at least once during the imputation process will be denoted
as Amc and will be referenced herein as problematic nodes. The number of those nodes
will be denoted as np. The database corresponding to the imputed pseudo-surge with
no modification (case (b)) will be referenced herein as “pseudo-surge database”, and the
database with adjustments to guarantee that the pseudo-surge value is smaller than the
node elevation will be referenced herein as “corrected pseudo-surge database”. Before moving
forward, is it important to stress that, as discussed in the introduction, the pseudo-surge is
introduced merely as a mean to support the surge metamodel development (imputation of
missing values in the original database), and there is no correct value for it from a theoretical
perspective [16]. Both the pseudo-surge database and corrected pseudo-surge database should be
deemed as possible alternatives for supporting the surge metamodel formulation, and the
most appropriate one can be only evaluated based on the accuracy of that metamodel. It is
important to view the subsequent discussions from this perspective.

Illustration of the challenges associated with some of the problematic nodes is fa-
cilitated through Figure 6, depicting the surge and pseudo-surge values for such a node
across all the storms within the database. Note that a similar figure and relevant discussion
were also included in [16] for this purpose. Here, this discussion is repeated for illus-
tration clarity and in order to further motivate the need to address the falsely classified
nodes, while establishing an additional connection to the surge gap defnition introduced
in this paper. Specifically, this figure presents the pseudo-surge values obtained through
the kNN-imputation in ascending order across the storms, and the node elevation with
a horizontal line. Note that a portion of the entire database is shown, corresponding to
pseudo-surge values close to the node elevation. The depicted blue circles correspond to
surge predictions for the original database (node is inundated), while the green squares and
the red × correspond to the kNN-based imputed pseudo-surge for the storms for which
the node was originally dry. Green squares correspond to the correctly classified nodes
with imputed surge below the node elevation, therefore still classifying the node as dry,
while the red × to an erroneous classification, with the node classified as wet based on
the imputed surge value. For the corrected pseudo-surge database approach, the erroneously
classified values corresponding to the red × would have been mapped below the node
elevation, as shown in Figure 6 with the black ×. This creates a discontinuity (“jump”) in
the corrected pseudo-surge database for this specific node, which will create challenges for
the subsequent surrogate model development. This jump corresponds to the surge gap, ηi,
defined earlier in Equation (1). The larger the value of this gap, the greater the reduction of
the prediction accuracy for any emulator, as such discontinuities in an otherwise smooth
behavior (note the smooth characteristics across the remaining surge and pseudo-surge
estimates in this figure) create significant challenges at the emulator calibration stage [22].
This is the motivation for using the pseudo-surge database; it is expected to accommodate
the calibration of a higher accuracy surge surrogate model, provided that the secondary
classification surrogate model can ultimately address the erroneous information (red ×
points) in the database.
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Figure 6. Ordered surge and pseudo-surge values for a specific node, with the node elevation also
shown as a dashed grey line. Note that a portion of the total storm database is shown, corresponding
to pseudo-surge values close to the node elevation. The correctly and incorrectly classified instances
are distinguished for the pseudo-surge estimates. Note the jump created if an adjustment for
the pseudo-surge is utilized in order to establish a correct classification. The maximum surge
misinformation is also highlighted in the plot.

For the case-study database, with nr = 488,216 nodes that required imputation for
some of the storms, the misclassification statistics for the kNN-based imputation are the
following: (i) when ADCIRC connectivity information is not utilized, then misclassification
is 22.1%, whereas the set Amc of problematic nodes consists of np = 322,753 nodes, and (ii)
when ADCIRC connectivity is incorporated, then misclassification is 20.2%, whereas the set
Amc of problematic nodes consists of np = 311,826 nodes. Minor differences are observed
across the two examined variants.

Looking into more detail the characteristics of the problematic nodes for the case study,
Figure 7 presents a histogram of the surge gap over their population. The number of nodes
having surge gaps larger than 0.25, 0.5, 1, and 2 m are respectively 35,947, 16,504, 4290,
and 267. Results indicate that a considerable number of nodes has larger values for the
surge gap. Such values can be attributed to the existence of complex geomorphologies or
flood protection systems, and are expected to reduce the predictive accuracy if the corrected
pseudo-surge database is utilized, as indicated by the illustrative example in Figure 6.

Something that needs to be further considered in better assessing the challenges
associated with the problematic nodes is the quality of information associated with these.
Two different measures are introduced to quantify this. The first measure, denoted msi, is
the maximum surge misinformation, defined as the difference between the largest pseudo-
surge value among the instances the node was originally dry and the node elevation, given
by:

msi = maxh

{
(z
˜

h
i − ei)|Ih

i − 1|
}

(3)

Note that the multiplication by |Ih
i − 1| is leveraged in the above equation to restrict the

operation within the brackets (search for maximum in this case) to only the originally
dry instances, corresponding to Ih

i = 0. The maximum surge misinformation represents
the largest magnitude of misclassification error. It is indicated in Figure 6 with a dashed
line. The second measure, denoted as mpi, is the percentage of misinformation, defined
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as the ratio of the number of instances (storms) a node has been misclassified at the kNN
imputation stage over the total number of storms:

mpi =

n
∑

h=1
{I[z

˜
h
i > e]|Ih

i − 1|}

n
(4)

where I[.] denotes the indicator function, corresponding to one if the expression inside the
brackets is true and to zero otherwise. The percentage of misinformation represents the
amount of erroneous information for a problematic node. In Figure 6, this percentage is
equivalent to the number of black crosses over the total number of storms. Small values
for msi and mpi indicate that even though a node has been misclassified at least once, both
the magnitude and frequency of that misclassification are minimal. This is demonstrated
clearly in Figure 8, where for both measures, a large number of nodes has very small msi
and mpi values. Consideration of such nodes, with both msi and mpi values being very
small, as problematic might not be an appropriate approach. This concept will be further
investigated when the integration of the different surrogate models is examined later on in
Section 6.
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5. Review of the Surrogate Model Development

This section offers an overview of the two surrogate models: the primary one for
predicting the storm surge zi(xh), denoted as Ss herein, and the secondary one for classi-
fying the node condition Ii(xh), denoted as Sc herein. Kriging is adopted for both as the
metamodeling technique. However, the foundational ideas for combining the two models,
as detailed in Section 6, can be applied to any type of surrogate model. Appendix B reviews
the essential characteristics of the metamodel development. To accommodate the large
dimensionality of the output vector (nodes of interest for estimating surge), some form of
principal component analysis will be used for both types of surrogate models (classification
and surge predictions).

5.1. Surrogate Model for Surge Predictions

The surrogate model for the surge prediction, Ss, uses the imputed database as ob-
servations for the metamodel calibration. Notation z (for individual storms) and Z (for
the entire database across all storms) will be utilized to describe the observations, with
the understanding that for any instance for which surge values are missing in the original
database (node is dry), the missing zh

i is replaced by the pseudo-surge z
˜

h
i for defining the

observation matrix Z.
To improve the metamodel accuracy, some physics-motivated [8] or functional [16]

transformation can be applied. The transformed surge for the ith node and the hth storm
will be denoted as zt

i(x
h), with the transformed surge vector across all nodes denoted as

zt, and the corresponding transformed observation database as Zt. The mathematical rela-
tionship between zt

i(x
h) and zi(xh) will be denoted as g(.) and is assumed to be invertible,

with inverse g−1(.). Without loss of generality, we will assume that g(.) is strictly positive.
This assumption is only relevant for the implementation of the probabilistic classification
based on the Ss surrogate. For the case study, the square root is employed as functional
transformation, shown to be beneficial in past applications [16], leading to:

zt
i = g(zi) =

√
zi + ci and zi = g−1(zt

i) = (zt
i)

2 − ci (5)

where ci is chosen equal to the minimum of zi over the storm database, but not greater than
0, and is utilized to make the argument under the square root positive across all storms.

The surrogate model is ultimately established, for the transformed surge zt, with
observation matrix Zt. The detailed implementation is presented in [2,16]. Here only the
basic steps are reviewed:

Step 1 (dimensionality reduction): Perform principal component analysis (PCA) as
a dimensionality reduction technique to identify a smaller number of ms < n << nz
latent outputs (principal components) u ∈ Rms through a linear projection. Individual
components are distinguished through subscript j herein, with uj denoting the jth element
of vector u. The PCA is performed for the observation matrix Zt and provides the mean
vector µ ∈ Rnz , whose ith component µi corresponds to the mean of {zt

i(x
h); h = 1, . . . , n}

(mean surge over the storm database for each node), the projection matrix P ∈ Rnz×ms ,
and for each latent component, uj, the output vector of responses over the storm database

Uj(X) = [uj(x1) . . . uj(xn)]
T ∈ Rn.

Step 2 (metamodel calibration): Develop ms separate surrogate models based on
the procedure described in Appendix B for each of the principal components, setting
y = uj and Y(X) = Uj(X). Note that instead of developing individual surrogate models
for each component, a grouping of the components may be considered as an alternative
implementation to facilitate higher computational efficiency. Details for this formulation
are included in [16].
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Step 3 (metamodel predictions for the transformed surge): The surrogate model
approximation for the transformed surge z̃t(x|X) is obtained by combining the predictions
ũj(x|X) for each of the ms latent outputs, given by Equation (A3) for the predictive mean
and Equation (A4) for the predictive variance. Note that, as discussed in Appendix B, a
functional dependence on the database X is utilized in our notation to accommodate the
easier description of the cross-validation predictions used later in the manuscript. Using
notation [.]ij to denote the {i, j}th element of a matrix (ith row and jth column), the kriging
predictions (mean) for the ith node are:

z̃t
i(x|X) = µi +

ms

∑
j=1

[P]ijũj(x|X) (6)

whereas the predictive variance is:

(σt
i (x|X))

2
=

ms

∑
j=1

[P]2ijσ
2
j (x|X) (7)

Ultimately kriging establishes the following probabilistic model prediction: zt
i(x|X) ∼

N(z̃t
i(x|X), (σt

i (x|X))
2
) [2,23], where N(a,b) stands for a Gaussian distribution with mean a

and variance b. Though typically only the mean of this distribution is utilized, taken to rep-
resent the metamodel predictions, for certain aspects of the integration of the classification
estimates that will be investigated in this manuscript, the use of the complete probabilistic
description will be explored.

