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Abstract: The issue of underwater image restoration was investigated in this paper. Specifically, the
color constancy of a single image was used to estimate the transmission map (TM), which can be used
in the image formation model to restore the underwater image. First, the illumination component
based on color constancy was used to estimate the refined TM without performing the guided filter
or soft matting operation. Second, the statistical property of the pixel was used to fine-tune the color
unbalance of underwater images. Finally, both qualitative and quantitative experimental results
showed that the proposed method can not only obtain better restoration results, but also improve
the real-time performance in different underwater scenes compared with other underwater image
restoration methods.

Keywords: underwater image restoration; color correction; transmission map; color constancy

1. Introduction

In recent years, ocean science and technology have gradually attracted the attention
of researchers from all over the world [1–6], such as underwater robots [7,8], underwater
rescue [9], sea organism monitoring [10], marine geological survey, and real-time navi-
gation [11,12]. Images, which play an important role in this research, can provide rich
information (e.g., color, dynamic change, texture, and shape) for scene visualization and
are widely used in target recognition and tracking, navigation, and other applications.
The exponential attenuation phenomenon in the underwater light propagation process
causes the contrast, color distortion, and blurred edge problems of underwater images
and consequently limits the application of vision-based underwater detection and recogni-
tion technology [13]. Therefore, underwater image restoration methods have been receiving
more and more research attention.

To acquire high-quality underwater images, a large number of restoration methods
based on the image formation model (IFM) have been proposed. The IFM considers the
propagation characteristics of light and the scattering of suspended particles in the water
and explains the degradation mechanism of underwater images. In the IFM-based methods,
the correct estimations of the background light (BL) and the transmission map (TM) are
the keys to acquiring undegraded underwater images. Since He et al. [14] proposed the
dark channel prior (DCP) method, multiple variants of the DCP method have been used
for underwater image restoration [15–19]. Liu et al. [15] directly applied the dark channel
prior (DCP) method to underwater scenes, but the results showed that the methodology
does not work for underwater images due to the severe attenuation of red light. Therefore,
the underwater dark channel prior (UDCP) method was proposed by Drews et al. [16].
Unlike the DCP method, the UDCP method basically considered that the blue and green
color channels are the underwater visual information source. However, the TM estimated
using the UDCP method is biased owning to the exclusion of the red channel information,
especially for images in shallow water. Galdran et al. [17] used the inverse of the red channel
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to construct the DCP method and estimated the TM of the red channel, blue channel, and
green channel, respectively. However, the assumption of Equation (8) of the DCP method
could not be satisfied in [17]. Peng et al. [18] proposed a generalized DCP that exploits the
dependence of depth and color to estimate the BL and the TM. They estimated the BL using
depth-dependent color changes and estimated the TM by calculating the background light
differential. Moreover, Hou et al. [19] established a DCP-based underwater total variation
(UTV) model and designed the data item and smooth item of the unified variational model.
However, these DCP-based underwater image restoration methods generally have poor
performance in many underwater scenes due to binding assumptions and insufficient
utilization of the initial image information, e.g., the lack of the red channel information
in [16]. In addition, guided filtering [20] or soft matting [21] is used to refine the estimated
TM by these methods, which increases the complexity of the methods.

To solve the above problems and to obtain high-quality underwater images, this paper
proposes an underwater image restoration method with the TM estimation using color
constancy. The TM is directly derived by calculating the illumination components of the
red channel, blue channel, and green channel of the initial image. The estimated TM is
more refined without performing guided filtering or soft matting in this paper. The restored
images obtained by the proposed method in this paper have better evaluation metrics and
real-time performance compared to other state-of-the-art underwater image restoration
methods. Moreover, the image matching experiment based on the scale-invariant feature
transform (SIFT) was conducted to illustrate the effectiveness of the proposed underwa-
ter image restoration method. To summarize, the main contributions of this paper are
as follows:

• A single-image underwater restoration method based on color constancy is proposed
in this paper, which uses the illumination component of the initial image to estimate
the TM;

• Rather than estimating the transmission map directly using DCP-based methods,
the proposed underwater image restoration method can obtain the refined TM with-
out by performing guided filtering or soft matting, which improves the real-time
performance of the algorithm;

• Compared with other state-of-the-art underwater image restoration methods, the pro-
posed method can achieve a good performance on dehazing and evaluation metrics
and real-time performance.

