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Abstract: Stearic acid represents one of the most abundant fatty acids in the Western diet and
profoundly regulates health and diseases of animals and human beings. We previously showed that
stearic acid supplementation promoted development of the terrestrial model nematode Caenorhabditis
elegans in chemically defined CeMM food environment. However, whether stearic acid regulates
development of other nematodes remains unknown. Here, we found that dietary supplementation
with stearic acid could promote the development of the marine nematode Litoditis marina, belonging
to the same family as C. elegans, indicating the conserved roles of stearic acid in developmental
regulation. We further employed transcriptome analysis to analyze genome-wide transcriptional
signatures of L. marina with dietary stearic acid supplementation. We found that stearic acid might
promote development of L. marina via upregulation of the expression of genes involved in aminoacyl-
tRNA biosynthesis, translation initiation and elongation, ribosome biogenesis, and transmembrane
transport. In addition, we observed that the expression of neuronal signaling-related genes was
decreased. This study provided important insights into how a single fatty acid stearic acid regulates
development of marine nematode, and further studies with CRISPR genome editing will facilitate
demonstrating the molecular mechanisms underlying how a single metabolite regulates animal
development and health.

Keywords: marine nematode; stearic acid; CeMM; development; transcriptome; protein translation;
neuronal signaling

1. Introduction

Stearic acid (SA, C18:0) is a saturated long-chain fatty acid (FA) and one of the most
abundant fatty acids in the Western diet [1,2]. Unlike palmitic acid (PA, C16:0), dietary
stearic acid does not increase atherosclerosis risk, while stearic acid was reported to re-
duce LDL (low density lipoprotein) cholesterol in humans [3–6]. Studies have shown
that elevated circulating stearic acid lipids levels are related to lower blood pressure [7],
improved cardiac function [8], and reduced cancer risk [9–13], thus, stearic acid seems
to benefit human health differently from other saturated fatty acids. In addition, recent
reports showed that stearic acid ingestion promotes mitochondrial fusion and increases
fatty acid β-oxidation [14,15].

Modern foods are composed of many metabolites and it is critical to know which are
the most important ones to our health. Since human diets are very complex and it is hard to
delineate how a single metabolite regulates the development, reproduction, and lifespan of
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the host, we have applied an axenic chemically defined diet CeMM (C. elegans maintenance
medium) and the widely used biomedical model animal Caenorhabditis elegans to study
how nutrition regulates animal development and health [16,17]. CeMM excludes variables
associated with bacterial metabolism in the bacterial diet, making CeMM promising for use
in drug screening [18–20]. In addition, the advantages of axenic cultivation and less need
for astronaut intervention make CeMM widely used in the study of the effects of space flight
on the development and physiology of tested animals such as C. elegans [21,22]. Given the
composition and the amount of each component that can be manipulated in this chemically
defined CeMM medium, it allows to study the precise mechanisms underlying how a single
metabolite regulates animal health. We previously showed that dietary supplementation
of the single fatty acid stearic acid significantly promotes development of C. elegans in a
CeMM food environment [23]. However, whether stearic acid regulates the development
of other nematodes and what the underlying mechanisms are remain unknown.

Litoditis marina is a free-living marine nematode, playing an essential role in marine
ecosystems [24,25]. L. marina belongs to the same family as C. elegans, and has the advan-
tages of short generation time, convenient laboratory culture, and its genome has been
sequenced and annotated recently, making it a potential marine model animal [25,26].

In this study, we formulated sea-salt-CeMM that can support the growth of marine
nematode L. marina and found that dietary supplementation with stearic acid could promote
development of L. marina. We further employed RNA sequencing (RNA-seq) analysis
to detect genome-wide transcriptional signatures of L. marina with dietary stearic acid
supplementation. We found that stearic acid supplementation resulted in upregulation of
the expression of genes involved in aminoacyl-tRNA biosynthesis, translation initiation and
elongation, ribosome biogenesis, and transmembrane transporter in L. marina, whereas the
expression of neuronal signaling-related genes was significantly downregulated with stearic
acid supplementation. Our results provide clues for further research on the mechanisms
underlying how a single metabolite regulates animal development and health.

