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Abstract: A simple and computationally efficient method is presented for creating a high-resolution
regional (child) model nested within a coarse-resolution, good-quality data-assimilating (parent)
model. The method, named Nesting with Downscaling and Data Assimilation (NDA), reduces bias
and root mean square errors (RMSE) of the child model and does not allow the child model to drift
from reality. Usually coarser resolution models, e.g., global scale, are used to provide boundary
conditions for the nested child model. The basic idea of the NDA method is to use a complete 3D
set of output data from the parent model using a process which is similar to data assimilation of
observations into an ocean model. In this way, the child model is physically aware of observations
via the parent model. The method allows for avoiding a complex process of assimilating the same
observations which were already assimilated into the parent model. The NDA method is illustrated
in several simple 2D synthetic cases where the true solution is known. The NDA method reduces the
child model bias to the same level as in the parent model and reduces the RMSE, typically by a factor
of two to five, occasionally more.

Keywords: ocean modelling; data assimilation; oceanography

1. Introduction

Fine-resolution ocean modelling is becoming a ubiquitous practice to resolve impor-
tant mesoscale and submesoscale features such as eddies, fronts, boundary currents, and
localised upwellings, which play important roles in ocean dynamics (e.g., [1–4]). These lo-
calised models can be run by relatively small groups due to the availability of good-quality
ocean models such as ROMS or NEMO to the wider oceanographic community [5,6]. Local
fine-resolution models require initial and boundary conditions that can be obtained from
good-quality but coarser resolution (parent) models run by major ocean modelling centres
such as Mercator Ocean International (France) or Met Office (UK) via Copernicus Marine
Service [7]. However, if only the boundary data are used for running the nested model
(hereafter called the child model), the bulk of the data produced the parent model within
the child model domain is not used for improvement of the child model. Therefore, most
of the parent outputs which are constantly validated and kept on track by assimilating
observations are lost for the child model. Philosophically, it seems promising to use more
data from the good-quality parent to improve the child model. The method designed in
this study and named Nesting with Downscaling and Data Assimilation (NDA) is focussed
on extending the link between the parent and child models.

Because of inevitable approximations in the equations, numerical schemes, param-
eterisation, and uncertainties in input data, ocean models tend to drift from reality. A
process called data assimilation (hereafter DA) is often regarded as a way of keeping a
model ‘on the tracks’ by constantly correcting it with fresh observations [8–10]. Many
modern DA methods originated from the methods of objective analysis [9,11]. While the
DA problem can be formulated precisely, finding a solution to it is challenging [12–14].

J. Mar. Sci. Eng. 2022, 10, 432. https://doi.org/10.3390/jmse10030432 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10030432
https://doi.org/10.3390/jmse10030432
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://doi.org/10.3390/jmse10030432
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10030432?type=check_update&version=1


J. Mar. Sci. Eng. 2022, 10, 432 2 of 25

Complex software systems have been developed for operational data assimilation, such as
in [15–17].

A critical element of modern variational DA is the estimate of the model and observa-
tions error covariance matrices (ECMs). The true state of the ocean is unknown; therefore,
ECMs are estimated by some proxy [18]. Various methods use different assumptions and
simplifications in order to make the process feasible, e.g., [19,20]. Despite data assimilation
being currently ubiquitous in geosciences, it has so far remained a topic mostly reserved to
experts [21,22]

The purpose of this paper is to develop a simple and computationally efficient method
of implementing DA for a high-resolution child model that is nested into a data-assimilating
parent model. The method is mainly intended for smaller academic and operational centres
that do not have resources of the same scale as the major ocean forecasting institutions.
An example is a regional forecasting group that relies on downloading the outputs from
global/basin-scale models available from a reputable ocean forecasting service such as EU
CMEMS but also prefers to tune their local high-resolution models.

The basic idea suggested in this study is to assimilate data from a good-quality but
coarser resolution parent model instead of using observations. The parent model is assumed
to be data-assimilating itself, ensuring that the observations, however indirectly, will not
allow the fine-resolution child model to deviate significantly from the true state of the
sea. In other words, the coarse model can be regarded as a mean for incorporating a
sparse number of observations into a fine-resolution model in a way that honours the laws
of physics.

While in principle several existing DA methods could be adapted to assimilate data
from the parent into the child model, this study uses the new NDA method. This method
combines, from time to time, the outputs from the child model forecast with the forecast
from the data-assimilating parent model. This combination creates an improved representa-
tion of the ocean state called the analysis, which is used, together with boundary conditions
from the parent model, to generate the next high-resolution forecast.

The paper is arranged as follows. The NDA algorithm is described in the Data and
Methods section. This section also describes the synthetic idealised case where the true
solution is known and is used to illustrate the method. The Results section presents three
configurations of synthetic cases for demonstrating the performance of the NDA method
when the parent model is ‘perfect’, i.e., its only error is the representativeness error [23] due
to insufficient resolution. The three configurations are a front, a single eddy, and multiple
eddies. Each of these examples was tested for different sizes of the field structures and
error parameters of the child model. The section also presents results when the parent
model is not ‘perfect’ but produces some spatially correlated and uncorrelated errors. The
strengths and limitations of the NDA method are discussed in the final section of the paper
in comparison with the commonly used combination of Hollingsworth–Lönnberg and
variational DA (VAR) methods [24,25].

2. Materials and Methods

This section presents the algorithm used for Nesting with Downscaling and Data
Assimilation and describes a number of simple synthetic illustrative examples which are
processed using this method in the subsequent section. The NDA method consists of two
steps. The first step uses stochastic–deterministic downscaling [26] of the parent model
forecast onto the child model grid. The second step combines, using the same philosophy
of variational data assimilation, this downscaled forecast with the forecast generated by
the child model.

In general, the algorithm detailed below is applicable when the vectors represent-
ing the condition of the ocean are composed of a number of state variables (e.g., tem-
perature, salinity, pollution concentration, etc.) and are discretised in a 3D domain.
For example, the vector of true state of the ocean x can take the form x = {xi} =
{T1, . . . TN , S1, . . . SN , C1, . . . CN} where Ti, Si, Ci are the temperature, salinity, and con-
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centration of a chemical, and i = 1, . . . N are indices for the N nodes in the child model
domain. In the case when x represents multiple variables, the method can take into account
cross-correlations between different state variables. When the state vectors represent a
3D field, the covariances along the vertical axis are also taken into account. In a simpler
approach, the method can be applied to only one variable at a time and layer-by-layer. The
method itself is not restricted by an assumption of isotropy; however, this assumption is
used in the illustrative examples. For illustration purposes, the simple synthetic cases are
all 2D and are related to one state variable. In these illustrative examples, a layer-by-layer
data assimilation is presented as the simplest and most practical variant.

2.1. The NDA Algorithm

The proposed algorithm is designed for assimilating data from an ocean model of a
coarser resolution parent model into a finer resolution child model. The algorithm should
be used at each time point when the analysis state for the child model is generated as an
initial state for the next forecast.