The rest of this paper is organized as follows. The background and related work are
introduced in Section 1. Section 2 presents the proposed underwater image restoration
method in this paper. The experiments, results, and analyses are given in Section 3. Finally,
Section 4 provides the conclusions.

2. Background and Related Work

This section surveys the underwater imaging formation model and reviews the main
methods that have been proposed to estimate the TM. The Jaffee–McGlamery model, as an
underwater imaging formation model, was proposed in [22,23], and the corresponding
underwater optical imaging process is shown in Figure 1. This model considers that the
total irradiance (ET) of the image is composed of three components: direct transmission
(Ed), forward scattering (E f s), and background scattering (Ebs). The model is given as:

ET = Ed + E f s + Ebs (1)

where Ed is the light that directly enters the camera after being reflected by the scene, E f s
is the light that is scattered by the suspended particles after being reflected by the scene,
and Ebs represents the background light that enters the camera after being scattered by
suspended particles and organics.
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According to the Lambert–Beer law, the propagation of light in the medium decays
exponentially. Hence, the TM (tc) of light in the water can be written as:

tc = e−acde−bcd = e−(ac+bc)d = e−ηcd, c ∈ (R, G, B) (2)

where ac and bc are respectively the absorption coefficient and the scattering coefficient, ηc
represents the attenuation coefficient of seawater on different channels, d is the distance
from the point in the scene to the camera, and c is one of the red, green, or blue channels.

Three different 

scenarious

Direct transmission

Forward scattering

Forward scattering

background scattering

Camera

Output images

Atmospheric light

Suspended particles

Figure 1. Underwater optical imaging process based on the Jaffe–McGlamery model.

Following the nomenclature used in [24,25], Ed, E f s, and Ebs are respectively written as:

Ed = Jce−ηcd = Jtc (3)

E f s = Ed ∗ gd (4)

Ebs = Ac(1− e−ηcd) = Ac(1− tc) (5)

where Jc, gd, and Ac are the undegraded image, point spread function, and global light,
respectively; “∗” represents the convolution operation. Since the distance between the
camera and the underwater scene is relatively short, the degradation of underwater image
caused by forward scattering can be ignored. The underwater imaging model (1) can be
simplified as:

Ic(x) = Jc(x)tc(x) + Ac(1− tc(x)) (6)

where I = ET is the image obtained under the water and x represents the coordinates of
each pixel in the image. This simplified model (6) is valid under the assumption that the
medium is homogeneous. The undegraded image Jc can be expressed as:

Jc(x) =
Ic(x)− Ac

tc(x)
+ Ac (7)

From Equation (7), the undegraded image Jc can be restored from Ic when global light
Ac and tc are known.

Many methods for estimating the TM have been proposed [18,26–28], among which
the DCP method is the most widely used method. The DCP method is a statistical prior,



J. Mar. Sci. Eng. 2022, 10, 430 4 of 16

which is based on the observation that haze-free outdoor images have a very low intensity
(close to zero) in at least one color channel in a square patch. The formulation of the dark
channel image Jdark can be defined as:

Jdark(x) = min
y∈Ω(x)

( min
c∈(R,G,B)

Jc(y))→ 0 (8)

where Ω(x) is a local patch centered at pixel x. Taking the minimum operation of
Equation (6), the TM can be expressed as:

t̃(x) = 1− min
y∈Ω(x)

( min
c∈(R,G,B)

Ic(y)
Ac ) (9)