Step 4 (metamodel predictions for surge): Finally, the kriging predictions for the
surge can be obtained by the transformation g−1(.):

z̃i(x|X) = g−1(z̃t
i(x|X)) = (z̃t

i(x|X))
2 − ci (8)

where the last equality in Equation (8) holds for the transformation utilized in the case study
that follows. The classification of the node condition (wet or dry) based on the Ss surrogate
model is obtained by comparing the surge estimate to the node elevation. Denoting as
Is
i (x|X) that classification for the ith node and for the storm with input x, we have:

Is
i (x|X) = I[z̃i(x|X) > ei] (9)

where, as defined earlier, I[.] denotes the indicator function, corresponding to one if the
expression inside the brackets is true and to zero otherwise.

As discussed in the introduction, for the combination of the predictions based on
the two different surrogate models (discussed later in Section 6), the probabilistic charac-
teristics of the classification will be examined. For the Ss surrogate, these characteristics
are accommodated by considering the Gaussian nature of the emulator. Let P[.] denote
probability, and define as ps

i (x|X) the probability that the ith node is wet (inundated). Then
based on the Gaussian distribution for zt

i(x|X), and assuming that g(ei) is well-defined, it
is straightforward to show that:

ps
i (x|X) = P[zi(x|X) > ei] = P[g(zi(x|X)) > g(ei)] = Φ

[
z̃t

i(x|X)− g(ei)

σt
i (x|X)

]
(10)

where Φ[.] denotes the standard Gaussian cumulative distribution function and for the
second equality the fact that g(.) is strictly positive function was used. If g(ei) is not well-
defined, for example if ei + ci < 0 for the transformation of Equation (5), then the surge
surrogate model will always lead in estimating Is

i (x|X) = ps
i (x|X) = 1 (surge will never be

predicted smaller than the node elevation). This probabilistic classification will be used (in
Section 6) for nodes that have remained dry for some of the storms in the database, for which
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ei is expected to be positive, leading to a well-defined g(ei) for transformations like the one
discussed in Equation (5). Alternatively, if the importance of establishing a probabilistic
classification is greater than any benefits coming from utilizing the transformation g(.), the
use of the transformation itself can be omitted if it is deemed as problematic.

Finally, related to the selection of ms for the PCA, the following comments can be made.
Typically, the first few principal components can be predicted well by the corresponding
surrogate model, but the accuracy of higher components drastically reduces, leading to
a saturation of the surrogate model accuracy as the number of principal components in-
creases [2]. To establish a balance between accuracy and computational efficiency, especially
with respect to memory requirements which are critical for real-time applications [11], a
parametric analysis can be employed to investigate such benefits [14]. An alternative for-
mulation was proposed in [16], considering only a small number of principal components
and complementing the predictions with a surrogate model for the residuals. Such an
implementation can also address any concerns related to overfitting stemming from the
PCA application. In the case study considered in [16] it was shown that this approach could
not offer any accuracy improvements, and since it increases the computational complexity
of the overall Ss implementation, it was suggested to be avoided. To provide an additional
validation for this manuscript that treats a different database, this implementation that
involves the residual surrogate will be briefly revisited later on.

5.2. Surrogate Model for Node Classification

The surrogate model for the node wet/dry classification, Sc, uses as observations the
binary output Ii(xh) for near-shore nodes that have remained dry for some of the storms.
Nodes that are inundated for all the storms are ignored in this classification problem, since
they will always be predicted as inundated by a binary classifier. Additionally, the nodes
considered for Sc can be further reduced to correspond only to the problematic set Amc. Let
Ac denote the set of nc nodes for which the classification surrogate model is considered
(either nodes that were at least once dry or the problematic nodes). The observation matrix
for the surrogate is denoted as Ic and corresponds to the columns of It matrix that belong
in set Ac.

For the Sc surrogate model, logistic principal component analysis (LPCA) [19] is used
as the dimensionality reduction technique. LPCA also accommodates the transformation
of the original categorical (binary) observations to continuous observations to facilitate the
subsequent approximation through the kriging metamodel. The implementation is based
on a multivariate generalization of the Bernoulli distribution, using the natural parameters
(log-odds) θ and the canonical link function (logistic function). If θi(xh) is the natural
parameter for the ith node and the hth storm, then the probability of a node being wet is
given by the logistic function:

P[Ii(xh) = 1|θi(xh)] =
1

1 + e−θi(xh)
(11)

The dimensionality reduction is integrated into the process by considering a compact
representation of the log-odds matrix Θ = [θ

(
x1) . . . θ(xn)]

T ∈ Rn×nc . This compact
representation is expressed as Θ = TVT + ∆, where T is the n×mc matrix of coefficients, V
is the nc ×mc matrix of projection vectors, and ∆ is a matrix with each row corresponding
to the same bias vector ∆T

θ (1× nc vector). This representation directly provides the latent
space of logistic principal components t with observations T, as well as the projection
matrix V and the bias vector ∆θ to be used for the transformation from t to θ, which takes
the form:

θ(x) = Vt(x) + ∆θ (12)

The vector t ultimately provides the transformation to a continuous output with a sig-
nificantly reduced dimension mc compared to the original categorical observations of
dimension nc.
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LPCA is the integral first step in the Sc formulation. Details for this formulation are
presented in [16]. Here only the basic steps are reviewed:

Step 1 (dimensionality reduction and transformation of the predicted output): Us-
ing the observations Ic, perform LPCA for a chosen number of principal components mc.
This is established by maximizing the likelihood of observations Ic given the compact repre-
sentation of Θ for the natural parameters of the Bernoulli distribution [19], and ultimately
provides the bias vector ∆T

θ , the projection matrix V and the latent observation matrix T
whose hth row corresponds to the latent output for the hth storm t(xh).

Step 2 (metamodel calibration): Develop mc separate surrogate models based on the
procedure described in Appendix B for each of the principal components, setting y = tj
and Y(X) = Tj(X), where Tj(X) is the jth column of T. Similar to Ss, instead of developing
individual surrogate models for each component, a grouping of the components may be
considered to facilitate higher computational efficiency.

Step 3 (metamodel predictions for the natural parameters): The surrogate model
approximation for the natural parameters θ̃(x|X) is calculated by combining the predictions
t̃j(x|X) for each of the mc latent outputs, obtained according to Equation (A3). Maintaining,
as for Ss, the notation for the functional dependence on the database X, the predictions are:

θ̃(x|X) = Vt̃(x|X) + ∆T
θ (13)

Step 4 (classification predictions): The probability of the ith node being wet for a
specific storm input x according to the Sc model, is given by the logistic function:

pc
i (x|X) = P[Ii(x) = 1|θ̃i(x|X)] =

1

1 + e−θ̃i(x|X)
(14)

The deterministic classification prediction for node i according to surrogate model Sc can
then be established by comparing value pc

i to the 0.5 threshold. Denoting that prediction as
Ic
i (x

h|X), we have:
Ic
i (x|X) = I[pc

i (x|X) > 0.5] (15)

LPCA is known to be very prone to overfitting [24,25], a tendency that is exacerbated
in the application examined here, since any additional overfitting originating from the
metamodel calibration needs to be considered. For this reason, it was suggested in [16] to
select mc in the first step of the Sc formulation through a parametric sensitivity analysis,
examining the metamodel accuracy through a cross-validation setting. Similarly to the Ss
surrogate model development, using a smaller ms and coupling it with a surrogate model
on the residual predictions can be considered. Details for such an implementation are
discussed in [16].

5.3. Metamodel Validation

Validation is important for obtaining a confidence metric for the surrogate model
prediction accuracy, as well as for selecting the number of retained components for the
PCA (ms) and LPCA (mc) implementations. Cross-validation (CV) is adopted as the
validation approach here, implemented through the following steps: the storm database is
partitioned into different groups; each group is sequentially removed from the database,
and the remaining storms are used as observations to calibrate a surrogate model; this
model is then used to make predictions for the surge of the removed storms; accuracy
statistics are estimated comparing these predictions to the actual storm output. Details for
the CV implementation and the utilized validation metrics are reviewed in the next two
subsections.

5.3.1. Cross-Validation Implementation

The simplest CV approach is the leave-one-out cross-validation (LOOCV), established
by removing sequentially a single storm at a time from the original database X. LOOCV
is typically implemented without repeating the PCA/LPCA or the hyper-parameter cali-
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bration for each reduced database, since the opposite choice would substantially increase
the computational complexity, requiring a total of n repetitions of the entire surrogate
model calibration. This also allows the use of closed-form solutions [26] to obtain the
leave-one-out (LOO) predictions without the need to explicitly remove each of the storms
from the database. Computational details for the use of the closed-form solutions are
included in [16]. As also discussed in [16], LOOCV cannot explore in depth any challenges
associated with overfitting, since it does not repeat the PCA or LPCA implementations
and the hyper-parameter calibration after the removal of each storm. This is especially
important for examining the proper selection of the mc value for the LPCA implementa-
tion, since for other overfitting challenges (i.e., for the selection of ms for PCA or for the
hyper-parameter calibration) minor impact has been shown in past studies. k-fold CV
circumvents this problem by repeating both the PCA or LPCA and the hyper-parameter
calibration, since in this case, depending on the number of groups that will be pre-defined,
the re-calibration is not as expensive as in a LOOCV setting.

