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Abstract: Due to the influence of underwater visual characteristics on the observation of underwater
creatures, the traditional object detection algorithm is ineffective. In order to improve the robustness
of underwater biological detection, based on the YOLOv4 detector, this paper proposes an underwater
biological detection algorithm combined with the channel attention mechanism. Firstly, the backbone
feature extraction network CSPDarknet53 of YOLOv4 was improved, and a residual block combined
with the channel attention mechanism was proposed to extract the weighted multi-scale effective
features. Secondly, the weighted features were repeatedly extracted through the feature pyramid to
separate the most significant weighted features. Finally, the most salient weighted multi-scale features
were used for underwater biological detection. The experimental results show that, compared with
YOLOv4, the proposed algorithm improved the average accuracy of the Brackish underwater creature
dataset detection by 5.03%, and can reach a detection rate of 15fps for underwater creature video clips.
Therefore, it is feasible to apply this method to the accurate and real-time detection of underwater
creatures. This research can provide technical reference for the exploration of marine ecosystems and
the development of underwater robots.

Keywords: YOLOv4; underwater biological detection; channel attention; multi-class

1. Introduction

In ocean observation research, the detection, location, and tracking of marine organ-
isms is one of the most basic tasks for deeply exploring the marine ecosystem. Tracking
and studying the habitats of underwater populations and any changes in their species is
critical for the conservation and use of marine resources [1].

One of the most common ways to observe underwater life is to collect video and ana-
lyze it. The main research work can be divided into manual observation, traditional object
detection, and object detection based on deep learning. Among them, manual observation
cannot provide a comprehensive observation, cannot capture the real underwater biological
state and behavior, and requires expensive equipment and human resources. The tradi-
tional underwater biometrics algorithm has a good application ability for some underwater
scenes with single object and few changes. In an early study, M. M. M. Fouad et al. [2]
used improved support vector machines (SVMs) to classify tilapia with better accuracy
than other machine learning techniques at the time. To detect moving underwater objects,
Shen et al. [3] proposed a hierarchical background model from the perspective of bionics
with reference to the eyes of frogs, which have a good detection ability. Considering the
limited underwater computing resources, Wang et al. [4] proposed a fast method to seg-
ment underwater images using a modified Markov Random Field (MRF) model combined
with hard clustering. To address the problem of low underwater visibility, Shevechenko
et al. [5] proposed a fish detection framework by capturing noisy videos in low-visibility
water and using a suitable background removal method. Although the above-mentioned
traditional methods have made some practical progress in some specific cases, it is difficult
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to obtain a satisfactory underwater multi-object and multi-class recognition rate due to
underwater images often have a series of problems compared with ordinary optical images,
such as poor visibility, non-rigid deformation, high-frequency changes of appearance under
different illumination, and different viewing angles, etc. [6].

With the rapid development of deep learning technology, many scholars have applied
convolutional neural networks (CNN) to the field of computer vision. They are mainly
divided into two categories; one is object detection algorithm based on candidate region
(i.e., two-stage object detector), and the other is regression-based object detection algorithm
(i.e., one-stage object detector). The two-stage object detector first selects candidate regions
for the input image, and then classifies and regresses the candidate regions to achieve
object detection. The one-stage object detector omits the candidate region generation step,
and directly integrates the process of feature extraction, object classification, and position
regression into a convolutional neural network, which simplifies the object detection
process into an end-to-end regression problem. Single-stage detection frameworks include
SSD [7], YOLO series [8–10], and RetinaNet [11]. Two-stage detection frameworks include
FPN [12] and Faster R-CNN [13]. In underwater fish detection tasks, the two main goals
of the research are to improve the detection accuracy and speed. Krizhevsky et al. [14]
first proposed a deep CNN model whose accuracy surpassed the second-place model
in the ILSVRC2012 competition by 30%. However, the real-time detection of the model
cannot be guaranteed. Therefore, some scholars have used a single-stage object detection
algorithm in underwater fish detection. Sung et al. applied the architecture of YOLO and
proposed a vision-based convolutional neural network real-time fish detection system [15].
Wang et al. proposed a detector for classifying and detecting fish images using YOLOv2 [16].
Performing image augmentation to generate depth information, Liu et al. developed an
underwater fish detection and tracking strategy [6]. These methods solve the task of the
real-time detection of underwater fish to a certain extent, but the model still needs to be
improved in terms of real-time performance, detection accuracy, and detection speed.