During the propagation of light in water, the attenuation of red light becomes serious
with the increase of the water depth. If the dark channel is directly used to estimate the TM,
the red color channel will then be most likely used as the dark channel, and the expected
effect cannot be achieved. After analyzing the characteristics of underwater images, some
TM estimate methods were proposed for underwater images. Paulo et al. [16] basically
considered that the blue and green color channels were the underwater visual information
source, which means changing c ∈ (R, G, B) in Equation (9) to c ∈ (G, B). The TM can
be estimated by Equation (10). This method seems sound and can produce good results.
However, the assumption of Equation (8) will not hold due to the exclusion of the red color
channel. In [17], Galdran et al. applied the inverse of the red color channel to estimate the
TM of the red color channel. Meanwhile, the TM of the blue color channel and the green
color channel were estimated by Equation (2), respectively. Furthermore, the paper [29,30]
estimated the TM of different channels from the perspective of light attenuation. However,
since the estimated TM has block-like artifacts using the above methods, it needs to be
fine-tunedby guided filtering [20] or soft matting [21]. The fine-tuningoperation of those
methods results in a large calculation cost. Hence, this paper proposes an underwater image
restoration method with transmission estimation using color constancy, which directly
derives the TM by calculating the illumination component of the red channel, blue channel,
and green channel of the initial image, respectively. The results of the underwater image
restoration using the above methods are shown in Figure 2.

(a) (b) (c) (d) (e)

Figure 2. The results of different underwater images restoration methods. The first column (a) is the
initial images. Columns 2–4 (b–d) show the results from [16,28,29], respectively. The final column (e)
shows the results from the method proposed in Section 2 of this paper.

It can be seen from Figure 2 that the underwater image restoration methods devel-
oped in [16,28,29] have a certain degree of restoration performance on the second row of
images, but they are basically ineffective for images with bluish-green tones (the first row).
Compared with these methods, the proposed method in Section 2 of this paper can adapt
to the two different underwater scenes. Later in this paper, Section 3 will present other
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examples and methods and quantitatively analyze the restoration performances of these
methods on underwater images.

t̃(x) = 1− min
y∈Ω(x)

( min
c∈(G,B)

Ic(y)
Ac ) (10)

3. The Color-Constancy-Based Underwater Image Restoration Method

To suppress the color distortion and blurring of underwater images, this paper pro-
poses a new underwater image restoration method with TM estimation using color con-
stancy. The proposed underwater restoration method involves four main steps: estimate the
BL, estimate the illumination, estimate the TM with color constancy, and color correction.
The flowchart of the proposed underwater image restoration method is shown in Figure 3.
The estimation method of background light (A) in the proposed method comes from the
UDCP method, which first picks the top 0.1% brightest pixels in the dark channel of the
blue and green channels, and then, the highest intensity of these pixels in the raw image is
selected as the background light.

(x)
(x)

(x)

c c
c c

c

I A
J A

t


 

Background light 

(BL)

Initial image

Color

correctionG

Estimate illumination

R

B

Estimate TM

GR

B

Figure 3. The overall framework of the proposed underwater image restoration method

3.1. The Spatial Distribution of the Source Illumination Based on Color Constancy

According to Land’s retinex theory, the object color is determined by its own reflec-
tion ability and cannot be affected by the uneven illumination, which is called the color
constancy. The spatial distribution of the illumination of each channel can be estimated by
calculating the weighted average of a pixel point and the pixel points in its surrounding
area in the image. The spatial distribution of the source illumination is described as:

Lc(x) = Ic(x) ∗ F(m, n, σ) (11)

where I is the image obtained under water and x = (m, n) represents the coordinates of an
individual image pixel, where m and n respectively represent the vertical and horizontal co-
ordinates of the pixel, L is the spatial distribution of the source illumination, “∗” represents
the convolution operation, c presents one of the red, green, or blue channels, and F(m, n, σ)
is the Gaussian surround function, defined in the following way:

F(m, n, σ) = λe(−(m
2+n2)/2σ2) (12)

λ is the normalization scale so that
∫∫

F(m, n, σ) dm dn = 1 and σ is the Gaussian surround
scale. The value of σ has different effects on the contrast and color distortion of the restored
images. The details of the dark area in the image can be better enhanced by the small value
of σ, and the chroma consistency of the image is better kept by the large value of σ. To this
end, in this section, inspired by [31], the multi-scale Gaussian surround function is used
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to acquire the spatial distribution of the source illumination. Hence, Equation (11) can be
written as:

Lc(x) =
Nk

∑
k=1

ωk Ic(x) ∗ F(m, n, σk) (13)

where Nk is the number of scales and ωk represents the weight coefficient of the scale,

which needs to satisfy
Nk
∑

k=1
ωk = 1. The general parameter settings are as follows: Nk = 3,

ω1 = 0.5, ω2 = 0.4, ω3 = 0.1, σ1 = 15, σ2 = 80, and σ3 = 200.