A common approach to data assimilation into an ocean (or atmospheric) model is
based on a variational principle, i.e., on minimising the cost function J given in Equation (1):

J(x) =
(

x− xb
)T

B−1
(

x− xb
)
+ (y− H(x))TR−1(y− H(x)), (1)

where x is the (unknown) vector which estimates the true state of the ocean, xb is the model
forecast before data assimilation, y is the vector of observed values, H is the operator which
projects data from the model grid onto the locations of observations, and B and R are
the forecast and observations error covariance matrices, respectively. The superscripts ‘T’
and ‘−1’ denote the transposed and inverted matrices, respectively (see [19,22,23,25] for
more detail).

The value of x = xa that minimises the cost function J is called the ‘analysis’ and it is
closest in an RMS (root mean square) sense to the true state xt [23]. This approach works
well for a relatively small number of data. When the number of observations and model
grid nodes is large, the matrices used in Equation (1) become very large and their inversion
causes significant computational problems. For example, Bouttier and Courtier [23] state
that ‘except in analysis problems of very small dimension (like one-dimensional retrievals),
it is impossible to compute exactly the least-squares analysis.’ Therefore, a number of
approximate methods are used to calculate the analysis state, and even this process is
computationally expensive.

This study is related to assimilation of large numbers of data (which take the place of
observations used in standard DA methods) from one model to another. For this purpose,
an alternative cost function JS is proposed, namely

JS
(
x′
)
=
(

x′ − x′b
)T

B−1
(

x′ − x′b
)
+
(
S′(y)− x′

)TR−1(S′(y)− x′
)
, (2)

where the primed variables denote deviations of the respective variable from their statistical
mean, which is defined in probability theory as the average of a theoretically infinite number
of measurements. It is denoted by the angle brackets in the following equations:

x′ = x− 〈x〉x′b = xb − 〈xb〉S′(y) = S(y)− 〈S(y)〉

Here, y is the vector of data from the parent model (instead of observations) and S is
the operator that projects (downscales) the data from the parent model onto the fine grid of
the child model.
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The best estimate x′ for the true value is denoted x′a and represents the fluctuation
of the analysis vector around its statistical mean. It is obtained by minimising the cost
function JS given in Equation (2), as follows:

∇JS = 0.

Taking into account that matrices B and R are symmetric so that BT = B and RT = R,
the following equation is obtained:

∇JS
(

x′a
)
=
(

x′a − x′b
)T(

B−1 + (B−1)
T
)
−
(
S′(y)− x′a

)T
(

R−1 + (R−1)
T
)
=

2
(

x′a − x′b
)T

B−1 − 2
(
S′(y)− x′a

)TR−1 = 0,
(3)

Taking the transpose of Equation (3) and dividing by two gives

B−1
(

x′a − x′b
)
= R−1

(
S′(y)− x′a

)
. (4)

Let us introduce the error correlation matrices CB and CR for the child and downscaled
parent models:

B = VBCB, R = VRCR

where VB, VR are diagonal matrices containing the respective error variances at each fine
grid node. The inverted diagonal matrices are also diagonal. Equation (4) then becomes

C−1
B V−1

B

(
x′a − x′b

)
= C−1

R V−1
R

(
S′(y)− x′a

)
. (5)

Most assimilation systems assume R to be diagonal (no spatial observation error
correlations) so that its inverse can be calculated quickly and easily. This approach is
obviously not appropriate in the case where the ’observation errors‘ coming from the
parent model have significant spatial correlations and the NDA method does not make this
assumption. Correlation matrices for both the child and downscaled parent models relate
to the same resolution and the same area of the ocean; hence, it is reasonable to use the
same correlation function, e.g., a Gaussian of a certain length scale and therefore the same
correlation matrix for both models, i.e., CB = CR = C. After premultiplying Equation (5)
by C and rearranging the terms:(

V−1
B + V−1

R

)
x′a = V−1

B x′b + V−1
R S′(y) (6)

or
x′a =

(
V−1

B + V−1
R

)−1
(V−1

B x′b + V−1
R S′(y)). (7)

Using the commutative properties of diagonal matrices and the following identity(
V−1

B + V−1
R

)−1
= VR(VB + VR)

−1VB, (8)

the solution for the analysis state given by Equation (7) can be rewritten as

x′a =
(

V−1
B + V−1

R

)−1
(V−1

B x′b + V−1
R S′(y)) =

VR(VB + VR)
−1x′b + VB(VB + VR)

−1S′(y).
(9)

Equation (9) can be interpreted as a zero-dimensional Kalman gain formula applied
to the fluctuations of state variables in the parent and child models at each fine grid node
independently. The term ‘zero-dimensional’ reflects the fact that in this case, the matrices
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used in the Kalman gain formula have the size 1× 1, i.e., are reduced to a scalar. For a
single x′i

a element of the state vector x′, Equation (9) gives

x′i
a
=

VRii
VRii + VBii

x′i
b
+

VBii
VRii + VBii

S′(y)i. (10)

where x′i
b and S(y)′i are the corresponding values of the vectors x′b and S′(y) at the same

grid node i.
For the S operator, which downscales the fluctuations of the field variable from the

coarse to the fine grid, we use the stochastic–deterministic downscaling (SDD) method
developed in [26]. The spatial error correlation matrix C is not explicitly included in
Equations (9) and (10), but it is used at the downscaling stage of data assimilation, hence
the error covariances between data at the parent model grid are implicitly present in the
operator S. This step represents a major difference from standard methodology where the
observation errors are usually considered to be uncorrelated (e.g., [23,25]), and therefore all
non-diagonal elements in the matrix CR are ignored.

The diagonal values VB,ii and VR,ii represent the variance of forecasting errors in
child and parent models, respectively, and in principle they may be computed in any
way designed to compute matrix B in practical implementations applied for assimilation
of observational data, such as the NMC [27] or the Canadian [28]. For consistency, the
implementation of the NDA method presented in this paper calculates values VB,ii and
VR,ii for the DA step in a similar way as was used for the first step, i.e., SDD downscaling,
see [26] for details. The SDD and therefore the implementation of NDA given below
requires the knowledge of the ensemble statistical means and variances at each grid node.
By the usual assumption of local (i.e., in a small 2D or 3D domain around each grid node)
statistical homogeneity, the means 〈xb〉i and 〈S(y)〉i as well as the variances VB,ii and VR,ii
are estimated using the ergodic hypothesis, i.e., by spatial averaging over a small trial
domain around the node at the same time point. Generally, the NDA method can be
applied for both isotropic and anisotropic situations. In the latter case, the covariances
are calculated taking into account directions between the grid nodes in question. The trial
domain can be 3D, in which case both horizonal and vertical covariances are taken into
account, or 2D so that covariances are calculated layer-by-layer, such as in [29]. In the
examples below we use the trial domain in the form of a 2D area on of size 4L × 4L, where
L is the correlation length of C = CB = CR. As the values VR,ii and VB,ii are computed at
each grid node i separately, their values vary across the domain. The nodes that are masked
out due to coastline or bathymetry, are excluded from calculation of averages and variances
within the trial domain.