If Ah is the subset containing the hth storm and X−Ah the remaining database, exclud-
ing set Ah, then repeating the surrogate model formulation starting with the observations
corresponding to the set X−Ah , provides, for the hth storm the predictions z̃i(xh|X−Ah)

from the Ss surrogate model and pc
i (x

h|X−Ah) from the Sc surrogate model. Using these
predictions, the node classification can also be obtained: Is

i (x
h|X−Ah) according to Ss uti-

lizing Equation (9) [using z̃i(xh|X−Ah)] and Ic
i (x

h|X−Ah) according to Sc utilizing Equation
(15) [using pc

i (x
h|X−Ah)]. Note that for the LOOCV implementation, only Step 3 of the

formulation needs to be repeated, and in this case, closed-form solutions can be used for all
predictions.

5.3.2. Validation Metrics

For the node condition classification, the adopted validation metric corresponds to the
node misclassification percentage. If Ĩi(xh|X−Ah) are the CV-based metamodel predictions
for the ith node condition and the hth storm, corresponding to Ic

i (x
h|X−Ah) for the Sc

surrogate or to Is
i (x

h|X−Ah) for the Ss surrogate, or to the Icb
i (xh|X−Ah) for the combined

formulation discussed in Section 6, then the total misclassification for this specific node
and storm is given by:

MCh
i = | Ĩi(xh|X−Ah)− Ii(xh)| (16)

We can further distinguish between the false positive, i.e., node predicted wet when dry,
and false negative, i.e., node predicted dry when wet, indicators, given respectively by:

+MCh
i = max(0, Ĩi(xh|X−Ah)− Ii(xh))

−MCh
i = max(0, Ii(xh)− Ĩi(xh|X−Ah))

(17)

where max(a,b) is the function that provides the maximum of the two arguments a or b.
Average statistics per node or across the entire database can then be obtained. For the total
misclassification, these statistics are denoted as MCi and MC, respectively, and are given
by:

MCi =
1
n

n

∑
h=1

MCh
i ; MC =

1
nnz

n

∑
h=1

nz

∑
i=1

MCh
i (18)

Similar expressions as the two presented in Equation (18) hold for the false positive or the
false negative misclassification definitions, with the only adjustment being that instead of
averaging by nz, the number of nodes that were dry (for the false positive misclassification)
or wet (for the false negative misclassification) is utilized for each storm. Furthermore,
statistics can be examined for specific groups instead of the entire node set, simply by
considering the averaging in Equation (18) only for the specific nodes belonging to the
group of interest (for indexes i corresponding to that group only).
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For the surge predictions, both normalized and unnormalized statistics should be
utilized. Unnormalized statistics reflect the absolute error, while normalized ones express
the relative error, incorporating the response magnitude when assessing the size of the error.
For normalized statistics, the correlation coefficient (cc) is adopted here. The correlation
coefficient is unitless (as a normalized error metric), with values close to 1 indicating a
better performance. For the ith node it is expressed by:

cci =

1
n

n
∑

h=1

(
z̃i(xh|X−Ah)−

1
n

n
∑

h=1
z̃i(xh|X−Ah)

)(
zi(xh)− 1

n

n
∑

h=1
zi(xh)

)
√

1
n

n
∑

h=1

(
z̃i(xh|X−Ah)−

1
n

n
∑

h=1
z̃i(xh|X−Ah)

)2
√

1
n

n
∑

h=1

(
zi(xh)− 1

n

n
∑

h=1
zi(xh)

)2
(19)

Similar to the misclassification metric presented above, the overall metamodel accuracy is
quantified by the averaged error statistics across all output locations, given by:

cc =
1
nz

nz

∑
i=1

cci (20)

Common candidates for unnormalized statistics include measures like the absolute
mean error or the mean squared error. An alternative option, and the one chosen here, is
the surge score [15,18], which for the ith node and the hth storm is described as:

SCh
i =



|z̃i(xh|X−Ah)− zi(xh)|

z̃i(xh|X−Ah)− ei

zi(xh)− ei

0

if Ĩi(xh|X−Ah) = 1 & Ii(xh) = 1

if Ĩi(xh|X−Ah) = 1 & Ii(xh) = 0

if Ĩi(xh|X−Ah) = 0 & Ii(xh) = 1

if Ĩi(xh|X−Ah) = 0 & Ii(xh) = 0

(21)

This surge score shares the units of surge (unnormalized) and provides a penalty function
for the discrepancy between the predicted and actual surge, further incorporating the node
classification: (i) if a node is predicted wet and it is actually wet, then the absolute value of
the predicted surge discrepancy is used as a penalty function; (ii) if a node is predicted wet,
but it is dry, then the difference between predicted surge and node elevation is used as a
penalty; (iii) if a node is predicted dry, but it is wet, then the difference between the actual
surge and the node elevation is used as a penalty; (iv) if a node is predicted dry and it is
dry, then penalty is zero. The averaged statistics per node or across the entire database can
be then obtained, respectively, as:

SCi =
1
n

n

∑
h=1

SCh
i ; SC =

1
nnz

n

∑
h=1

nz

∑
i=1

SCh
i (22)

Similar to the misclassification case, statistics for both the surge score and the normalized
root mean squared error can be examined for specific groups instead of the entire node set.

Related to the various surge validation statistics, it is important to note that the corre-
lation coefficient pertains to the predictions of the pseudo-surge, assessing how well the
metamodel predicts the imputed database. In contrast, the surge score ultimately evaluates
the accuracy with respect to the original surge predictions since the node elevation, and
not the pseudo-surge, is utilized in the relevant equations for the dry nodes. In this context,
the surge score represents a more appropriate validation metric to quantify the metamodel
accuracy, as it measures the accuracy with respect to the actual surge predictions, and not
the values established through the database imputation.
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6. Combination of Surrogate Models for Storm Surge and Node Classification

This section considers the formal integration of the two surrogate models, Ss and Sc,
presented individually in Section 5. This integration focuses on applications that adopt
the pseudo-surge database as observations for the Ss surrogate and intends to correct the
erroneous information retained in this database for the node condition across the set of
problematic nodes. Though components of the integration may also be considered for
applications that use the corrected pseudo-surge database as observations for the Ss surrogate,
the intention of providing a priori adjustments for the imputed surge is to strictly rely on
the Ss surrogate, since no erroneous information has been retained in the database.

Considering the integrated metamodel formulation, predictions for the storm surge
z̃i(x|X) are established by the Ss surrogate model through a combination of Equations
(6) and (8). The classification of the node condition can be established by combining
the deterministic (Is

i (x|X) of Equation (9) for Ss and Ic
i (x|X) of Equation (15) for Sc) or the

probabilistic (ps
i (x|X) of Equation (10) for Ss and pc

i (x|X) of Equation (14) for Sc) predictions
from the Ss and Sc surrogate models. The combination, which will be examined in this
section, ultimately provides the node classification of the integrated metamodel formulation,
denoted herein as Icb

i (x|X). This finally adjusts the surge predictions: if Icb
i (x|X) = 1 then

the predicted surge equal to z̃i(x|X), else the node is predicted as dry.
For the combination of the two surrogates, the following classes of nodes can be

distinguished:

1. Nodes, denoted as C1 class, that were inundated for the entire database (always
wet). As discussed earlier, for these nodes, only predictions from the Ss surrogate are
available, so the node condition classification is based entirely on that metamodel.

2. The problematic nodes Amc, denoted as C2 class, that were misclassified for at least
one storm during the database imputation.

3. Remaining nodes, denoted as C3 class, that were dry for at least one storm in the
database and the database imputation did not contribute to any misclassifications.

A further adjustment can be established in the definition of groups C2 and C3 based
on the values of msi and mpi. Any nodes that correspond to small values for both msi and
mpi, for which the quality of the available information should be considered as high (even
though some erroneous information, expressed through misclassifications, still exists), can
be moved from group C2 to C3. In the case study that will be discussed later, the thresholds
used for msi and mpi are 5 cm and 2.0%, respectively. It should be noted that group C2 is
expected to include nodes in areas of complex geomorphology, for example behind or close
to protective structures, for which the database imputation is expected to face challenges, as
discussed in Section 3. The distinction of the nodes among the different groups is, though,
purely based on the misclassification statistics from the database imputation, without the
need to incorporate any additional considerations about the location of the nodes. This
is motivated by the fact—as was also stressed earlier—that the objective of the database
imputation and the classifier integration is the improvement of the data-driven surge
predictions.