3.2. TM Estimation with the Illumination Spatial Distribution Color Constancy

From Section 1, the TM estimation of some DCP-based methods (e.g., [16,17]) will not
hold the assumption of Equation (8). In order to ensure the validity of the assumption
of Equation (8), in this section, the estimation of the TM with the illumination spatial
distribution using the color constancy is performed.

In retinex, the illumination spatial distribution is used to compute the reflected image
of the scene. The retinex model can be described as:

Ic(x) = Rc(x)Lc(x) (14)

where R(x) is the reflected image of the scene, which represents the undegraded image.
I(x) represents the initial image. Meanwhile, J(x) also represents the undegraded image
in Equation (6). Therefore, it is reasonable to assume that R(x) = J(x). Combining
Equations (6) and (14), a novel underwater optical imaging model can be written as:

Ic(x) =
Ac(1− Lc(x))tc(x)

Lc(x)− tc(x)
+ Ac (15)

The TM (i.e., tc(x)) can be accurately estimated from Ic(x) when the BL (i.e., Ac) and
the spatial distribution of the source illumination (i.e., Lc(x)) are known. Therefore, the TM
can be derived as:

tc(x) =
(Ic(x)− Ac)Lc(x)
Ic(x)− AcLc(x)

(16)

With the TM (i.e., tc(x)) of each channel of the initial image I(x), the undegraded
image J(x) can be obtained according to Equation (7).

3.3. Color Correction

Typically, the distribution of pixels is severely unbalanced in different channels of the
underwater images. When transmitting through the water, the long-wavelength light is
absorbed faster than the short-wavelength light. Due to the light propagation characteristics
in the water, the underwater images are always dominated by the cyan tone. Although the
image restoration method proposed in this section suppresses the color shift to a great
extent, there is still a lack of sufficient overall brightness. Moreover, the pixel values of
the restored image do not satisfy 0–255. Therefore, one color correction algorithm was
designed to fine-tune the color unbalance of the underwater images based on the statistical
property of the pixel. The color correction algorithm is given as follows:

Jc(x) =
Jc(x)−min(Jc(x))

max(Jc(x)−min(Jc(x)))
, c ∈ (R, G, B) (17)

4. Experimental Results

In this section, in order to verify the efficiency of the proposed algorithm in this paper,
the qualitative comparison and the quantitative comparison are implemented, respectively.
There are four underwater images with different scenes shown in Figure 4 to be use
for testing. These images mainly came from two places: real underwater images of the
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Western Pacific (Figure 4a,b) and the dataset of the China 2019 Underwater Object Detection
Algorithm Contest (Figure 4c,d). All experiments were performed using MATLAB 2016b
on a Windows 7 PC with Intel(R) Core(TM) i5-3210M CPU at 2.50 GHz and 4.00 GB RAM.

(a) (b) (c) (d)

Figure 4. The initial images from different scenes. The initial images (a,b) came from the real under-
water images of the Western Pacific; (c,d) are from the dataset of the China 2019 Underwater Object
Detection Algorithm Contest. The last row represents the corresponding distribution histograms
of the R, G, and B channels of the initial images; the x-axis represents the signal levels; the y-axis
represents the normalized frequency.

4.1. Qualitative Comparison

In this part, the proposed underwater image restoration method is compared with
other state-of-the-art methods including the maximum intensity prior (MIP) method [28],
the underwater dark channel prior (UDCP) method [16], Li’s method [32], Peng’s method
(IBLA) [29], and the underwater light attenuation prior (ULAP) method [30].