Equation (10) performs data assimilation on the fluctuations; however, the statistical
means for the parent and child model are, in a general case, different. The NDA method
should be applied to a good-quality parent model that has been debiased during its own
data assimilation cycle and therefore its statistical mean represents the true value as closely
as possible. Therefore, it is reasonable to replace the (potentially biased) statistical mean
from the child model with the statistical mean of the parent model.

This gives the final equation for calculation of the analysis state:

xa = VR(VB + VR)
−1x′b + VB(VB + VR)

−1S′(y) + 〈S(y)〉. (11)

Or, for an element of the state vector at a particular fine grid node i (i = 1 . . . N), where
N is the number of grid nodes in the child model:

xa
i =

VRii
VRii + VBii

x′bi +
VBii

VRii + VBii
S′(y)i + 〈S(y)〉i. (12)

To summarise, the NDA model-to-model data assimilation procedure includes two
steps. First, the parent model output is downscaled from the coarse grid onto the child
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model fine grid using the SDD method. The result is that at each fine grid node there are
two values of the same state variable. The best estimate of the true field is obtained at the
second step by combining these two values using a zero-dimensional Kalman filter. The
workflow diagram of the algorithm is shown in Figure 1.
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Figure 1. Workflow diagram for the NDA method showing one data assimilation cycle.

This algorithm is computationally efficient, as it does not require inversion of large
matrices or solving a very large system of algebraic equations at the second step, which is
required if using the variational methods based on Equation (1). The inversion of correlation
matrices to obtain the weight coefficients for the SDD step can be done only once at the
beginning of the model run, as these coefficients do not depend on time. Another benefit
of the described method is that the correlation matrices for the downscaling of the parent
model have a relatively small rank and condition number, and their inverse counterparts
can be calculated without the need for any type of matrix regularisation, just using double
precision for the computer representation of the variables. This is because the SDD method
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assumes local homogeneity of statistical properties of the field variable. More details on
the philosophy and the algorithm of the SDD method can be found in Shapiro et al. [26].

2.2. Data for the Synthetic Idealised Case

In this subsection, the NDA algorithm is illustrated in a synthetic idealised case where
the true solution is known. The task is to generate an analysis state using the fine-resolution
(child) model forecast and the output from a good-quality data-assimilating parent coarse
model, which is used instead of actual observations. It should be noted that, even if both
coarse and fine models were perfect, there would be some unavoidable discrepancies, or
representativeness errors, between the two models due to the different meshes they use [23].
One of the problems in data assimilation is that the true solution is unknown and therefore
the error covariance matrices required to minimise the cost function must be estimated
based on various assumptions, e.g., see the review paper by Bannister [18]. Comparison
with observations has its own drawbacks as observations are not perfect. The testing of a
DA method in a simplified synthetic setting when the true solution is known was used in
previous studies and showed its advantages, e.g., [22].

In this study, the parent model output is simulated by sampling the true solution
(a prescribed function) on the parent model coarse grid, to which either correlated or
uncorrelated error might be added. The fine-resolution forecast is simulated by sampling
the same true solution on the fine grid, adding random noise, bias, and some spatial shift.
Whilst generally the NDA method calculates the bias locally so it can vary across the
domain (Equation (12)). In the following examples, the bias was applied uniformly to keep
the illustrative example simple. The spatial shift, a type of spatially correlated error, is
added to simulate the ‘double penalty effect’, which is common to fine-resolution models,
e.g., [29].

2.3. Case Studies

Three distinct examples are considered, all relate to data assimilation of one field
variable at a single computational surface, whether it be a geopotential (‘horizontal’) level,
such as used in Bell et al. [10], or a curved level such as used in sigma [30] or multienvelope
vertical coordinate system [31]. It is common practice to perform the data assimilation level-
by-level using a 2D approach at each level, where matrix B only includes spatial correlations
along the level surface [32]. Occasionally, vertical correlations are used in a preprocessing
step for the DA, where observations are interpolated into the model levels [10]. Whilst the
NDA method can be applied in 3D, here it is applied to 2D fields for simplicity.

The properties of the NDA method are analysed for (i) an ocean front, (ii) an isolated
isotropic eddy, and (iii) a system of densely packed anisotropic mesoscale eddies. In all
examples the parent model has resolution of ∆xp = ∆yp = 10 km, and the child model has
resolution of ∆xc = ∆yc = 2.5 km and a correlation length of L = 17 km. The trial domain
used to calculate local spatial averages and variances of fluctuations was a square of 4L× 4L
km2 centred at each node. The correlation Gaussian function has a value of less than 2%
beyond the distance of 2L and its contribution can be safely neglected for all the examples
below. These dimensions were chosen to simulate typical ocean structures. However, it
must be pointed out that classification of ocean features as mesoscale or submesoscale
are relative to the local Rossby radius. For example, the same eddy of a radius of 12 km
could be classed as mesoscale if the Rossby radius is, for example, 10 km, as in some shelf
or high latitude seas, and as submesoscale if the Rossby radius is, for example, 40 km,
as in the middle of open ocean. The NDA method itself is not specific to whether the
features are mesoscale, large-scale, or submesoscale; however, the quality of the first step
(downscaling) depends on the ratios between ∆xp, ∆yp, ∆xc, and ∆yc, and the Rossby
radius as discussed in [26].
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2.3.1. Ocean Front

An ocean front is a narrow area separating two water masses, and it has significant
impact on horizontal and vertical exchanges, e.g., [33]. This example is set in a square
domain of 200× 200 km2, and the front extends in the meridional (y) direction at the centre
of the domain.

The true solution is set to be in the form

F = A tan h
(

x
Lx

)
, (13)

where A is the amplitude of the front and Lx is its half-width. For this exercise, A = 1 and
Lx ranges between 6 and 40 km. The coordinates x and y are referenced to the centre of the
domain in the zonal and meridional directions, respectively.

2.3.2. Isolated Mesoscale Eddy

Mesoscale eddies are a ubiquitous feature of oceans worldwide. Originally, they were
thought to exist only next to jet currents such as the Gulf Stream; however, since the 1960s–
1970s, it became clear that mesoscale eddies exist nearly anywhere in the ocean. Most of
the kinetic energy of the ocean is contained in mesoscale eddies [34]. In this example, an
isotropic eddy is placed in the centre of a domain of 200× 200 km2 and the true solution is
set to be in the form

F = A exp

{
−
[(

x
Le

)2
+

(
y
Le

)2
]}

, (14)

where A is the amplitude of the eddy and Le is its radius. For this exercise A = 1 and Le
ranges between 6 and 46 km.

2.3.3. Multiple Mesoscale Eddies

For this example, let us consider a square domain 1000× 1000 km2 and take the true
solution for a variable F in the form of multiple anisotropic mesoscale eddies

F = sin
(

πx
Lx

)
sin
(

πy
Ly

)
, (15)

where Lx is the eddy half-size in the x-direction, and Ly = 105 km is the eddy half-size
in the y-direction. Let us consider the range of eddy sizes Lx between 12 and 24 km. At
Lx = 24 km the parent model can be classed as eddy-permitting, as it has 2.4 grid points
over the smaller ‘diameter’ of the eddy. At Lx = 12 km, the parent model is not even
eddy-permitting but only showing an embryonic representation of the eddy. The child
fine-resolution model is eddy resolving for any Lx within the chosen range of eddy sizes.