For establishing rules regarding the combination of the surrogate model predictions,
the following two characteristics should be considered. First, binary classification problems,
like the one addressed by surrogate model Sc, are in general more challenging metamod-
eling applications [22]. For this reason, the predictive accuracy of surrogate model Ss is
expected to be higher, at least when the database that is used for its calibration does not
include any erroneous information. Second, for class C2, predictions from Ss will tend to
be misclassified as false positives (nodes that are dry will be characterized as wet), since, as
discussed in Section 4.2 and also clearly illustrated in Figure 3, the pseudo-surge database is
biased that way. If Ss predicts nodes as dry, then predictions could be trusted, since such
predictions are opposite to the potential metamodel bias. If, on the other hand, a node is
predicted as wet, then due to the propensity of Ss for false positive misclassifications, little
credibility should be given to those predictions.
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Considering these two characteristics, the following recommendations were given
in [16] for establishing Icb

i (x|X) based on the expectation that Ss will benefit from higher
surrogate model accuracy, rely primarily on this metamodel, and utilize Sc only as a
safeguard against the false-positive misclassification propensity in class C2. This means
that for class C3, predictions are established utilizing Ss only, while for C2, predictions
of the Sc are preferred only when Ss predicts the node as inundated. This leads to the
following Icb

i (x|X) :

Icb
i (x|X) =



C1 : Is
i (x|X) = I[z̃i(x|X) > ei]

C2 :

{
Is
i (x|X) = I[z̃i(x|X) > ei] = 0 if z̃i(x|X) < ei

Ic
i (x|X) = I[pc

i (x|X) > 0.5] else

C3 : Is
i (x|X) = I[z̃i(x|X) > ei]

(23)

For all instances that Icb
i (x|X) = 1, the surge estimates are provided directly by the Ss

predictions. The definition of Equation (23) guarantees that for all such instances where
z̃i(x|X) > ei, the surge estimate indeed corresponds to the node being inundated. For
instances that Icb

i (x|X) = 0 the node is classified as dry.
This integrated implementation described by Equation (23) uses the secondary node

classification surrogate only for the problematic nodes (class C2). Here we revisit the above
integration to examine the potential benefits on the predicted surge across all nodes. This
requires that we relax the higher trustworthiness given to the Ss metamodel predictions
and treat the predictions from both surrogates Ss and Sc as having a similar degree of
credibility. Additionally, it requires one to use the probabilistic predictions associated with
each surrogate model instead of the deterministic ones. If the binary classifications Is

i (x|X)
and Ic

i (x|X) are to be combined, then the requirement to provide a binary classification
for Icb

i (x|X) leads to prioritizing one node condition, for example predict Icb
i (x|X) = 1 if

either Is
i (x|X) = 1 or Ic

i (x|X) = 1, which creates a bias towards this condition. Instead, the
probabilistic predictions are utilized to establish the probability of the ith node being wet
by the combined model, denoted by pcb

i (x|X) herein, and the final classification Icb
i (x|X)

is established based on this pcb
i (x|X) value. A weighted average approach is adopted to

establish the pcb
i (x|X) predictions using ps

i (x|X) and pc
i (x|X), leading to:

pcb
i (x|X) = (wcb

i ps
i (x|X) + (1− wcb

i )pc
i (x|X)) (24)

where 0 ≤ wcb
i ≤ 1 is defined as the weight given to the Ss surge surrogate model, and

(1− wcb
i ) the weight given to the Sc classification metamodel. For both classes C3 and C2,

the classification is established using this pcb
i (x|X) information, leading to:

Icb
i (x|X) =

{
C1 : Is

i (x|X) = I[z̃i(x|X) > ei]

C2 or C3 : I[pcb
i (x|X) > 0.5|wcb

i ]
(25)

Of course, since the weights wcb
i are node-dependent, the representation of Equation (25) is

very versatile.
The selection of these weights, wcb

i , is made to reflect the degree of confidence for each
model. For example, for the case examined in Equation (23), where wcb

i = 1 (Ss is given
substantially higher confidence) apart from nodes in class C2 for which z̃i(x|X) ≥ ei where
wcb

i = 0 (Ss is given no confidence due to the known propensity to overestimate the surge
for this class). This combination will be denoted as “Ss prioritization”. Another extreme
case would be to always trust the Sc predictions, leading to always assigning wcb

i = 0.
This combination will be denoted as “Sc prioritization”. On the other hand, a balanced
implementation would weigh both the Ss and Sc predictions for all instances that these
predictions could be deemed as reliable, for example, using equal weights wcb

i = 1/2. Since,
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as discussed earlier, for the nodes in class C2 for which z̃i(x|X) ≥ ei the Ss predictions
cannot be regarded as reliable, wcb

i = 0 should be adopted for such instances. Though some
arguments can be made that for values of ps

i (x|X) close to 0.5 (so the node is classified as
wet with a small margin) some degree of trustworthiness exists even for the Ss predictions,
defining appropriate thresholds to quantify what close to 0.5 means in this instance is tricky.
On the other hand, if z̃i(x|X) < ei, then both models can be combined to provide pcb

i (x|X),
even for class C2. This implementation will be denoted as “balanced combination” and leads
to:

Icb
i (x|X) =


C1 : Is

i (x|X) = I[z̃i(x|X) > ei]

C2 :
{

I[pcb
i (x|X) > 0.5|wcb

i ] = 0 if z̃i(x|X) < ei
Ic
i (x|X) = I[pc

i (x|X) > 0.5] else

C3 : I[pcb
i (x|X) > 0.5|wcb

i ]

(26)

It should be noted that for the Ss surrogate, we have that Is
i (x|X) = I[z̃i(x|X) > ei] =

I[ps
i (x|X) > 0.5].

For the Sc prioritization and the balanced combination, some further adjustment is needed
for providing the final surge prediction. Even though, as discussed earlier, in the Ss
prioritization for all instances corresponding to Icb

i (x|X) = 1 the surge estimates can be
provided directly by the Ss metamodel (since it is guaranteed that z̃i(x|X) > ei), the same
does not hold across the other two variants. Certain instances with Icb

i (x|X) = 1 might be
associated with predictions z̃i(x|X) < ei, i.e., the probability given by the surge surrogate is
ps

i (x|X) < 0.5, but finally pcb
i (x|X) > 0.5 through the contribution of pc

i (x|X) in Equation
(24). This means that a node is classified as wet by the higher confidence of the classification
surrogate, but the surge surrogate, which is supposed to offer the value of that surge, has
an estimate that is below the elevation, indicating on its part that the node is dry. Thus
for those points, although their condition has been determined probabilistically as wet,
their respective surge estimate provided by the Ss metamodel is below the node elevation.
For this reason, the following modification is established. For instances corresponding to
Icb
i (x|X) = 1, the surge estimate is taken equal to the Ss predictions, z̃i(x|X), if z̃i(x|X) > ei,

else it is set equal to some margin (taken as 2.0 cm in this study) over the node elevation ei.
This adjustment guarantees that the node is classified indeed as inundated based on the
assigned surge predictions for all instances Icb

i (x|X) = 1.
One can further extend these concepts to utilize a strictly probabilistic classification, in

other words, use pcb
i (x|X) as the final predictions instead of converting them to the binary

classification Icb
i (x|X), but such implementation falls out of the scope of this study. The

intention is to provide surge predictions z̃i(x|X) for new storms, which in turn requires a
deterministic classification Icb

i (x|X) for each storm.
The validation of the combined surrogate model implementation directly follows

the guidelines provided in Section 5.3, with the only requirement being to replace in all
instances Ĩi(x|X) with Icb

i (x|X). This validation is examined next within the case study
to assess the appropriateness of the different techniques introduced here to facilitate the
database imputation and the storm surge predictions.

7. Case Study Implementation

This section presents results for the case study with emphasis on the impact of the
integration of the Ss and Sc surrogate models. This is accomplished by comparing the im-
plementations of the pseudo-surge database and the corrected pseudo-surge database, examining
both formulations for defining Icb

i (x|X) (as discussed in Section 6), and presenting results
for different groups of nodes, separately for classes C1, C2, and C3, as well as for nodes with
different surge gaps. Two different settings are considered for the classes C2 and C3; the
first one uses all the problematic nodes, and the second one moves nodes corresponding
to mpi < 2% and msi < 5 cm, from group C2 to C3. These alternative class definitions are
denoted as C̃2 and C̃3. The number of such nodes is 109,701. Table 2 presents the number
of nodes corresponding to the different group definitions along with the respective per-



J. Mar. Sci. Eng. 2022, 10, 551 22 of 36

centages of instances these nodes are inundated within the original database. It is evident
from this table that nodes that correspond to larger surge gaps (even as large as 0.25 m) are
predominantly dry within the original database.

Table 2. Properties of nodes across groups with different characteristics.

Entire
Database

Once
Dry

Node Classes Surge Gap > (m)

C 1 C 2 C 3 C̃
2

C̃
3 0.075 0.15 0.25 0.5 0.75 1 1.5

Number of
nodes 1,179,179 488,200 690,963 311,826 176,390 202,125 286,091 106,304 678,99 43,244 18,427 9085 4841 1687

%
inundated
in database

71.54 31.26 100 33.35 27.55 25.75 35.15 6.96 4.40 2.90 1.94 1.88 2.04 2.89

Unless specified otherwise, all results (including the numbers presented in Table 2)
refer to the kNN implementation that incorporates the ADCIRC connectivity. Across all
implementations, the weights for the balanced combination (Equation (26)) are chosen as
wcb

i = 1/2.
Initially, some results are presented separately for each of the two surrogate models

(surge and classification) across all the nodes, briefly examining the selection of the number
of principal components and the impact of overfitting before the emphasis is shifted to the
integration of the two surrogate models.

Two different validation implementations are considered: (i) LOOCV without repeat-
ing the PCA (for Ss) or LPCA (for Sc) and the hyper-parameter calibration, and (ii) k-fold
cross-validation (Section 5.3). These will be denoted as LOOCV and k-fold CV, respectively.
Ten (10) different folds were used for the k-fold validation implementation. It should be
stressed that, as discussed in Section 5.3, k-fold corresponds to the proper cross-validation
implementation, with the PCA (or LPCA) and the hyper-parameter calibration repeated
after the removal of each set of storms. As such, it will be considered as the reference in
all comparisons. Since k-fold has, though, a substantial computational burden, LOOCV is
explored as a more efficient alternative.

7.1. Selection of Principal Components and Examining Overfitting Challenges

A parametric investigation is initially performed to examine the impact of the mc
(for Sc) and ms (for Ss) values on the metamodel accuracy. For both metamodels, the
formulation incorporating the residual discussed in Section 5.1 and 5.2 is presented, denoted
as “Residual” in the plots. Additionally, both LOOCV and k-fold CV results are presented to
establish thorough comparisons between them. Figure 9 shows results for the Sc metamodel
looking at the average misclassification MC for an increasing number of latent components.
Figure 10 presents the results for the Ss metamodel for the use of the pseudo-surge database,
presenting both the average correlation coefficient, cc, and the surge score, SC, for an
increasing number of latent components.