In Figure 5, the light distribution is uneven in the initial image (Figure 4), which has
some bright pixels in the foreground and dark pixels in the background. The restoration
result based on the MIP method had local overexposure, which was caused by the large TM.
The TM was estimated by the difference between the maximum red channel intensity and
the maximum intensity of the green and blue channels. Even though the TM was properly
estimated based on the UDCP method, the restoration result was unsatisfactory because
the brighter foreground made the BL detected on a rock. The wrong BL and incorrect TM
estimated by the hierarchical searching technology depending on the degraded channel led
to the failure of Li’s method for this case. The results from the IBLA and ULAP methods
looked more significant, which indicates that the non-uniform illumination underwater
image can be restored well using the light attenuation prior and the blurred information of
the original image. The proposed method estimated a proper TM in this case, but gave an
overall dimmer restoration result due to the fact that the brighter foreground caused the
wrong estimation of the BL. However, the proposed method can better reflect the real tones
of the object in terrestrial images, such as the color of stones being black instead of blue
or green.

In contrast, the initial image in Figure 4b is dimly lit and has two distinct green spots.
It can be seen from the comparison results in Figure 6 that the above methods cannot work
for this case except the ULAP and the proposed method. The results from the MIP method,
the IBLA method, and Li’s method look insignificantly restored because of the incorrect TM
and wrong BL estimation. Furthermore, the red channel is used in Li’s method to perform
color correction, and consequently, the restored image had a red tone. The BL and TM
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estimated by the image blur was insufficient for this case; therefore, the restored image had
a color shift using the IBLA method (the restored image showed a purple tone). The UDCP
method can restore the initial image to a certain extent, but the background of the restored
image was darker due to the lack of the red channel information. For the ULAP method,
even though the TM was correctly estimated, it had an unsatisfactory restoration result due
to the Wang estimation of the BL. Compared with the ULAP method, the restoration result
obtained by the proposed method had better contrast, saturation, and brightness.

 

(0.11, 0.34, 0.29) (0.88, 0.98, 0.77) (0.46, 0.31, 0.11) (0.62, 0.74, 0.09) (0.61, 0.49, 0.11) (0.88, 0.98, 0.77)
BL

TM

(a) (b) (c) (d) (e) (f)

Figure 5. The result of restoring a non-uniform illumination underwater image (Figure 4a). The TM
and BL (marked with a red dot) obtained based on the MIP method, the UDCP method, Li’s method,
the IBLA method, the ULAP method, and the proposed method are in the first (a), second (b), third
(c), fourth (d), fifth (e), and sixth (f) rows, respectively. The last row represents the corresponding
distribution histograms of the R, G, and B channels of the restored images; the x-axis represents the
signal levels; the y-axis represents the normalized frequency.

Figure 7 gives the result of restoring a greenish underwater image, whose red channel
is severely attenuated. The restored image obtained by the MIP method and the UDCP
method hardly was affected because they only estimate one single TM without considering
different attenuation levels for the RGB channels, although they can correctly estimate the
BL. Li’s method not only selected the wrong BL, but estimated an incorrect TM and failed
to restore the image. The fogging phenomenon and the scene edge can be improved to a
certain extent by the IBLA and ULAP methods, but the restored images were still bluish in
tone due to the darkness of the estimated TM. For this case, the method proposed in this
paper estimated the BL and TM more accurately, which enhanced the details of the scene
edge while eliminating the color distortion.
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(0.51, 0.88, 0.55) (0.58, 0.59, 0.51) (0.11, 0.36, 0.14) (0.18, 0.60, 0.27) (0.36, 0.68, 0.36 (0.58, 0.59, 0.51)
BL

TM

(a) (b) (c) (d) (e) (f)

Figure 6. The result of restoring an underwater image with dim lit (Figure 4b). The TM and BL
(marked with a red dot) obtained based on the MIP method, the UDCP method, Li’s method, the IBLA
method, the ULAP method, and the proposed method are in the first (a), second (b), third (c), fourth
(d), fifth (e), and sixth (f) rows, respectively. The last row represents the corresponding distribution
histograms of the R, G, and B channels of the restored images; the x-axis represents the signal levels;
the y-axis represents the normalized frequency.