3. Results

The NDA data assimilation method detailed in the subsection algorithm above was
applied to the simulated child model forecast in order to create analysis which is used as an
initial condition for the next forecasting cycle. The results for three examples are presented
in this section when the parent model is error-free: an ocean front, an isolated single eddy,
and a set of multiple eddies. An additional example is considered when the parent model
has some errors (either correlated or uncorrelated, extra to the representativeness errors)
that are not eliminated by its own DA procedure.

3.1. Ocean Front

This example uses Equation (13) for the representation of an ocean front in the merid-
ional direction. Figure 2 shows a map of the true solution F for a sharp ocean front at
Lx = 6 km (Figure 2a), its representation by the parent model (Figure 2b), by the child
model forecast before data assimilation (Figure 2c), and as transects across the front. The
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following parameters of added errors are used to simulate the child model forecast before
data assimilation: normally distributed noise with standard deviation 0.15, positive bias of
0.3, and shift of the field by 4 km to the west.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 9 of 25 
 

 

  

(a) (b) 

  

(c) (d) 

Figure 2. Ocean front of width 𝐿𝑥 = 6 km. (a) True field on the fine mesh, (b) parent model ouput, 

(c) simulated child model before data assimilation, (d) transects of the previous fields along the line 

at 𝑦 = 100 km. 

Even at a resolution of 10 km that does not resolve the structure of the front (half-

width of 6 km), the parent model gives a reasonable representation of areas outside the 

front where the changes in the state variable are smooth (Figure 2b). However, as ex-

pected, the width of the front is exaggerated due to insufficient resolution. The child 

model forecast shown in Figure 2c is noisy and clearly shifted westward relative to the 

true state. Figure 3 shows the results of assimilation of output from the parent model using 

the NDA method. The analysis state (after assimilation) removes the spatial shift and bias 

and reduces the noise even for such a sharp front where the resolution of the parent model 

is inadequate. For comparison, Figure 4 shows the improvement provided by the NDA 

assimilation for fronts of different sharpness, with 𝐿𝑥 = 10, 20, 30, and 40 km. In all exam-

ples, the errors in non-assimilating child model forecasts are simulated by adding bias = 

0.3, random normally distributed noise with standard deviation STD = 0.15, and spatial 

shift of 4 km to the west. 

Figure 2. Ocean front of width Lx = 6 km. (a) True field on the fine mesh, (b) parent model ouput,
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Even at a resolution of 10 km that does not resolve the structure of the front (half-width
of 6 km), the parent model gives a reasonable representation of areas outside the front
where the changes in the state variable are smooth (Figure 2b). However, as expected, the
width of the front is exaggerated due to insufficient resolution. The child model forecast
shown in Figure 2c is noisy and clearly shifted westward relative to the true state. Figure 3
shows the results of assimilation of output from the parent model using the NDA method.
The analysis state (after assimilation) removes the spatial shift and bias and reduces the
noise even for such a sharp front where the resolution of the parent model is inadequate.
For comparison, Figure 4 shows the improvement provided by the NDA assimilation for
fronts of different sharpness, with Lx = 10, 20, 30, and 40 km. In all examples, the errors
in non-assimilating child model forecasts are simulated by adding bias = 0.3, random
normally distributed noise with standard deviation STD = 0.15, and spatial shift of 4 km to
the west.
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Figure 3. Assimilation results for the ocean front shown in Figure 2: (a) child model after NDA
assimilation, (b) difference between the assimilated model and the true field, (c) difference between
the non-assimilated and assimilated child models, (d) zonal transects of the previous fields along a
line at y = 100 km.
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more than five times lower than before data assimilation, as shown by the red line in Fig-
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Similar properties are demonstrated in the example of a single eddy. 

3.2. Single Eddy 

Figure 6 shows a map of the true solution 𝐹 for an axisymmetric mesoscale eddy 

with radius 𝐿𝑒 = 16 km, its representation by the parent coarse model and by the child 

model before data assimilation. It also shows transects across the eddy centre. The param-

eters of added errors are the same as in the previous example: normally distributed noise 

Figure 4. Results of NDA assimilation for fronts of different sharpness: (a) Lx = 10 km, (b) km,
(c) Lx = 30 km, (d) Lx = 40 km. The curves present data for the true field (black), non-assimilated
noisy child model (red) and child model after NDA assimilation (blue).

Comparison of panels in Figures 4a–d and 3d shows that the improvement due to data
assimilation from the parent model is achieved both for sharp fronts not resolved by the
parent model and for smooth fronts.

Figure 5 shows how the bias and RMSE of the child model against the true state change
with the sharpness of the front before and after data assimilation.
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Figure 5. Plots of bias (a) and RMSE (b) for the ocean front case with different front sharpness
for non-assimilated (black) and assimilated (blue) child models. The red line shows the ratio of
assimilated to non-assimilated RMSE.

After applying the NDA method, the bias is practically removed and the remaining
values are on the order of 5 × 10−3 or less. The RMSE calculated against the true state
is more than five times lower than before data assimilation, as shown by the red line in
Figure 5b.

Similar properties are demonstrated in the example of a single eddy.

3.2. Single Eddy

Figure 6 shows a map of the true solution F for an axisymmetric mesoscale eddy with
radius Le = 16 km, its representation by the parent coarse model and by the child model
before data assimilation. It also shows transects across the eddy centre. The parameters of
added errors are the same as in the previous example: normally distributed noise with a
standard deviation of 0.15, positive bias of 0.3, and shift of the field by 4 km to the west.
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Figure 6. Results of NDA assimilation for a single isolated eddy: (a) true field sampled on the
fine grid, (b) child model before data assimilation, (c) child model after NDA data assimilation,
(d) transects showing the same fields as in (a–c) in comparison with the parent model.

The NDA method reduces errors nearly to zero outside of the eddy and greatly reduces
them inside the eddy (Figure 6b,d). The bias is reduced from 0.3 before data assimilation to
0.002 or less after assimilation. The reduction in RMSE for various values of eddy radius
for the range 6 to 46 km is shown in Figure 7.
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For illustration purposes, the spatial distributions of the variances VB,ii and VR,ii for the
case of a single eddy with Lx = 16 km are presented in Figure 8. The following parameters
are used for the child model: STD of noise = 0.15, bias = 0.3, and spatial shift = 4 km. The
non-uniform colour in Figure 8b is a representation of noise in the child model output
before data assimilation.
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Figure 8. Spatial distribution of the diagonal elements VB,ii (a) and VR,ii (b) in the example of a single
eddy of a radius of 16 km.

The next example illustrates the qualities of the NDA method for a domain 1000× 1000 km2

packed with anisotropic eddies.