Results indicate that as the number of latent components mc (for Sc) and ms (for Ss)
increase, the accuracy of both metamodels improves, as expected. The incorporation of the
residuals improves the accuracy when a small number of principal components is used,
but for a sufficiently large number, it offers no benefits. As explained in detail in [22], the
incorporation of this residual substantially increases the computational complexity, espe-
cially the memory requirements for accommodating the metamodel predictions. Trends,
therefore, indicate that the use of a larger number of principal components without the
incorporation of the residual in the metamodel formulation is the preferred implementation.
For the Sc metamodel, a number of principal components close to mc = 12−15 offers the
greater accuracy, while for the Ss metamodel, a constant improvement is observed till an
accuracy plateau is reached. This behavior is similar to the one reported in study [22]. For
reference, if the implementation of [25] was used to address strictly the LPCA overfitting,
the optimal number of principal components, mc, would have been 35. As stressed earlier,
mc needs to be adjusted appropriately while considering the coupling with the surrogate
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model error through the proposed parametric investigation, which in this case yields a
significantly lower number of components in the order of 12–15.
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Figure 9. Averaged misclassification MC for the Sc surrogate model for different number of com-
ponents (mc) without considering the node grid connectivity. Different metamodel variants (use of
additional metamodel on the residuals) and different validation approaches are shown.

Considering the difference between the LOOCV and k-fold CV, and although LOOCV
seems to over predict, offering higher estimates for the metamodel accuracy (more on
this later), the decisions related to the optimal number of principal components would be
practically identical using either of the two approaches. This means that overfitting effects
related to the cross-validation implementation are substantially smaller than those observed
in [22], in which LOOCV implementation contributed to some erroneous decisions. These
trends indicate that the larger database size greatly helps mitigate any adverse overfitting
effects. Note that the reduced accuracy estimated by the k-fold CV is an expected trend,
associated with the fact that for some of the folds, many of the storms that are removed
will belong to the parametric boundaries of the database X, forcing extrapolations for the
metamodeling validation increasing this way the prediction errors, and should not be
necessarily attributed as an accuracy over prediction by the LOOCV.

Finally, the comparison for the Ss metamodel between the cases with and without the
node grid connectivity in the kNN imputation indicates different trends with respect to the
two compared metrics. Using the node connectivity provides better accuracy for SC, but a
lower accuracy for cc. This should be attributed to the differences mentioned in Section 5.3.2
between these metrics; cc assesses accuracy with respect to the imputed surge database, and
SC with respect to the original database. Using the grid connectivity at the imputation stage
evidently provides pseudo-surge estimates with smaller smoothness, contributing to lower
cc values, but accommodates also smaller misclassifications, as reported in Section 4.2,
leading to smaller SC values. Since, as discussed in Section 5.3.2, SC is a more appropriate
measure to assess metamodel accuracy, the results in Figure 10 indicate that for the pseudo-
surge database, the use of node connectivity in the kNN implementation accommodates,
ultimately, a higher metamodel accuracy.
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Figure 10. Averaged correlation coefficient CC (top row) and surge score SC (bottom row) validation
metrics for the Ss surrogate model utilizing the pseudo-surge database for different number of compo-
nents (ms). Different metamodel variants (use of additional metamodel on the residuals), the use of
the node grid connectivity or not, and two different validation approaches are shown.

7.2. Integration of the Two Surrogate Models

For the remaining results, the number of principal components utilized are ms = 30 for
Ss and mc = 12 for Sc, while all validation statistics presented correspond to the k-fold CV
implementation. Results are presented for the different groups of nodes identified earlier
in Table 2, and for different metamodel variants. The following variants are examined:

(a) Using the pseudo-surge database and relying strictly on the surge metamodel predictions.
This is denoted as Ss implementation in the results.

(b) Using the pseudo-surge database, but considering the combination of the classification
and surge metamodels, either using Ss prioritization (abbreviated as SP implementation
in the results), Sc prioritization (abbreviated as CP implementation in the results), or
the balanced combination (abbreviated as CB implementation in the results), using the
original definition for classes C2 and C3. For the CB, an implementation without
the surge transformation (function g(.)) will also be considered, denoted as CBNoTr

implementation in the results.
(c) Using the pseudo-surge database and considering the balanced combination of the classifi-

cation and surge metamodels for the alternative definition for classes C̃2 and C̃3. This
will be denoted as C̃B.

(d) Using the corrected pseudo-surge database. In this case, the surge metamodel is strictly
used, since it is developed based on a correct node condition database.

All variants are presented looking at both the incorporation or not of the grid connec-
tivity for the kNN imputation. Table 3 presents the averaged (across different groups of
nodes) surge score values, while Table 4 the averaged misclassification values. Tables 5
and 6 present, respectively, the averaged false positive and negative misclassification val-
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ues for the different node classes. Note that in all these tables, class C1 corresponds to
the always wet nodes, whereas the once dry group corresponds to the complement of
C1, also representing the union of classes C2 and C3 (or C̃2 and C̃3). Figure 11, finally,
presents the surge score and the misclassification for the once dry nodes as a function
of the surge gap for some of the variant implementations of interest. It is important to
note that when comparing across the different groups of nodes, the differences in surge
score/misclassification percentages and all the associated trends are small when examining
results for the always wet nodes or groups that involve a large portion of nodes that are
predominantly inundated in the original database. For this reason, emphasis in all the
comparisons will be placed on groups/classes of nodes with characteristics that create
challenges in the metamodel development (problematic nodes or nodes with large gaps).
Note also that for certain comparisons, for example, when examining the different variants
for the same pseudo-surge database, the results are identical for some of the groups. This is
true for the group of always wet nodes (C1).

Table 3. Surge score SC (cm) averaged across different groups of nodes for different surrogate model
variants.

kNN with Node Connectivity kNN without Node Connectivity

Pseudo-Surge Database
Corrected

Pseudo-Surge
Database

Pseudo-Surge Database
Corrected

Pseudo-Surge
Database

Metamodel Combination
Ss

Metamodel Combination
Ss

SP CP CB C̃B CBNoTr SP CP CB C̃B

All nodes 7.873 7.868 7.866 7.866 8.514 13.57 7.969 7.737 7.692 7.721 7.732 13.97 7.925

Once dry 5.430 5.418 5.412 5.413 5.479 19.19 5.603 5.413 5.303 5.373 5.399 20.46 5.546

N
od

e
cl

as
se

s

C1 9.599 9.599 9.599 9.599 10.659 9.599 9.641 9.380 9.380 9.380 9.380 9.380 9.606

C2 6.035 6.031 6.028 6.030 6.103 27.58 6.307 5.909 5.904 5.904 5.944 29.47 6.223

C3 4.360 4.334 4.322 4.323 4.376 4.360 4.356 4.535 4.434 4.434 4.434 4.535 4.347

C̃2 5.834 5.831 5.830 5.830 5.823 39.04 6.244 5.715 5.711 5.712 5.712 41.95 6.124

C̃3 5.144 5.126 5.116 5.118 5.235 5.164 5.149 5.199 5.133 5.134 5.174 5.277 5.137

Su
rg

e
ga

p
>

(m
) 0.25 2.288 2.282 2.282 2.281 2.194 59.78 2.867 2.482 2.435 2.435 2.477 64.94 2.795

0.5 1.865 1.855 1.857 1.856 1.786 70.61 2.510 1.980 1.952 1.952 1.992 76.453 2.470

0.75 1.775 1.767 1.767 1.769 1.706 87.09 2.564 1.797 1.784 1.784 1.794 92.19 2.535

1 1.902 1.890 1.893 1.893 1.833 109.14 2.884 1.901 1.886 1.887 1.887 111.80 2.872

1.5 2.695 2.669 2.674 2.674 2.605 139.49 4.355 2.680 2.660 2.660 2.661 138.61 4.406

Results present some interesting and quite complex trends. To better identify these
trends, we initially restrict the comparisons to the same type of imputation process, looking
separately into the different variants that adopt databases with or without node connectiv-
ity in the kNN implementation (left or right columns in each table, or same color lines in
Figure 11). Comparing first the variants that rely strictly on the surge metamodel, i.e., the
Ss implementation for the pseudo-surge database or the implementation using the corrected
pseudo-surge database, it is evident that use of the pseudo-surge database leads to substantial
worse accuracy across all node groups, with larger surge scores (Table 3) and larger mis-
classification percentages (Table 4). The lower performance stems from over predicting
the surge values, as evident by the false-positive rates shown in Table 5. In contrast, this
performance deteriorates for dry nodes that are problematic (classes C2 or C̃2) or for the
nodes that correspond to larger surge gaps, as evident from the results in all tables. These
trends are anticipated since, as discussed earlier, the pseudo-surge database includes erro-
neous information for these specific groups of nodes, something that substantially impacts
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the quality of the metamodel that is calibrated based on this information. The use of the
corrected pseudo-surge database improves all these vulnerabilities.