(0.47, 0.94, 0.55) (0.49, 0.92, 0.62) (0.18, 0.62, 0.32) (0.28, 0.87, 0.34) (0.61, 0.49, 0.11) (0.49, 0.92, 0.62)
BL

TM

(a) (b) (c) (d) (e) (f)

Figure 7. The result of restoring a greenish underwater image with dim lit (Figure 4c). The TM and
BL (marked with a red dot) obtained based on the MIP method, the UDCP method, Li’s method,
the IBLA method, the ULAP method, and the proposed method are in the first (a), second (b), third
(c), fourth (d), fifth (e), and sixth (f) rows, respectively. The last row represents the corresponding
distribution histograms of the R, G, and B channels of the restored images; the x-axis represents the
signal levels; the y-axis represents the normalized frequency.

Lastly, Figure 8 demonstrates the result of restoring the bluish underwater image
shown in Figure 4d. All methods worked well for this case except Li’s method, and the
obtained images all looked restored and enhanced, although some color differences existed.
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The reason for the red distortion in the restored image from Li’s method was because of
the red channel color correction based on adoption of the gray world hypothesis. From
the comparison results of the above methods in this case, the proposed method can obtain
more accurate BL and TM, and the restored image had a satisfactory recovery effect.

Furthermore, the distribution histograms of the R, G, and B channels of four initial
underwater images of Figure 4 presented in the last row of Figure 4 and the corresponding
results after using the MIP [28], UDCP [16], Li’s method [32], IBLA [29], ULAP [30], and
the proposed method are displayed in order in the last row of Figures 5–8 (the x-axis
represents the signal levels; the y-axis represents the normalized frequency). As shown
in these distribution histograms, the histogram distribution of the RGB channels of the
restored images using the proposed method were wider and more uniform. Combined
with the restoration results, the proposed underwater image restoration method can obtain
restored images with higher contrast and clearer details.

(0.55, 0.78, 0.35) (0.69, 0.86, 0.62) (0.53, 0.79, 0.29) (0.51, 0.80, 0.35) (0.51, 0.78, 0.31) (0.69, 0.86, 0.62)
BL

TM

(a) (b) (c) (d) (e) (f)

Figure 8. The result of restoring a bluish underwater image (Figure 4d). The TM and BL (marked
with a red dot) obtained based on the MIP method, the UDCP method, Li’s method, the IBLA method,
the ULAP method, and the proposed method are in the first (a), second (b), third (c), fourth (d), fifth
(e), and sixth (f) rows, respectively. The last row represents the corresponding distribution histograms
of the R, G, and B channels of the restored images; the x-axis represents the signal levels; the y-axis
represents the normalized frequency.

4.2. Quantitative Comparison

In order to further verify the efficiency of the underwater image restoration method
proposed in this paper, this section compares the proposed method with aforementioned
methods using several objective metrics to conduct a quantitative analysis. Considering
the aspects of the information richness, naturalness, sharpness, and overall index of con-
trast, chroma, and saturation, four evaluation metrics, namely the average gradient (AG),
the entropy, the contrast restoration, and the underwater color image quality evaluation
metric (UCIQE), were chosen to comprehensively evaluate the restoration effect. The AG
was used to assess the image clarity, where a larger value of the AG means a clearer image.
The entropy represents the amount of information contained in the image, which can reflect
the resolution of the scene details. The higher the entropy value, the better the quality
of the image will be and the clearer the image will be. The contrast can represent the
restored quality of the contrast after employing the underwater image restoration method.
The bigger the value is, the better the dehazing is. The UCIQE was developed to reflect the
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quality of underwater color images, and it is calculated a a linear model of the contrast of
the image brightness, the standard deviation of the image chromaticity, and the average of
the image saturation in the CIE-Lab color space. The UCIQE is a comprehensive evaluation
index. The larger the UCIQE value is, the better the underwater color image quality will be.
The value of these metrics is respectively defined as Equation (18):

AG = 1
M×N ∑

x,y

√
(dI2

x + dI2
y)
/

2

Entropy = −
L
∑

i=0
pilog2 pi

Contract = ∑
δ

δ2
(i,j)pδ(i,j)

UCIQE = c1 × σc + c2 × conl + c3 × µs

(18)

where (x, y) represents the pixel coordinates of the image, dIx and dIy are respectively the
partial derivatives of x and y, M×N is the size of the image, pi is the normalized frequency
of the gray value i, L = 255 represents the gray level, δ(x,y) is the grayscale difference
between adjacent pixels, pδ(x,y) represents the probability of the pixel distribution that the
grayscale difference between adjacent pixels is δ, σc, conl , and µs represent the standard
deviation of the image chromaticity, the contract of the image brightness, and the average of
the image saturation, respectively, and c1, c2, and c3 are three constant coefficients, typically
taken as c1 = 0.4680, c2 = 0.2745, and c3 = 0.2576.