3.3. Multiple Eddies

Figure 9 shows maps of the field variable F from the parent and child models with
the following parameters of added errors to simulate child model forecast before data
assimilation: normally distributed noise with a standard deviation of 0.15, positive bias of
0.3, and spatial shift of the field by 4 km to the west.
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Figure 11 shows the results of data assimilation (analysis) and a map of differences 

between the assimilated child model and true field. 

Figure 9. Maps of the field variable before data assimilation for multiple eddy case with Lx = 12 km:
(a) true field on fine grid, (b) true field on parent grid, (c) non-assimilated model, (d) difference
between non-assimilated model and true field.

Figure 9b shows that the parent model generally underestimates the true field shown
in Figure 9a due to representativity errors. The difference between the non-assimilated child
model forecast and true state shown in Figure 9d is substantial, showing an RMSE = 0.61,
which is about 30% of the range of the true field. The anatomy of the differences between
the true state, and outputs from parent (coarse), and non-assimilated child models on a
zoomed-in section of the zonal transect are shown in Figure 10. The largest errors produced
by the non-assimilated model are due to spatial shift and bias. The errors produced by
the parent model are exclusively due its insufficient resolution (i.e., are representativeness
errors), as we assume that otherwise the parent model is perfect.
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Figure 10. Transects of true field on the fine grid (black) and outputs from the parent (dashed brown)
and non-assimilated child (red) models.

The NDA method presented in the previous section is then applied to assimilate the
data from the parent model into child model forecast.

Figure 11 shows the results of data assimilation (analysis) and a map of differences
between the assimilated child model and true field.
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and levels of various sources of errors in the non-assimilated child model forecast noise, 

bias, and shift. 

Figure 11. Maps for the multiple eddies case with width Lx = 12 km: (a) NDA assimilated model,
(b) difference between NDA assimilated model and true field. Parameters of the non-assimilated
model are the same as in Figures 9 and 10.

The details of the improvement achieved by NDA data assimilation on a zoomed-in
zonal transect are shown in Figure 12.
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Figure 12. Transects at y = 40 km for the multiple eddies case with Lx = 12 km. (a) Transects of NDA
model output (blue), true solution (black), parent model (dashed dark red), and the non-assimilated
child model (red); (b) differences between assimilated (blue) and non-assimilated (red) models and
the true solution.

Data assimilation partially reduces the spatial shift which simulated the double penalty
effect common to fine-resolution models. The reduction in spatial shift is due to the
properties of the SDD component of the NDA method, see [26] for details. The significant
reduction in the bias is due to the assimilation part of the NDA algorithm; however, it
also causes some reduction in the amplitudes of the eddies (Figure 12a). The remaining
errors shown in Figure 12b are mainly due to incompletely corrected spatial shift and
random noise in the assimilated model. The RMSE of the assimilated model is lower at
0.25 vs. a non-assimilated value of 0.61, and the bias is reduced by orders of magnitude
from 0.3 to −1.3 10−5.

Figure 13 shows the results of the sensitivity analysis with different sizes of eddies
and levels of various sources of errors in the non-assimilated child model forecast noise,
bias, and shift.
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Figure 13. Ratio of RSME values of the child model relative to the true solution after and before
NDA data assimilation as a function of eddy radius in the zonal direction x. Ratios are calculated for
different combinations of errors generated by the child model: random noise (STD equal to either
zero or 0.15), spatial shift (zero or 4 km), and bias (zero or 0.3). Percentages are shown with respect to
the amplitude of the true signal. The first number in the legend shows the level of noise, the second
shows the bias, and the third one shows the spatial shift.

In this example, the NDA method works best when the only source of error is the
bias, which is removed nearly completely. The second-best results are achieved when
only random noise and bias are present but not the spatial shift. The RMSE ratio for cases
containing errors due to spatial shift grows slightly at larger eddy sizes. This is because
a relatively small shift of 4 km does not distort large eddies to the same extent as small
eddies even in the non-assimilated model. Generally, the curves in Figure 13 show that
after application of NDA data assimilation algorithm the RMSE is reduced by half or better.
Bias between the child and parent models is reduced by orders of magnitude. Assuming
that the parent data-assimilating model is unbiased, it means that the fine resolution model
becomes unbiased after application of NDA data assimilation process.

3.4. Effect of Errors in the Parent Model

The next example shows the quality of the NDA method when the parent model still
contains errors, even after its own data assimilation cycle. To investigate how these errors
affect the reduction in RMSE in the child model when the NDA data assimilation is applied,
we tested two settings. In the first example, a quite large random noise was added to the
parent model output with a standard deviation of 0.1, i.e., 10% of the signal. The results for
the ocean front and multiple eddies examples are shown in Figures 14 and 15.

The transect in Figure 14 shows that after NDA, the front is well represented with
small random noise even when the parent model is quite noisy. The improvement is up to
five-fold and is consistent across the range of front widths from 6 to 46 km. The second
example for the ocean front illustrates the efficiency of the NDA method when the parent
model has spatially correlated errors, namely a lateral shift of 1 km to the true parent model
(no random noise in this case). The simulated errors to the child model are the same as
specified in the Figure 14 caption. The improvements in the child model outputs after DA
follow: bias is reduced from 0.3365 to 0.0118 (approximately by a factor of 28) and RMSE is
reduced from 0.3778 to 0.0616 (approximately 6-fold).
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Figure 14. Ocean front case of Lx = 14 km, with noisy parent model (added noise STD = 0.1) and
noisy non-assimilated child model (added noise STD = 0.15, bias = 0.3 and shift of 4 km to the west).
(a) Transects at y = 100 km of assimilated (blue), non-assimilated (red) child models, and the true
field (black), (b) RMSE calculated for non-assimilated (black) and assimilated (blue) child models
and the ratio between them at different front steepness.
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Figure 15. Multiple eddy case of Lx = 14 km with noisy parent model (added noise STD = 0.1) and
noisy non-assimilated child model (added noise STD = 0.15, bias = 0.3, and shift of 4 km to the west).
(a) Transects at y = 100 km of true field (black), parent (dashed brown), assimilated (blue), and
non-assimilated (red) child models, (b) RMSE for different eddy sizes and the ratio between them.

In case of multiple eddies, the improvement is less dramatic; however, for eddy
diameters larger than 12 km, the RMSE is improved approximately by half (Figure 14).
For eddy sizes 10 km and less the improvement due to assimilation of the parent model
is limited, which is expected as such eddies are strongly distorted by the parent model of
only 10 km resolution.