Table 4. Misclassification MC (%) averaged across different groups of nodes for different surrogate
model variants.

kNN with Node Connectivity kNN without Node Connectivity

Pseudo-Surge Database
Corrected

Pseudo-Surge
Database

Pseudo-Surge Database
Corrected

Pseudo-Surge
Database

Metamodel Combination
Ss

Metamodel Combination
Ss

SP CP CB C̃B CBNoTr SP CP CB C̃B

All nodes 1.750 1.609 1.534 1.518 1.648 7.232 2.668 1.833 1.610 1.575 1.573 7.668 2.609

Once dry 4.072 3.730 3.545 3.510 3.571 17.31 6.290 4.268 3.730 3.645 3.641 18.36 6.142

N
od

e
cl

as
se

s

C1 0.110 0.110 0.110 0.110 0.289 0.110 0.111 0.113 0.113 0.113 0.113 0.113 0.113

C2 4.256 3.965 3.877 3.815 3.891 24.10 7.731 4.221 3.965 3.870 3.864 26.28 7.438

C3 3.747 3.315 2.969 2.970 3.005 3.747 3.741 4.352 3.315 3.246 3.246 4.352 3.851

C̃2 3.654 3.505 3.455 3.456 3.460 35.20 8.593 3.621 3.505 3.450 3.450 36.97 8.099

C̃3 4.3676 3.889 3.615 3.547 3.648 4.671 4.662 4.725 3.889 3.782 3.775 5.211 4.759

Su
rg

e
ga

p
>

(m
) 0.25 1.077 1.022 1.008 1.008 1.010 46.95 5.192 1.528 1.022 1.284 1.332 50.05 4.444

0.5 0.850 0.770 0.768 0.768 0.771 53.77 4.803 1.150 0.770 0.970 1.006 56.75 3.945

0.75 0.765 0.692 0.691 0.692 0.698 63.19 4.810 0.864 0.692 0.745 0.758 65.56 3.706

1 0.808 0.689 0.697 0.697 0.708 71.31 4.853 0.867 0.688 0.726 0.727 73.29 3.604

1.5 1.118 0.838 0.867 0.867 0.886 72.75 5.601 1.116 0.838 0.877 0.878 74.79 4.608

Table 5. False-positive misclassification (+MC) percentage for different variants and different groups
of nodes.

kNN with Node Connectivity kNN without Node Connectivity

Pseudo-Surge Database
Corrected

Pseudo-Surge
Database

Pseudo-Surge Database
Corrected

Pseudo-Surge
Database

Metamodel Combination
Ss

Metamodel Combination
Ss

SP CP CB C̃B CBNoTr SP CP CB C̃B

All nodes 2.302 2.696 2.403 2.519 2.453 22.78 6.556 2.661 2.696 2.573 2.751 24.41 6.427

Once dry 2.302 2.697 2.403 2.519 2.453 22.78 6.556 2.661 2.696 2.573 2.751 24.41 6.427

N
od

e
cl

as
se

s

C1 0 0 0 0 0 0 0 0 0 0 0 0 0

C2 2.101 2.988 2.640 2.826 2.663 35.17 8.980 2.107 2.988 2.643 2.930 37.23 8.638

C3 2.629 2.222 2.019 2.019 2.111 2.629 2.612 3.563 2.222 2.459 2.459 3.563 2.830

C̃2 1.838 2.298 2.118 2.118 2.123 46.21 9.993 1.847 2.298 2.123 2.123 48.69 9.426

C̃3 2.676 3.018 2.634 2.843 2.712 3.828 3.776 3.320 3.018 2.937 3.258 4.774 4.001

A more remarkable improvement is established, though, when the integration of the
classification and the surge metamodels is considered. All variants using the pseudo-surge
database that additionally adopt the metamodel combination improve upon the variant
utilizing the corrected pseudo-surge database across both the surge score (Table 3) and the
misclassification (Table 4), with the greatest improvements stemming from the reduction
of the false positive misclassifications (Table 5). The improvement is more significant
for the problematic nodes (class C2 or C̃2), especially the ones corresponding to large
surge gaps, as evident in both Tables 3 and 4 as well as in Figure 11. These observations
showcase that the benefits from the integration of the classifier in the overall metamodel
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implementation will be larger for nodes with problematic behavior that are predominantly
dry in the original surge simulations (check the information provided in Table 2) and belong
in regions with complex geomorphologies, as indicated by the large surge gap values. As
the prediction of coastal hazard for such nodes could be of greater practical interest, these
trends clearly demonstrate the substantial benefits that the use of the classifier can provide,
stressing the importance of considering its integration for providing the surge predictions.
Comparing across the two different validation metrics, greater differences are observed
for the misclassification percentage compared to the surge score. This trend actually holds
for most of the comparisons that will be examined in this section, and it is influenced by
the fact that the surge score also considers contributions from instances that the node is
correctly classified as inundated (predicted surge compared to actual surge), with these
contributions being substantial in many instances, though surge score is the most important
validation metric, demonstrating how well the actual surge is explained. However, the
misclassification is also of high importance, as it relates to the ability of the metamodel to
identify the dry/wet boundary. As such, the larger discrepancies that exist in some of the
comparisons for the misclassification accuracy should be considered as important trends.

Table 6. False-negative misclassification (−MC) percentage for different variants and different groups
of nodes.

kNN with Node Connectivity kNN without Node Connectivity

Pseudo-Surge Database
Corrected

Pseudo-Surge
Database

Pseudo-Surge Database
Corrected

Pseudo-Surge
Database

Metamodel Combination
Ss

Metamodel Combination
Ss

SP CP CB C̃B CBNoTr SP CP CB C̃B

All nodes 1.531 1.176 1.188 1.119 1.327 1.047 1.122 1.504 1.179 1.178 1.105 1.005 1.091

Once dry 7.967 6.004 6.070 5.689 6.029 5.290 5.705 7.803 6.004 6.002 5.598 5.045 5.517

N
od

e
cl

as
se

s

C1 0.110 0.110 0.110 0.110 0.289 0.110 0.110 0.113 0.113 0.113 0.113 0.113 0.113

C2 8.564 5.916 6.351 5.792 6.343 4.637 5.235 8.447 5.916 6.323 5.731 4.400 5.041

C3 6.689 6.192 5.470 5.470 5.355 6.689 6.711 6.427 6.191 5.315 5.316 6.427 6.535

C̃2 8.890 6.986 7.312 7.312 7.316 3.479 4.558 8.7387 6.986 7.276 7.342 7.276 4.275

C̃3 7.489 5.496 5.428 4.849 5.362 6.228 6.299 7.320 5.496 5.343 5.633 4.730 6.160

Comparing across the different variants that consider the metamodel combination,
it is evident that from the alternative implementations introduced in this paper, the Sc
prioritization or the balanced combination outperform the original Ss prioritization introduced
in study [22]. These trends indicate that the classification surrogate model provides high-
quality estimates, with Sc prioritization outperforming Ss prioritization, illustrating that the
concerns about the reliability of the Sc metamodel might not always hold (they will be
database and application dependent). It is important to note that the misclassification
percentages in Tables 4–6 for the Sc prioritization and Ss prioritization implementations for
class C3 facilitate a direct comparison between these two variants, as the corresponding
classification predictions have been established using only this variant. These comparisons
clearly illustrate the fact that for this specific case study, the Sc prioritization outperforms
the Ss prioritization. Overall, the best variant is actually the balanced combination adopting
the alternative definition regarding the problematic nodes (using classes C̃3 and C̃2). This
demonstrates that the greatest robustness in the classification predictions is obtained by
the probabilistic combination of the two metamodels and the careful definition of the
problematic nodes for which the Ss metamodel predictions are assumed to over predict
the surge. It should be noted that the differences between the variants that consider the
metamodel combination are even smaller for the surge score predictions. Beyond the
reasons identified in the previous paragraph, the smaller differences stem from the fact that
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the Sc prioritization and balanced combination variants rely on the artificial adjustment of Ss
metamodel surge predictions for some instances, as discussed in Section 6, with the choice to
set the predictions to 2 cm above the node elevation might not being the optimal one. Finally,
the consideration of the surge transformation g(.) provides substantial benefits across most
comparisons, with the exception of surge score for nodes with large surge gaps (Table 3).
Even for those exceptions, the performance of the different variants is practically identical,
demonstrating a clear preference for utilizing the surge transformation. Additionally, no
challenges are associated with the use of the transformation for estimating the classification
probabilities according to Equation (10), as indicated by the better classification performance
in Tables 4–6.

Moving now to the comparison of the two different imputation strategies, the consid-
eration of the node connectivity leads to better misclassification performance (Tables 4–6
and bottom row of Figure 11), but not necessarily to a better surge score (Table 3 and
top row of Figure 11). Even though for the Ss metamodel using the pseudo-surge database
considering the node connectivity at the imputation stage always provides better surge
score performance, when the classifier is integrated into the formulation, or for the corrected
pseudo-surge database, the consideration of the node connectivity reduces the surge score
accuracy for the always wet nodes or the nodes that correspond to smaller surge gaps. For
nodes that correspond to larger surge gaps, clear advantages are identified from using
the node connectivity. Specifically, the discrepancies for the always wet nodes should
be attributed to some overall smoothness reduction across the imputed database when
the node connectivity is incorporated, ultimately impacting the quality of the predictions
across all nodes (since the metamodel formulation is established simultaneously across
the entire database). This agrees with the trends of the correlation coefficient identified
earlier in Figure 10. This discussion indicates that perhaps it is better to consider the
development of separate Ss metamodels across the different classes of nodes. Though one
can envision different separation of the database for this purpose, the one investigated here
is the distinction to the following two groups: the problematic ones and the rest.

7.3. Considering Separate Surge Metamodels for Different Classes of Nodes

The developments of two separate metamodels to obtain the Ss predictions is exam-
ined in this section, distinguishing the nodes based on the quality of information available
for them: the class of problematic nodes, C̃2, and the remaining nodes, composed of classes
C1 and C̃3, referenced herein as “trustworthy nodes”. For the problematic nodes, C̃2, the
previous established predictions are utilized, while a separate metamodel is developed for
the trustworthy nodes. For this portion of the database (trustworthy nodes), the pseudo-surge
values are expected to have a higher degree of smoothness independent of the approach
taken at the kNN imputation stage (regarding the use or not of the connectivity informa-
tion), which should establish higher accuracy surge predictions. This is the motivation for
considering a separate surrogate model for them, developed without including the prob-
lematic nodes. It should be stressed that the latter nodes are expected to belong to domains
with complex geomorphologies with little correlation to the remaining nodes, as clearly
indicated by the large values of the maximum surge misinformation. Therefore, combining
their information in the development of a single metamodel, Ss, for the surge predictions
across all nodes has the potential to lower the overall accuracy, since this metamodel is
forced to fit portions of the database with highly dissimilar behavior.