This paper focuses on improving the accuracy of underwater biological detection
tasks and ensuring real-time detection. In addition, most of the previous studies focused
on the detection of fish, but underwater life is diverse, and the detection of fish alone
cannot provide a comprehensive understanding of the underwater environment. Based on
this situation, we extended the study of underwater organisms to six categories: big fish,
small fish, starfish, shrimp, jellyfish, and crabs. The main contributions of this paper are
as follows:

(1) The YOLO model has taken into account both accuracy and efficiency since it
was proposed. By embedding an attention mechanism into the well-performing YOLOv4
detection network, the model detection ability and quality can be effectively improved
with a relatively small increase in the amount of computation;

(2) We expanded the types of real-time detection of underwater creatures to six cate-
gories, and used the improved YOLOv4 model to locate, detect and classify different types
of underwater creatures;

(3) We evaluated the experiments on the Brackish dataset, and the results show that our
network model outperformed the baseline by 5.03%. Therefore, our method outperforms
the original baseline method.

The rest of the paper is organized as follows: Section 2 summarizes the basic model
used in this paper and the improvements made, Section 3 designs the experiments and
analyzes the experimental results to demonstrate the effectiveness of the proposed model,
and Section 4 summarizes the full text and the future research direction of development.

2. Model Structure
2.1. Basic Model

YOLOv4 is used in this process. It tests the impact of a large number of advanced
technologies on object detection performance based on the YOLOv3 object detection ar-
chitecture, and adds practical techniques to the architecture to achieve the best balance
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between detection speed and accuracy. According to the test results in the COCO object
detection dataset, YOLOv4 is faster and more accurate than YOLOv3, which improves the
mAP and FPS of YOLOv3 by 10% and 12%, respectively. Meanwhile, compared with other
advanced object detection methods, such as EfficientDet, YOLOv4 has twice the detection
speed and comparable performance [17].

The YOLOv4 detector is able to predict the location of the bounding box and the
probability of its class directly from the entire image through just one neural network,
which turns object detection into a regression problem. Therefore, it is very suitable for real-
time detection of applications. YOLOv4 mainly includes CSPDarkNet53 feature extraction
backbone network, SPPNet (Spatial Pyramid Pooling Network), PANet (Path Aggregation
Network) multi-scale prediction network, and network prediction head (YOLO Head).
Among them, CSPDarknet53 consists of 5 large residual blocks. The number of small
residual units contained in these 5 large residual blocks is 1, 2, 8, 8, and 4, respectively, that
is, two CBM convolution modules and one CSPX. The convolutional modules together
form a large residual block. After the last feature layer output of CSPDarknet53, SPPNet
is added, and four different scales of maximum pooling are used for processing. The
pooling kernel sizes of maximum pooling are 13 × 13, 9 × 9, 5 × 5, 1 × 1 (1 × 1 means no
processing); this pooling operation can improve the inference ability of the model with little
increase in the inference time of the model. PANet consists of two parts, upsampling and
downsampling, making full use of feature fusion. YOLOv4 has 3 prediction heads, and the
output shapes of the 3 prediction heads are (13, 13, 255), (26, 26, 255), (52, 52, 255), which
are used to extract multi-scale features for object detection. The complete network structure
is shown in Figure 1. This network structure can train a deep learning model to predict the
bounding box of the object and the probability of its class from the original image.
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2.2. Channel Attention

During each convolution process, some complex interference information will in-
evitably be distributed on some channels, resulting in reduced network performance. The
attention mechanism has been widely used in neural networks [18–20]. With the in-depth
study of the channel attention mechanism, the channel weight of each piece of channel
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information is adjusted, and different weights are assigned to each piece of channel infor-
mation. The channel information is screened, which can effectively alleviate the influence
of the interference information. A typical representative of channel attention is SENet
(Squeeze-and-Excitation Network) [21]. This module mainly includes two key parts: global
information embedding (Squeeze), and adaptive recalibration (Excitation). This enables
the neural network to learn to perform feature recalibration using global information to
selectively emphasize important features and suppress unimportant features, in order to
enhance the representation capability of the entire network. The Squeeze operation com-
presses the spatial dimension according to the channel information, that is, compresses the
global spatial information into a channel descriptor with a global receptive field. Its output
dimension matches the number of input feature channels, which is used to characterize the
global distribution of response on the feature channel. The statistical information z∈RC is
generated by compression on the spatial dimension W × H, where the c-th element of z is
calculated as shown in Equation (1):