Tables 1 and 2 show the AG, entropy, contract, and UCIQE values of the restored
images of the above methods. The best results are highlighted in bold. The AG and entropy
values of the proposed method were generally higher than those of the restored images
by other methods. This suggests that the proposed method can improve the information
abundance and sharpness contained in the image. Although the contrast of the restoration
images of Figure 4c and the UICQE values of the restoration images of Figure 4d obtained
by Li’s method were the highest, the restored images appeared unnatural, according to
Figures 7c and 8c. This was because the restored images obtained by Li’s method had
the highest standard deviation of image chromaticity. These restored images had high
metrics using the IBLA method, but the restoration result in Figure 4b is obviously poor,
which was caused by a lack of brightness in the initial image. The ULAP method obtained
relatively higher score of some metrics and achieved good image restoration in some scenes.
By contrast, although the UCIQE metric of the proposed method was not the highest in
each image in Figure 4, the average value of the UCIQE metric reached by the method
proposed in this paper was the highest. This shows that the proposed method in this paper
has better average performance.

Table 1. Quantitative analysis of the restoration results based on different methods (the bold values
express the best metric values).

Initial MIP [28] UDCP [16] Li’s Method [32]
Images AG Entropy Contrast UCIQE AG Entropy Contrast UCIQE AG Entropy Contrast UCIQE

(a) 7.8452 16.3016 50.9766 0.4197 6.4357 14.1648 31.9105 0.5167 5.6237 15.1937 36.1423 0.4171
(b) 8.4506 13.9274 23.8966 0.3196 8.8771 15.7372 24.3995 0.3073 8.0575 15.5760 22.0549 0.3406
(c) 1.7832 12.6811 16.4860 0.3450 1.8808 14.4660 12.6179 0.4129 2.8828 14.6900 27.8984 0.3909
(d) 4.0887 14.6109 28.5579 0.3334 4.7030 15.8857 25.0513 0.4542 4.9687 15.2902 24.0916 0.5078

Average 5.5419 14.3802 19.9792 0.3544 5.4742 15.0634 23.4948 0.4228 5.3832 15.1875 27.5468 0.4141
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Table 2. Quantitative analysis of the restoration results based on different methods (the bold values
express the best metric values).

Initial IBLA [29] ULAP [30] The Proposed Method
Images AG Entropy Contrast UCIQE AG Entropy Contrast UCIQE AG Entropy Contrast UCIQE

(a) 6.6599 15.7478 44.1143 0.4152 8.4623 15.8384 56.6435 0.4617 9.7705 16.7100 37.4011 0.5085
(b) 13.0467 16.0884 36.0871 0.4281 11.2939 14.9631 34.5920 0.4436 20.6358 17.7885 49.8168 0.4172
(c) 2.7248 14.3524 26.4115 0.4224 2.7956 14.2086 26.8171 0.4018 4.6639 16.1528 26.7410 0.3879
(d) 6.1937 15.9053 37.2614 0.3972 6.1703 15.6731 39.9646 0.4031 8.5353 16.8028 39.7184 0.4331

Average 7.1563 15.5235 35.9686 0.4157 7.1805 15.1708 39.5043 0.4276 10.9014 16.8635 38.4193 0.4367

Meanwhile, we selected 150 underwater test images with a size of 720× 450 from
several datasets for statistical analysis. Their average processing time and standard devia-
tion are presented in Table 3. Table 4 reports the statistical results of different methods in
terms of the AG, entropy, contrast, and UCIQE for the 150 underwater test images. From
Table 3, it can be seen that the average processing time for the IBLA reached 43.0186 s,
which is obviously not suitable for real-time underwater applications. The average pro-
cessing time of the proposed method in this paper was 4.1124 s, which is basically the
same as the processing times of the ULAP method. Meanwhile, the standard deviation
of the proposed method was relatively small. It can be seen from Table 4 that all metrics
obtained by the proposed method in this paper except the contrast were improved to
varying degrees. Although the contrast of the proposed method was not the highest, it
reached the second highest of all the methods. Besides, the restoration results of the 20
underwater test images (randomly selected from the 150 underwater test images) by the
proposed method are shown in Figure 9. Combining Figure 9 and Table 4, we can conclude
that the proposed method in this paper can reduce the processing time while ensuring the
image restoration effect.