To accommodate the development of the two independent surge metamodel predic-
tions (one for the problematic nodes and one for the trustworthy nodes), the formulation
of the surge surrogate model (Section 5.1) is repeated twice, for each of the respective
databases, and the overall predictions for the storm surge metamodel, Ss, are ultimately
obtained by combining them. All other steps regarding the combination of Ss with the Sc
metamodel and the validation remain the same. Tables 7–10 present the validation results
in identical format to Tables 3–6. The difference is that in these tables, the Ss predictions are
established by using different surge metamodels for the different classes of nodes.
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Figure 11. Averaged surge score SC (top row) and misclassification MC (bottom row) validation
metrics for different metamodel variants (integrations of the surge and the classification surrogates)
for an increasing surge gap. The use of the node grid connectivity or not, as well as the use of the
corrected pseudo-surge database or not, are also examined.

Results indicate that the consideration of a separate surge metamodel for the trust-
worthy nodes improves overall the quality of the predictions for them with respect to both
the surge score (compare Table 3 to Table 7) and the misclassification percentage (compare
Tables 4–6 to Tables 8–10) validation metrics. This is especially evident in the comparisons
for nodes belonging in classes C1 and C3 or C̃3. Note that for class C̃2, results remain the
same, since the surge metamodel for these nodes is the one that was used previously. For
this reason, the results for the groups of nodes corresponding to large surge gap values
also remain unchanged, since a significant portion of these nodes in those groups belongs
to class C̃2. The remaining trends, already identified in Section 7.2 with respect to the
benefits of the integration of the surge classifier and the superiority of the C̃B combination
approach, are the same, experiencing simply an overall improvement in the accuracy due
to the higher quality of surge predictions for the trustworthy nodes. The overall predictions
for the imputed database established without the node connectivity are still better than the
predictions for the imputed database with the node connectivity, though the differences
in this case are smaller, and the improvement for the trustworthy nodes is greater when
separate surge metamodels are considered. The better overall performance for the imputed
database without the node connectivity stems primarily from the nodes in class C̃2.

The above discussions show the advantages of separating the portions of the database
with different surge behavior (in this case between problematic and trustworthy nodes) and
considering separate surge surrogate models for each of them. Though this objective could
perhaps be accomplished through the identification of principal components within PCA,
the linear character of PCA evidently prohibits it from establishing a complete separation
of the portions of the database with substantially dissimilar behavior, since some (linear)
correlation between these portions evidently exists. Only if these portions were completely
uncorrelated would PCA be able to accommodate the desired separation. Unless a different
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dimensionality reduction technique is adopted, the formal separation of the database into
two different groups is the only mean for achieving the desired objective.

Table 7. Surge score SC (cm) averaged across different groups of nodes for different surrogate model
variants for the implementation that considers different surge metamodels for different classes of
nodes.

kNN with Node Connectivity kNN without Node Connectivity

Pseudo-Surge Database
Corrected

Pseudo-Surge
Database

Pseudo-Surge Database
Corrected

Pseudo-Surge
Database

Metamodel Combination
Ss

Metamodel Combination
Ss

SP CP CB C̃B SP CP CB C̃B

All nodes 7.448 7.445 7.442 7.441 13.145 7.525 7.434 7.389 7.418 7.427 13.663 7.479

Once dry 5.271 5.263 5.255 5.255 19.029 5.451 5.306 5.197 5.267 5.291 20.351 5.394

N
od

e
cl

as
se

s

C1 8.987 8.987 8.987 8.987 8.987 8.991 8.937 8.937 8.937 8.937 8.937 8.953

C2 5.918 5.915 5.912 5.911 27.460 6.199 5.829 5.826 5.824 5.861 29.385 6.114

C3 4.127 4.112 4.093 4.093 4.127 4.128 4.381 4.085 4.282 4.282 4.381 4.119

C̃2 5.835 5.832 5.831 5.831 39.044 6.244 5.715 5.713 5.712 5.712 41.948 6.124

C̃3 4.872 4.862 4.848 4.847 4.890 4.891 5.016 4.832 4.952 4.993 5.092 4.877

Su
rg

e
ga

p
>

(m
) 0.25 2.282 2.276 2.276 2.275 59.778 2.864 2.480 2.235 2.434 2.476 64.931 2.792

0.5 1.858 1.848 1.850 1.850 70.604 2.509 1.977 1.822 1.948 1.989 76.451 2.469

0.75 1.770 1.760 1.763 1.763 87.088 2.563 1.796 1.745 1.782 1.793 92.187 2.534

1 1.895 1.881 1.886 1.886 109.14 2.882 1.899 1.865 1.884 1.885 111.81 2.870

1.5 2.686 2.653 2.665 2.665 139.48 4.355 2.675 2.642 2.655 2.655 138.61 4.403

Table 8. Misclassification MC (%) averaged across different groups of nodes for different surrogate
model variants for the implementation that considers different surge metamodels for different classes
of nodes.

kNN with Node Connectivity kNN without Node Connectivity

Pseudo-Surge Database
Corrected

Pseudo-Surge
Database

Pseudo-Surge Database
Corrected

Pseudo-Surge
Database

Metamodel Combination
Ss

Metamodel Combination
Ss

SP CP CB C̃B SP CP CB C̃B

All nodes 1.726 1.613 1.528 1.508 7.197 2.635 1.822 1.614 1.573 1.570 7.651 2.578

Once dry 4.003 3.730 3.524 3.478 17.217 6.200 4.231 3.730 3.631 3.623 18.309 6.059

N
od

e
cl

as
se

s

C1 0.117 0.117 0.117 0.117 0.117 0.117 0.119 0.119 0.119 0.119 0.119 0.118

C2 4.226 3.965 3.866 3.793 24.917 7.665 4.206 3.965 3.863 3.851 26.249 7.378

C3 3.609 3.316 2.920 2.920 3.609 3.610 4.275 3.316 3.219 3.219 4.275 3.727

C̃2 3.654 3.506 3.456 3.456 35.206 8.593 3.621 3.506 3.450 3.450 36.971 8.100

C̃3 4.249 3.889 3.572 3.493 4.510 4.509 4.661 3.889 3.758 3.744 5.125 4.617

Su
rg

e
ga

p
>

(m
) 0.25 1.072 1.022 1.006 1.006 46.942 5.190 1.528 1.022 1.285 1.335 50.054 4.444

0.5 0.848 0.770 0.767 0.768 53.767 4.806 1.150 0.770 0.969 1.006 56.747 3.946

0.75 0.763 0.692 0.692 0.692 63.190 4.815 0.865 0.692 0.746 0.758 65.561 3.704

1 0.801 0.689 0.699 0.699 71.302 4.860 0.867 0.689 0.724 0.725 73.292 3.600

1.5 1.105 0.838 0.872 0.872 72.741 5.621 1.122 0.838 0.870 0.870 74.804 4.611
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Table 9. False-positive misclassification (+MC) percentage for different variants and different groups
of nodes for different surrogate model variants for the implementation that considers different surge
metamodels for different classes of nodes.

kNN with Node Connectivity kNN without Node Connectivity

Pseudo-Surge Database
Corrected

Pseudo-Surge
Database

Pseudo-Surge Database
Corrected

Pseudo-Surge
Database

Metamodel Combination
Ss

Metamodel Combination
Ss

SP CP CB C̃B SP CP CB C̃B

All nodes 2.241 2.696 2.380 2.490 22.689 6.479 2.627 2.696 2.561 2.738 24.369 6.355

Once dry 2.241 2.697 2.380 2.491 22.688 6.479 2.627 2.697 2.561 2.739 24.368 6.355

N
od

e
cl

as
se

s

C1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C2 2.075 2.988 2.625 2.803 35.096 8.918 2.089 2.988 2.632 2.919 37.199 8.581

C3 2.510 2.222 1.981 1.981 2.510 2.512 3.501 2.222 2.446 2.446 3.501 2.734

C̃2 1.839 2.298 2.118 2.118 46.209 9.993 1.141 2.298 2.123 2.123 48.695 9.426

C̃3 2.566 3.018 2.591 2.791 3.666 3.637 0.932 3.018 2.915 3.236 4.694 3.871

Table 10. False-negative misclassification (−MC) percentage for different variants and different
groups of nodes for different surrogate model variants for the implementation that considers different
surge metamodels for different classes of nodes.

kNN with Node Connectivity kNN without Node Connectivity

Pseudo-Surge Database
Corrected

Pseudo-Surge
Database

Pseudo-Surge Database
Corrected

Pseudo-Surge
Database

Metamodel Combination
Ss

Metamodel Combination
Ss

SP CP CB C̃B SP CP CB C̃B

All nodes 1.521 1.182 1.189 1.118 1.034 1.106 1.501 1.184 1.180 1.105 0.999 1.075

Once dry 7.879 6.004 6.042 5.649 5.184 5.586 7.759 6.004 5.984 5.567 4.982 5.408

N
od

e
cl

as
se

s

C1 0.117 0.117 0.117 0.117 0.117 0.117 0.119 0.119 0.119 0.119 0.119 0.118

C2 8.526 5.917 6.347 5.771 4.571 5.160 8.436 5.917 6.325 5.713 4.361 4.974

C3 6.496 6.192 5.388 5.388 6.496 6.496 6.309 6.192 5.253 5.253 6.309 6.336

C̃2 8.890 6.986 7.312 7.312 3.479 4.558 8.738 6.986 7.276 7.276 3.168 4.275

C̃3 7.356 5.496 5.384 4.788 6.067 6.118 7.252 5.496 5.314 4.682 5.921 5.995

8. Conclusions

The development of surrogate models for predicting peak storm surges requires an
imputation of the original simulation data for nearshore nodes that have remained dry in
some of the synthetic storm simulations, resulting in the estimation of the so-called pseudo-
surge. This imputation is typically performed using a geospatial interpolation technique,
which may lead to erroneous information for some instances, with nodes classified as
inundated (pseudo-surge greater than the node elevation), even though they were actually
dry. This paper examined the appropriate adjustment of the imputed pseudo-surge values
in this setting in order to support accurate, emulator-based predictions of peak storm
surges. The integration of a secondary node classification surrogate model was examined
in detail for this purpose.