3.5. Spectral Characteristics

The mechanism of improvement of fine model outputs by the NDA method can be seen
from the analysis of spectral characteristics of the downscaled parent model, fine model
forecast (before data assimilation) and analysis (after data assimilation) in Figure 16. The
bias represented by the peak at zero wavenumber is removed at the data assimilation step
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of NDA. Noise in the range below Nyquist wavenumber is reduced by melding the noisy
child model forecast with the clean parent model data. It should be noted that the SDD
downscaling honours the data of the parent model on the child nodes that coincide with a
coarse grid node. A small peak between the coarse and fine grid Nyquist wavenumbers
(outside of the scale in this figure) is an artefact created at the SDD step [26], as seen from
the spectrum of the downscaled field. Other than this peak, the downscaled field has much
lower level of noise than the child model forecast. Reduction in noise at wavenumbers
higher than the parent model Nyquist frequency is due to the low level of noise generated
at the downscaling step of the process. Figure 16 shows an efficient removal of bias in the
Fourier space. The amplitude of the signal peak is also slightly reduced after DA.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 18 of 25 
 

 

noise generated at the downscaling step of the process. Figure 16 shows an efficient re-

moval of bias in the Fourier space. The amplitude of the signal peak is also slightly re-

duced after DA. 

  

(a) (b) 

Figure 16. Amplitude spectra on a zonal transect at 𝑦 = 40 km for the example of multiple eddies 

of 𝐿𝑥 = 16 km. The STD of noise in the non-assimilated child model is 0.15, bias is 0.3, and the 

spatial shift is 4 km to the west. The spectra are calculated for the true field, the child model forecast 

(before assimilation), and analysis (after assimilation). (a) Spectra in the full range of wave numbers 

and (b) zoomed in area for low wave numbers. 

In real applications, there could be a potential mismatch between the bathymetry and 

coastlines in the fine and coarse models. For instance, some details such as small islands 

might be absent in the coarse mesh but present in the fine model, causing a mismatch 

between the land masks in fine and coarse models. This issue relates only to the first step 

of the NDA method, which performs the downscaling of the coarse model data onto the 

fine model grid, and this mismatch is natively resolved during the SDD downscaling [26]. 

As shown there, in the example of the coastal areas of the Red Sea, better resolution of the 

fine model results in higher vorticity/enstrophy values in the downscaled field compared 

to the parent coarse model, as shown in Figures 12–16 of that paper. The potential mis-

match of the land mask is not specific to the NDA method; the same issue may appear 

when assimilation is carried out using satellite imagery (i.e., observations) of different 

resolution than the fine model. After downscaling, at the DA stage the data from the par-

ent and child model are available exactly on the same (fine) grid with the same land mask, 

and the grid mismatch issue does not appear. 

3.6. Comparison with a ‘Standard’ Method 

The quality of the NDA method can be illustrated by comparison with existing data 

assimilation techniques applied to model-to-model data assimilation. Let us consider the 

combination of H–L [24] and variational method, which is considered to be the most com-

monly used technique for the estimation of the covariance matrices (e.g., [22,35]). There 

are several variants of this method; here, we applied the practical algorithm described in 

the textbook by Kalnay [25], which is named hereafter as the ‘standard’ method. The 

‘standard’ method consists of the following stages: calculate innovations (differences be-

tween observations and model) at each observational point, estimate the covariances be-

tween innovations at different locations, fit the best-fit curve (usually Gaussian) using all 

covariances except at zero distance, and estimate the model and observation error vari-

ances using the value where the best-fit curve intersects the 𝑟 = 0 vertical line on the co-

variance plot. In the practical implementations of this algorithm, the model and observa-

tion error variances are assumed spatially homogenous [25]. The model variances and the 

Figure 16. Amplitude spectra on a zonal transect at y = 40 km for the example of multiple eddies of
Lx = 16 km. The STD of noise in the non-assimilated child model is 0.15, bias is 0.3, and the spatial
shift is 4 km to the west. The spectra are calculated for the true field, the child model forecast (before
assimilation), and analysis (after assimilation). (a) Spectra in the full range of wave numbers and
(b) zoomed in area for low wave numbers.

In real applications, there could be a potential mismatch between the bathymetry and
coastlines in the fine and coarse models. For instance, some details such as small islands
might be absent in the coarse mesh but present in the fine model, causing a mismatch
between the land masks in fine and coarse models. This issue relates only to the first step of
the NDA method, which performs the downscaling of the coarse model data onto the fine
model grid, and this mismatch is natively resolved during the SDD downscaling [26]. As
shown there, in the example of the coastal areas of the Red Sea, better resolution of the fine
model results in higher vorticity/enstrophy values in the downscaled field compared to
the parent coarse model, as shown in Figures 12–16 of that paper. The potential mismatch
of the land mask is not specific to the NDA method; the same issue may appear when
assimilation is carried out using satellite imagery (i.e., observations) of different resolution
than the fine model. After downscaling, at the DA stage the data from the parent and child
model are available exactly on the same (fine) grid with the same land mask, and the grid
mismatch issue does not appear.

3.6. Comparison with a ‘Standard’ Method

The quality of the NDA method can be illustrated by comparison with existing data
assimilation techniques applied to model-to-model data assimilation. Let us consider
the combination of H–L [24] and variational method, which is considered to be the most
commonly used technique for the estimation of the covariance matrices (e.g., [22,35]). There
are several variants of this method; here, we applied the practical algorithm described
in the textbook by Kalnay [25], which is named hereafter as the ‘standard’ method. The
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‘standard’ method consists of the following stages: calculate innovations (differences
between observations and model) at each observational point, estimate the covariances
between innovations at different locations, fit the best-fit curve (usually Gaussian) using
all covariances except at zero distance, and estimate the model and observation error
variances using the value where the best-fit curve intersects the r = 0 vertical line on
the covariance plot. In the practical implementations of this algorithm, the model and
observation error variances are assumed spatially homogenous [25]. The model variances
and the best-fit curve are used to calculate the background error covariance B-matrix, and
the diagonal observational error covariance R-matrix. Because of spatial homogeneity,
all diagonal elements in B and R matrices are equal but different between matrices. The
H–L method requires combination of innovations into spatial bins, so that all innovations
within a certain bin are allocated to the same distance from the central point. In practice,
the covariances are calculated by averaging individual products of innovations over a
period of time instead of statistical averaging assuming the ergodic hypothesis [36]. In the
model-to-model DA approach, the role of observations is played by the output from the
parent data-assimilating model.

The cost functions for the ‘standard’, Equation (1), and the NDA, Equation (2) meth-
ods are different; in other words, both methods minimize their own cost functions. The
procedures for calculation of B and R matrices in the NDA and H–L methods are differ-
ent and therefore they produce different matrices. For NDA, both matrices represent the
covariances of the background error of the downscaled parent and child models, respec-
tively, and are calculated in a similar and consistent way as both data sets are from models.
Therefore, whilst both matrices have different error variances (diagonal elements), they
have the same spatial correlations. Conversely, in the ‘standard’ method, the matrices are
calculated using the H–L method that assumes that the observation errors have no spatial
correlation. This assumption can be valid for some types of observations, but it is not valid
for model-to-model DA.

For comparison between the NDA and ‘standard’ methods, we selected the multiple
eddies example (as in Results, Section 3.3). The covariances required to build the B and
R matrices for the standard method were estimated using H–L as follows. We generated
150 random realisations of the child model output, where each realisation was the sum of
the true field given by Equation (15) (Lx = 40 km and Ly = 105 km) and the following
errors: (i) random noise with standard deviation of 0.15, (ii) random spatial shift with a
standard deviation of 4 km, and (iii) constant positive bias of 0.3. Random components
were normally distributed with zero mean. Because of significantly larger computing
resources required by the ‘standard’ method compared to NDA, the ‘standard’ DA used
the reduced domain 300 × 300 km instead of 1000 × 1000 km for the NDA method. The
bins required for the H–L method were 1 km in size.