Table 3. The average processing time and standard deviation of different methods (the bold values
express the best metric values).

Methods MIP [28] UDCP [16] Li’s
Method [32] IBLA [29] ULAP [30] The Proposed

Method

Processing
time(s) 13.2412 17.5264 21.3852 43.0186 4.3546 4.1124

Standard
Deviation 0.2152 0.3354 0.2541 0.2285 0.2737 0.2017

Table 4. Average values of 4 quantitative evaluation metrics for the 150 underwater test images (the
bold values express the best metric values.)

Methods MIP [28] UDCP [16] Li’s
Method [32] IBLA [29] ULAP [30] The Proposed

Method

AG 6.3825 6.1311 5.0623 9.2365 9.4357 11.9822
Entropy 13.7691 15.4799 15.3824 16.0378 15.9395 16.3776
Contrast 37.4366 21.1347 26.1455 39.4728 42.1598 41.7541
UCIQE 0.3123 0.3977 0.4035 0.4157 0.4266 0.4314
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Figure 9. The restoration results of the 20 underwater test images by the proposed method.

Furthermore, to further analyze the effectiveness of the method proposed in this
paper, we compared it with DUIENet [33], which is a CNN-based underwater image
restoration method. Figure 10 shows some test results. The AG and UCIQE were chosen to
comprehensively evaluate the restoration effect. As can be seen from Figure 10, compared
with DUIENet, the method proposed in this paper had a good effect in suppressing blur
and color distortion and had better index parameters.

Local feature point matching is a fundamental task in many computer vision appli-
cations [34]. The scale-invariant feature transform (SIFT) is a scale-invariant local feature
descriptor that can detect key points in the images. To prove the effectiveness of the pro-
posed method in this paper for image matching tasks, the SIFT operator was applied to
compute the keypoints. The local feature point matching results of a pair of underwater
images and that of the corresponding pair of images restored by the proposed underwater



J. Mar. Sci. Eng. 2022, 10, 430 14 of 16

image restoration method are displayed in Figure 11. The promising results presented
in Figure 11 demonstrate that the restored images using the proposed method in this
paper had an increased number of matched pairs of feature points. This is very helpful for
underwater image recognition and matching tasks.

AG/UCIQE AG/UCIQE AG/UCIQE AG/UCIQE AG/UCIQE

5.5255/0.4394

7.3825/0.4617

9.7281/0.38958.9024/0.41066.9421/0.37058.4637/0.4541

10.251/0.40429.014/0.4097.187/0.36339.0236/0.4552
(a) (b) (c) (d) (e)

Figure 10. The comparison results with DUIENet. Top row: initial images. Middle row: the
restoration results of DUIENet. Bottom row: the restoration results of the proposed method.

Initial Image Restored Result DFP
Valid Matches (top) and

Registrtion Result (down)

Figure 11. Local feature point detection and matching. SIFT finds no valid matches (detected feature
points (DFPs): 0) when applied on the initial image. There are 21 valid matches (DFPs: 127) by SIFT
for the image restored from this paper.

5. Conclusions

This paper proposed a new underwater image restoration method with transmission
estimation using color constancy. The transmission map was estimated by using the
illumination component of the initial image instead of using the DCP or MIP, which can
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avoid the large processing time caused by guided filtering or soft matting and can improve
the real-time performance. Furthermore, the statistical properties of the pixels were used
to fine-tune the pixel distribution of each channel because of the uneven distribution of
the pixel values in the restored image. Both the qualitative and quantitative experimental
results showed that the proposed underwater image restoration method in this paper can
obtain better restoration performances in different underwater scenes compared to other
underwater image restoration methods.
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