To investigate the benefits from the implementation of the secondary surrogate model
across nodes with different characteristics, and to reveal important trends for the necessity
of this classifier integration in the surge predictions, a variable termed surge gap was
introduced. Surge gap is defined as the difference between the lowest recorded surge in
the database and the node elevation. Additionally, the combination of the two surrogate
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models using the probabilistic characterization of the node classification, instead of a
deterministic one, was examined in detail. To support this combination, the nodes that
were dry at least once in the original database were grouped into two different classes: one
class of problematic nodes for which the imputed pseudo-surge was at least once larger
than the node elevation (providing an erroneous classification), and another class with
the remaining well-behaved nodes for which no specific challenges were identified at the
database imputation stage. The degree of problematic behavior was further evaluated
through the quantification of the magnitude and the frequency of that misclassification
at the imputation stage, and a suggestion was made to move some nodes that have small
values for both of these quantities from the problematic group to the well-behaved group.
Different schemes that combine the surge and classification metamodel predictions across
the two classes of nodes were discussed.

As a case study, the development of a surrogate model for the Louisiana region was
considered using 645 synthetic tropical cyclones (TCs) from the CHS-LA study. The fact
that various flood protection measures are present in the region creates interesting scenarios
with respect to the groups of nodes that remain dry for some storms behind these protected
zones. Advances in the k- nearest neighbor (kNN) geospatial interpolation methodology,
used for the database imputation, were also introduced to address these unique features,
incorporating the connectivity of nodes within the hydrodynamic simulation model to
identify those nearest neighbors. The main results for the case study were the following:

• For both the surge and the classification surrogate models, challenges associated with
overfitting at the calibration stage are reduced compared to previous studies that had a
significantly reduced number of synthetic storms. If the classification surrogate model
is based on principal component analysis, the selection of the number of principal
components needs to be established through a parametric investigation that considers
the combined effect of that dimensionality reduction and surrogate modeling.

• The development of a surrogate model without any adjustment of the imputed
database (maintaining the erroneous information) leads to significant over predictions
of the storm surge. This can be remedied if the erroneous pseudo-surge is adjusted to
always be below the node elevation.

• Even greater benefits can be accommodated if the pseudo-surge is not adjusted, but
the surge predictions are complemented by a classification metamodel. It was shown
that the benefits from the integration of the classifier in the overall metamodel im-
plementation are substantially larger for nodes with problematic behavior that are
predominantly dry in the original database and belong in regions with complex geo-
morphologies, having larger surge gap values.

• Across the different variants that couple the surge and classification metamodels,
the best one was shown to be the one that relies on the combination of probabilistic
information that utilizes the alternative definition of the problematic and well-behaved
node classes, moving nodes with a low degree of problematic behavior from the former
to the latter class of nodes. Overall, better reliability of the classification metamodel
was demonstrated compared to past studies.

• Incorporating the node connectivity at the imputation stage does not necessarily
provide better results when the development of a single surge metamodel across
the entire database is considered. Even though this connectivity contributes to a
better metamodel-aided classification, it reduces the accuracy of the surge predictions.
Results and associated trends indicate some overall smoothness reduction across the
imputed database when the node connectivity is incorporated, ultimately impacting
the quality of the predictions across all nodes.

• This challenge is partially remedied by considering the development of separate meta-
models for the surge predictions for two different groups of nodes: the problematic
nodes and the remaining nodes (trustworthy nodes). Results show clear advantages
when considering separate surge surrogate models for the portions of the database
with different surge behavior, with the quality of surge predictions for the trustworthy
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nodes significantly improving when a surge surrogate model is developed explicitly
for them. It is important to note that even with this modification, incorporating the
node connectivity at the imputation stage does not necessarily provide better results,
although the differences are smaller for the instances that the implementation without
the node connectivity emerges as the better one.
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Appendix A. A Weighted k Nearest Neighbor (kNN) Calibration

The calibration of the weighted kNN interpolation is performed using the cross-
validation accuracy as recommended in [16]. Let A f

w denote the set of n f
w always wet nodes

within the database, and At
w a subset of that set, with nt

w nodes, that the calibration is
based upon. At

w may be chosen identical to A f
w, though it should be further restricted to

nodes corresponding to smaller depths, so that the calibration is based on predictions for
near-shore nodes only. The surge for the ith node in At

w is predicted using Equation (2) by
considering its neighbors that belong in set A f

w, excluding the ith node. This ultimately
corresponds to a leave-one-out kNN prediction of the surge. The calibration is finally
expressed through the optimization of the hyper-parameters as introduced in Equation
(2), with the selected objective function corresponding to the average mean absolute error
across all wet nodes and storms, leading to the expression:

[k, d, q, p]∗ = argmin(
n
∑

h=1
∑

i∈At
w

|ηh
i − ηh

i
|)

k ∈ N, 1 ≤ k ≤ kmax

0 < d ≤ dmax, 0 < q ≤ qmax, pmin ≤ p ≤ pmax

(A1)

with appropriate box-bounded constraints for minimum (subscript min) and maximum
(subscript max) value of each of the hyper-parameters. Numerical details for efficiently per-
forming this calibration, and the necessity for the aforementioned box-bounded constraints,
are discussed in [16].

Appendix B. Review of Surrogate Model Formulation

This appendix reviews the kriging surrogate model formulation. This formulation
is common for the two surrogate model implementations examined in Section 5. Both
utilize the storm input x [input matrix X], but each predicts a different output and therefore
utilizes a different set of observations. To unify the presentation here, the output will be
represented through a scalar quantity, y(x), and may correspond to any of the individual

https://chs.erdc.dren.mil
https://chs.erdc.dren.mil
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PCA components, or LPCA natural parameters. The respective observation vector for the
metamodel calibration will be denoted as Y(X) = [y

(
x1) . . . y(xn)]

T ∈ Rn. Any extension
to cases where the output corresponds to a vector quantity representing, for example,
groups of PCA components or LPCA natural parameters are straightforward and are
examined in detail in [16].

The fundamental building blocks for kriging are the nb-dimensional basis vector
f(x) and the correlation function R(xl , xm|s), with s denoting the hyper-parameter vector
that needs to be calibrated. In the case study considered in this paper, with input vector
x = [xlat xlong β ∆P Rmw vt], a linear basis is adopted for f(x) = [1 x1 . . . xnx ], while for the
correlation function, an adjusted power exponential function is considered:

R(xl , xm|s) = exp[−
2
∑

j=1
sj|xl

j − xm
j |snx+1 + sj|xl

j − xm
j |snx+2 +

nx
∑

j=4
sj|xl

j − xm
j |snx+3 ]

with s = [s1 · · · snx+3]

(A2)

using different parameters for the exponents of the three main input groups: the landfall
location, the heading at landfall, and the remaining (strength/intensity/translational
speed) inputs. Let F(X) = [f(x1) . . . f(xn)]

T denote the n× nb basis matrix over database X,
r(x|X) = [R(x, x1|s) . . . R(x, xn|s)

]T the n-dimensional correlation vector between x and
each of the elements of X, and R(X) the n× n correlation matrix over the database X with
the lmth element defined as R(xl , xm|s), l, m = 1, . . . , n. To improve the surrogate model’s
numerical stability or even its accuracy when fitting noisy data [23,27,28], a nugget is
included in the formulation of the correlation function R(X) = R(X) + δIn, with δ denoting
the nugget value and In an identity matrix of dimension n.

Utilizing the available observations Y(X) kriging approximates the output y as a
Gaussian Process (GP) with mean ỹ(x|X) and variance σ2(x|X). The GP predictive mean,
representing the kriging predictions, is given by [23]:

ỹ(x|X) = f(x)T
β∗(X) + r(x|X)TR(X)−1(Y(X)− F(X)β∗) (A3)

where β∗(X) = (F(X)TR(X)−1F(X))
−1

F(X)TR(X)−1Y(X). Note that the dependence on the
database X is explicitly denoted in all expressions in order to facilitate the cross-validation
discussions within the manuscript. For quantities that are a function of x, for example ỹ(.)
and r(.), this dependence is expressed through the conditioning on X, denoted as “|X”.
The GP predictive variance, quantifying the uncertainty in the kriging predictions, is given
by [23]:

σ2(x|X) = σ̃2(X)[1 + γ(x|X)T
{

F(X)TR(X)−1F(X)
}−1

γ(x|X)

−r(x|X)TR(X)−1r(x|X)]
(A4)

where γ(x|X) = F(X)TR(X)−1r(x|X)− f(x) and the process variance σ̃2(X) is given by:

σ̃2(X) =
1
n
(Y(X)− F(X)β∗(X))TR(X)−1(Y(X)− F(X)β∗(X)) (A5)

The calibration of kriging pertains to the selection of the hyper-parameters, namely,
and can be performed using maximum likelihood estimation (MLE) [23,29] or cross-
validation techniques [30]. The MLE implementation, which is the approach used in
the case study that is presented in this paper, leads to the following optimization for the
selection of the hyper-parameters:

[s δ]∗ = argmin
[s δ]

(
ln(det(R(X)) + n ln σ̃2(X)

)
(A6)
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where det(.) stands for the determinant of a matrix. The optimization of Equation (A6) is
well known to have multiple local minima [29] and non-smooth characteristics for small
values of δ [27]. To address these challenges, all numerical optimizations that are performed
in this study use a pattern-search optimization algorithm [31].
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