The innovations were computed as d = Hxb − y, where H is a subsampling matrix
operator composed only of ones and zeroes that select from the coarse model the node that
coincides in location with a child node. The ‘observations’ are located at all parent model
grid nodes. Following the ‘standard’ method, we used a simple isotropic Gaussian function
for the covariance of innovations at every parent model grid point x:

Cx(r) = a exp
(
−r2/D2

)
, (16)

where a and D are fitting parameters. The binned covariances and the fitting curve are
shown in Figure 17.



J. Mar. Sci. Eng. 2022, 10, 432 20 of 25
J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 20 of 25 
 

 

  

(a) (b) 

Figure 17. (a) Estimates of background and observational error covariances for multiple eddy field 

with 𝐿𝑥 = 40 km and 𝐿𝑦 = 105 km and the corresponding fitting curves. The error variances esti-

mated at 𝑟 = 0 are used as diagonal elements of the background matrix 𝐁 (equal to 0.031) and the 

‘observational’ matrix 𝐑 (equal to 0.016); (b) the zonal transect at 𝑦 = 40 km showing the true field 

(black line), parent model (dashed brown), child model noisy forecast before DA (red), analysis state 

after ’standard’ DA (dotted magenta), and analysis after NDA (blue). 

Despite the parent model is assumed ‘perfect’, i.e., it has no errors relative to the true 

field (apart from representativeness errors due to insufficient resolution), the H–L method 

gives it an error variance (diagonal elements of 𝐑) of 0.016. This is approximately 50% of 

the noisy child model error variance values (diagonal elements of 𝐁) of 0.031. The 𝐁 ma-

trix is then constructed using a variance equal to 0.031 (Figure 17a) and the Gaussian for-

mula Equation (16), and the diagonal matrix 𝐑 is built using a value for its variance of 

0.016.  

The 𝐁 and 𝐑 matrices were used to carry out the variational DA cycle to the simu-

lated child model forecast with the following parameters: multiple eddy field with 𝐿𝑥 =

12 km, 𝐿𝑦 = 105 km, random noise with STD = 0.15, bias = 0.3, and spatial shift = 4 km 

to the west. The analysis state is estimated using the following equations of the ‘standard’ 

method ([25], page 155) 

𝒙𝑎 = 𝒙𝑏 + 𝐖[𝒚 − 𝐻(𝒙𝑏)] = 𝒙𝑏 + 𝐖𝒅 

𝐖 = (𝐁−1 + 𝐇𝑇𝐑−1𝐇)−1𝐇𝑇𝐑−1. 
 

The transect in Figure 17b shows the analysis state for eddies with 𝐿𝑥 = 12 km and 

𝐿𝑦 = 105 km obtained by the ‘standard’ method together with the true solution, parent 

model output, noisy child model forecast (before DA), and, for comparison, the analysis 

state obtained by the NDA method. 

The bias and RMSE relative to the true solution for the child model forecast and the 

analysis state after ‘standard’ and NDA data assimilation process are shown in Table 1. 

Table 1. Errors in the child model outputs before and after data assimilation. 

 Forecast (before DA) ‘Standard’ DA NDA 

Bias 0.300 −0.0066 0.000 

RMSE 0.608 0.5268 0.250 

Figure 18 shows the map of the analysis state produced by the NDA and the standard 

methods. The errors are removed more efficiently in the areas of low values of field vari-

able 𝐹. 

Figure 17. (a) Estimates of background and observational error covariances for multiple eddy field
with Lx = 40 km and Ly = 105 km and the corresponding fitting curves. The error variances
estimated at r = 0 are used as diagonal elements of the background matrix B (equal to 0.031) and the
‘observational’ matrix R (equal to 0.016); (b) the zonal transect at y = 40 km showing the true field
(black line), parent model (dashed brown), child model noisy forecast before DA (red), analysis state
after ’standard’ DA (dotted magenta), and analysis after NDA (blue).

Despite the parent model is assumed ‘perfect’, i.e., it has no errors relative to the true
field (apart from representativeness errors due to insufficient resolution), the H–L method
gives it an error variance (diagonal elements of R) of 0.016. This is approximately 50% of
the noisy child model error variance values (diagonal elements of B) of 0.031. The B matrix
is then constructed using a variance equal to 0.031 (Figure 17a) and the Gaussian formula
Equation (16), and the diagonal matrix R is built using a value for its variance of 0.016.

The B and R matrices were used to carry out the variational DA cycle to the simulated
child model forecast with the following parameters: multiple eddy field with Lx = 12 km,
Ly = 105 km, random noise with STD = 0.15, bias = 0.3, and spatial shift = 4 km to
the west. The analysis state is estimated using the following equations of the ‘standard’
method ([25], p. 155)

xa = xb + W
[
y− H

(
xb
)]

= xb + WdW =
(

B−1 + HTR−1H
)−1

HTR−1.

The transect in Figure 17b shows the analysis state for eddies with Lx = 12 km and
Ly = 105 km obtained by the ‘standard’ method together with the true solution, parent
model output, noisy child model forecast (before DA), and, for comparison, the analysis
state obtained by the NDA method.

The bias and RMSE relative to the true solution for the child model forecast and the
analysis state after ‘standard’ and NDA data assimilation process are shown in Table 1.

Table 1. Errors in the child model outputs before and after data assimilation.

Forecast (before DA) ‘Standard’ DA NDA

Bias 0.300 −0.0066 0.000

RMSE 0.608 0.5268 0.250

Figure 18 shows the map of the analysis state produced by the NDA and the standard
methods. The errors are removed more efficiently in the areas of low values of field
variable F.
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Figure 18. The child model output after DA using (a) the ‘standard’ method and (b) the data
assimilation with stochastic–deterministic downscaling (NDA). The NDA produces less noise.

4. Discussion

The examples presented show the data assimilation cycle using the NDA method
when the data used for assimilation are not coming from observation as in the common
assimilation methods but from a coarser parent model. The examples relate to a synthetic
situation when the true values of the state variable are known. The forecast by the fine-
resolution child model is simulated by sampling the true field on the model’s fine grid
and adding various sources of correlated and uncorrelated errors—random noise, bias,
and spatial shift. The output from the coarser parent model is regarded as computer
generated ’observations’ and is simulated by sampling the true field on the coarser grid to
which random noise can be added. In practice, the parent model is assumed to be a good-
quality, dynamic ocean model that properly assimilates observational data. Therefore, the
actual field measurements are used in the NDA method indirectly; instead of assimilating
observations, the child model assimilates data from the coarse model, which in turn
assimilates data from observations. Therefore, the child and parent models are double-
linked, the parent model repeatedly provides to the child model: (i) 2D boundary conditions
for creating a forecast and (ii) 3D data to improve the forecast and create the starting point
for the next forecast.