zc = Fsq(uc) =
1

W × H

H

∑
i=1

W

∑
j=1

uc(i, j) (1)

where Fsq(·) is the Squeeze operation, and uc is the c-th feature. The Excitation operation
aims to capture the dependencies of the channels, and generates weights for each feature
channel by learning to explicitly model the correlation between feature channels. This
operation needs to capture the nonlinear interaction between channels, and at the same time,
two fully connected layers are required to prevent the model from becoming complicated
and to improve generalization. Therefore, the Excitation operation is mainly composed of
two fully connected layers and two activation functions, as shown in Equation (2):

s = Fex(z, W) = Sigmoid(W2 × ReLU(W1, z)) (2)

where Fex is the Excitation operation, Sigmoid(x) = 1
1+e−x and ReLU(x) = max(0, x) are

the activation functions.
The final output is obtained by multiplying the respective weights by the input

channels, as shown in Equation (3):

Xc = Fscale(uc, sc) = sc · uc (3)

where X = [x1,x2,...,xc], Fscale(uc,sc) refers to the product of the corresponding channels
between the feature map uc ∈ RH×W and the scalar sc. Its structure is shown in Figure 2.
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Therefore, the channel attention mechanism significantly improves the classification
ability of the model by explicitly modeling the interdependencies between feature channels
and adaptively extracting the weights of different channels. This paper uses it in the feature
extraction backbone network, attempting to improve its ability to extract image features.

2.3. Proposed Model

The proposed model is an improvement on YOLOv4 based on the dataset features,
and this study took three main steps to optimize the network model. In this section, we will
describe how to customize the network model structure and use it for detection algorithms.
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First, since there are detection targets, such as small fish and shrimp, in the dataset
that are much smaller than the image background, we adjust the grid size of the last
convolutional layer. The grid is adjusted from the original 7 × 7 grid to an improved
9 × 9 grid, which enables detection of smaller underwater creatures.

Second, in order to use YOLOv4 on the Brackish dataset, we adjusted the number of
filters in the last convolutional layer. The filters here represent the depth of the output layer,
which is closely related to the number of categories in the dataset. The calculation of the
number of filters is shown in Equation (4):

N f ilters = (Ncls + Ncoords + 1)× Nmask (4)

where Ncls is the number of detected object categories, Ncoords is the number of bounding
box coordinates, and Nmask is the number of anchor indexes. In this study, there were
6 types of objects, 4 bounding box coordinates (x, y, w, h), and 3 anchor indexes, so the
number of filters was 33.

Finally, the channel attention mechanism is embedded in the backbone feature ex-
traction network to extract the weighted multi-scale effective features, thereby improving
the detection accuracy of the model. The improvement of the backbone feature extraction
network part is shown in Figure 3.
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3. Experiment and Analysis
3.1. Datasets

This paper adopted the Brackish dataset, a publicly available underwater dataset that
contains 89 video clips captured in temperate seawater with varying visibility [22]. The
provider used a bounding box annotation tool [23] to manually annotate 14,518 frames,
resulting in 25,613 annotations.

The dataset was categorized into six classes of underwater creatures: fish, small fish,
starfish, shrimp, jellyfish, and crabs. Due to the turbid water quality and the relatively
similar visual appearance of various fish, it is difficult for relevant experts to distinguish the
specific species of fish from the video, so these kinds of fish were roughly divided into fish
and small fish. After converting the video into 15,084 pictures by frame, it was randomly
divided into training, validation, and test data according to the proportion of 80%, 10% and
10%. The number of species included in each dataset is shown in Table 1.
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Table 1. The details of partitioning the dataset.

Species Train Val Test Total

Fish 2622 307 312 3241
Small_fish 7722 1024 809 9555

Crabs 415 76 57 548
Shrimp 5206 665 667 6538
Jellyfish 520 55 62 637
Starfish 4100 501 492 5093

Total 20,585 2628 2399 25,612

3.2. Experimental Details

To fit the input channel of YOLOv4, the image resolution was rescaled to 416 × 416.
At the same time, in order to prevent the occurrence of detection overfitting, data augmen-
tation methods were also used for the training set, including image flipping, scaling, and
random erasing.