The NDA is a two-step process. The first step of the NDA method is the application of
stochastic–deterministic downscaling presented in [26]. As a result, at each fine grid point
there are two generally different values of the field variable. The second step is to combine
these values separately at each grid point using a suitable data assimilation method. In this
paper, a modified cost function is used to obtain the best possible estimate of the analysis
state. This approach leads to the use of a zero-dimensional Kalman, similar to what has
been done in atmospheric chemistry [32].

The contribution of the first (SDD) and second (DA) steps to the improvement of
RMSE and bias depends on a number of factors, such as the ratio of model resolution to the
size of the feature in question, level of noise, and general quality of parent and child models.
As the parent model in the examples considered above is assumed to be unbiased after its
own DA procedure, it does not generate any bias after the downscaling step. By design of
the DA step, the zero bias from the first step is carried forward to the final analysis state.
The SDD downscaling can produce good results on its own, even without the need for
running a fine-scale numerical model, examples of this are presented in [26]. Therefore, in
case the child model has large errors, a combination of good-quality data from the first step
(downscaling) with not so good-quality output from the child model using the Kalman gain
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formula (Equation (10)) will worsen the RMSE. However, if the errors of the fine model
are relatively small or if the fine model contains features that are not well represented in
the coarse model, the two-step NDA RMSE can be significantly smaller than the first-step
SDD RMSE. The gain formula used in the Kalman filter requires the knowledge of error
variances. In this paper, the variances are assessed using the ergodic hypothesis, e.g., [36],
and the ensemble statistical mean at each grid node is estimated by spatial averaging in a
small trial domain around the node at the same time point. This scheme is fast and does not
consume significant computational resources. If necessary, it can be extended by including
data from preceding time points; however, these data may not be statistically independent
and hence the potential improvement requires further study.

The study by [37] used a spectral nudging method in order to restrict the drift of large-
scale spectral components in the fine model from the global model. The main difference
with the NDA is that the nudging technique uses weighting coefficients that are tuning
parameters and are prescribed in advance, while the NDA variational method uses weights
computed from the variance of the errors by minimising the cost function and therefore the
weights cannot be changed at will. In contrast to the spectral nudging, the NDA method
corrects both large- and small-scale components of the child model as seen in the amplitude
spectra shown in Figure 16. The NDA automatically adjust the bias of the child model to
the level of parent model which can be interpreted as an aggressive nudging of a single
long-wave component of the field.

The forecast error covariance matrix B (for the child model) may be different from the
error covariance matrix R (for the parent model) at very small distances not resolved by the
parent model. It has to be noted that in any DA method, forecast error covariance matrices
are not exact and are estimated based on using various approximations. Bannister [18]
states: ‘Owing partly to its very large rank, the B-matrix is impossible to use in an explicit
fashion in an operational setting and so methods have been sought to model its important
properties in a practical way’.

Whatever the approximation for the B (and R) matrix is used, the final judgement
of the DA quality should be made on how well the DA reduces the model errors. The
NDA method is shown to reduce the errors in the child model (Figures 3–16). It also
demonstrates that the assumption of a similar spatial correlation structure between B and
R matrices used in NDA for model-to-model data assimilation produces better results than
the assumption of a non-correlated R matrix as applied in the widely used H–L method
(Table 1). Therefore, the NDA method demonstrates the appropriateness of underlying
assumptions and algorithms.

The analysis presented above shows that the NDA method is not the only one that
can be applied to model-to-model data assimilation; the ‘standard’ method could also give
reasonable results. However, when compared with the ‘standard’ DA method, the NDA
gives better accuracy, stronger reduction in the RMS errors, and a complete removal of
bias. The NDA is also more computationally efficient. We had no restrictions or limitations
in computing the analysis for 1000 × 1000 km2 domain at 2.5 km resolution when using
the NDA on our office PC. However, we were unable to carry out the ‘standard’ DA for a
domain greater than 300 × 300 km2 on the same PC due to computing resource restrictions.
In terms of speed of calculations, it required about 2 min to complete one full DA cycle,
including calculation of the covariance matrix and weighting coefficients using the NDA
method in the multiple eddy example. On the other hand, the standard method for the
reduced domain took 24 min, including the creation of B and R matrices and calculation
the analysis state.

As an illustration of the use of the NDA method for operational oceanography, we
present below a snapshot of SST in the Lakshadweep Sea (Indian Ocean) from the parent
global model at 1/12 degree of resolution available from Copernicus Marine Service,
product GLOBAL_MULTIYEAR_PHY_001_030 [7,38] and two nested NEMO models: LD20
at 1/20 degree resolution and LD60 at 1/60 degree resolution, see Figure 19. The parent
model assimilates sea surface temperature, sea surface level, and in situ TS profiles, and is
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described in detail by their authors [38]. Both LD20 and LD60 child models were developed
by the Plymouth Ocean Forecasting Centre team. The child models were run with and
without NDA from 1 January 2015. The LD20 model used 3D temperature, salinity, and
velocities data from the global model for NDA. The LD60 model was implemented with two
versions of the NDA: (i) using the global model as the parent and (2) using the intermediate
nested LD20 model as the parent. In all cases, the NDA was applied to 3D temperature,
salinity, and velocities data from the parent models. The details of the LDA20 and LDA60
models will be published elsewhere [39].
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Figure 19. Daily averaged SST for 26/04/2015 from (a) the operational data-assimilating global model
at 1/120 resolution, generated using EU Copernicus Marine Service Information [38], (b) nested
model LD20 at 1/200 without NDA, (c) nested model LD20 at 1/200 with NDA using 3D temperature,
salinity, and velocities data from the global model, (d) nested model LD60 at 1/600 without NDA,
(e) nested model LD60 at 1/600 with NDA using 3D temperature, salinity, and velocities data from
the global model, (f) nested model LD60 at 1/600 with NDA using 3D temperature, salinity, and
velocities data from the nested LD20 model.
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5. Conclusions

This paper introduces a data assimilation method where the data are assimilated into
a high-resolution model from a coarser good-quality data-assimilating model, not directly
from observations. An efficient and simple algorithm for model-to-model variational data
assimilation method named Nesting with Downscaling and Data Assimilation (NDA) is
developed. The theoretical background behind the NDA algorithm is discussed, and its
application is illustrated in a number of idealised synthetic situations that resemble real-
world practice in fine-resolution ocean modelling. Here, we followed the philosophy used
by Stommel in his famous work [40], which explained the existence of the Gulf Stream using
a synthetic idealised case—square ocean, flat bottom, and sinusoidal wind distribution.
Our results demonstrate that the model-to-model data assimilation is an efficient way for
improving the accuracy of a fine-resolution model. This approach allows for avoiding a
repetition of a complex and resource-hungry assimilation of actual observations, which
has already been done in the parent model. It is likely that the same basic idea of model-to-
model data assimilation would also work for other methods currently used in observational
data assimilation. In this paper, the NDA is compared with a commonly used variational
method and shown to be more accurate and significantly less computationally expensive.
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