In this paper, for the backbone network CSPDarkNet53, the pre-training model of the
classification task under the Image-Net large dataset was used to speed up the network
convergence speed. According to the experimental conclusion of a previous study [17], it is
pointed out that the training stage was divided into two stages in order to obtain better
results. The first stage froze the network parameters of the backbone network CSPDark-
Net53 and adjusted the parameters of the non-backbone network, and the optimizer used
Adam. This stage is a coarse adjustment stage, and the maximum learning rate should
be set to be larger than the second stage, i.e., set to 0.001. Since only the non-backbone
network parameters were adjusted, the Batch size was set to 32. The second stage released
the network parameters of the backbone network CSPDarkNet53, and the optimizer used
Adam; this stage is the fine-tuning stage. The maximum learning rate was set to be smaller
than the first stage, i.e., set to 0.0001, and the Batch size was based on the performance of
the graphics card, since the entire network parameters needed to be adjusted, so it was set
to 8. Each epoch was trained for 50 epochs.

The experiments in this paper were all performed on a high-performance platform
equipped with NVIDIA GeForce RTX 3090 GPU, using 64-bit Windows 10 operating system,
AMD 5900X CPU, and 16 GB of memory. The programming language used for training
and testing was Python, the deep learning framework was Pytorch, and it took about 12 h
to train the improved model.

3.3. Results and Analysis

To evaluate the algorithm proposed in this paper, we used the average precision (AP)
of the trained model to detect underwater creatures as a reference for comparison. The
accuracy rate (P) and recall rate (R) of object recognition are used as the coordinate axes,
and the closed area enclosed by the corresponding curve is the AP value. P, R, and AP are
calculated by Equations (5)–(7):

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

AP =

1∫
0

P(R)dR (7)

where TP refers to the positive samples predicted by the model to be positive, and TN
refers to the negative samples predicted to be negative by the model. FP refers to the
negative samples predicted by the model to be positive, and FN refers to the positive
samples predicted to be negative by the model.
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The primary metric is the AP@[IoU = 0.5 & 0.75]. When the IoU threshold between
the bounding box and the ground truth is 0.75, it is denoted AP75; when the IoU threshold
is 0.5, it is denoted AP50, which is the primary metric of another large object detection
dataset, PASCAL VOC [24]. The original model and the model proposed in this paper were
evaluated on the Brackish dataset using these two metrics (see Table 2).

Table 2. Results of the models evaluated on the Brackish categories and compared by AP75 and
AP50 metrics.

Model Categories AP75 AP50

YOLOv2 fine-tuned [22] Brackish 0.0984 0.3110
YOLOv3 fine-tuned [22] Brackish 0.3893 0.8372

YOLOv4 Brackish 0.5293 0.9739
ours Brackish 0.5796 0.9761

In order to further verify the validity of the model in the Brackish dataset, this paper
also evaluated improvements in the detection accuracy of various organisms in the dataset
after the model was improved, as shown in Figure 4. It can be seen that the improvement
in the detection accuracy for the starfish class was significantly higher than that of other
classes, proving that the proposed model is better for the detection of objects with unique
shapes, and that which are almost stationary.
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The final results show that the improved model proposed in this paper has great po-
tential in underwater biological detection. Compared with the original YOLOv4 algorithm,
the improved model detection accuracy AP75 was improved by 5.03%. In addition, the
detection rate of the improved network structure for video reached 15fps, and each image
took about 0.049 s, which also proves its real-time performance. Figure 5 shows the results
of the proposed method for the detection of six organisms under water.
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4. Conclusions

Based on the excellent detection accuracy and speed advantages of YOLOv4, this
paper adopted the object detection architecture for real-time underwater biological de-
tection. At the same time, the network model was optimized, and a channel attention
mechanism was embedded in the backbone feature extraction network. This enabled the
algorithm to weigh the feature image channels of different types of underwater creatures in
order to achieve more accurate automatic detection and classification, which is conducive
to the monitoring of fishing activities and the effective protection of marine biological
environments. The experimental results show the performance of the algorithm in terms
of accuracy, robustness, and real-time performance. YOLOv4 combined with the channel
attention mechanism achieved a higher accuracy while meeting the real-time requirements.
In the future, further research will be conducted on deep neural network detection models
with higher accuracy, faster speed, and lower computational cost.
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