2. Materials and Methods
2.1. Worms

The marine nematode L. marina wild strain HQ1 was isolated from intertidal sediments
of Huiquan Bay, Qingdao. L. marina nematodes were cultured on seawater-NGM (SW-
NGM) agar plates seeded with Escherichia coli OP50 as a food source [25,27]. Until this
study, the L. marina nematodes had been maintained and propagated in the laboratory at
20 ◦C for about four years.

2.2. Sea-Salt-CeMM Preparation

The salinity of normal CeMM is too low to support the development of L. marina
into adults. A CeMM medium supplemented with a final concentration of 15‰ sea-salt
could support the growth and reproduction of L. marina. This sea-salt-CeMM medium was
formulated as follows: 2× CeMM stock media was prepared as reported previously [16,23].
Then, the 15‰ sea-salt-CeMM plate was made by diluting the 2× CeMM stock to 1× via
adding an equal volume of molten 3.4% agarose solution containing 30‰ sea-salt.

2.3. Dietary Stearic Acid Supplementation

Stearic acid (manufacturer: Aladdin) was prepared as 40 mM stocks in DMSO. For
growth phenotype analysis, 100 µL of 2.5% solvent DMSO or 1 mM stearic acid suspension
(prepared by diluting a 40 mM stock solution with sterile water) was added evenly on the
surface of a 3.5 cm CeMM plate, and then dried in a dark incubator at 20 ◦C for one day
before the experiments. For the dietary stearic acid supplementation RNA-seq experiment,
667 µL of 2.5% solvent DMSO or 1 mM stearic acid suspension was added evenly on the
surface of 9 cm CeMM plate, then the plate was dried in a dark incubator at 20 ◦C for two
days before use.
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2.4. Synchronization of L. marina

The eggs were treated with a drop of worm bleaching solution (20% bleach, 0.5 M
NaOH) on an empty SW-NGM plate. These eggs were then incubated overnight to obtain
small scale synchronized L1.

For sample preparation of transcriptome, large-scale L1 synchronization was per-
formed as described previously [27]. Briefly, a large number of eggs were treated for a
short time with worm bleaching solution to kill the bacteria, which were then washed twice
with sterile seawater and incubated overnight in sterile seawater to hatch. Finally, large
numbers of synchronized L1 larvae were obtained through filtration via 500 grid nylon
filter with 25 mm mesh size.

2.5. RNA-Seq Analysis

Synchronized L. marina L1s were transferred to corresponding 9 cm diameter 15‰
sea-salt-CeMM agarose plates supplemented with DMSO or stearic acid. The treated
worms were cultured at 20 ◦C for 2.5 h and collected by washing with M9 buffer. Then,
the obtained samples were frozen immediately in liquid nitrogen. Each treatment was
performed with three biological replicates.

Total RNA was extracted using Trizol (Invitrogen, Carlsbad, CA, USA). Then, with
three biological replicates for each treatment, a total of six RNA sequencing libraries were
prepared with 1 µg RNA per library using NEBNext UltraTM RNA Library Prep Kit (New
England Biolabs, Ipswich, MA, USA). Then, the sequencing libraries were sequenced on an
Illumina platform.

Reads containing adaptors or poly-N and low-quality reads were removed to obtain
clean data. The minimum of base score Q20 was over 99% and Q30 was over 93.6%. The
clean data were mapped to reference genome [25] by Hisat2 (v2.0.5, with the default pa-
rameters) [28]. Gene expression levels were normalized with FPKM. The differentially
expressed genes (DEGs) were analyzed by DESeq2 [29]. Fold change ≥ 1.3 and a false
discovery rate (FDR) < 0.05 were applied. The adjusted p-values (padj) were calculated
according to Benjamini and Hochberg [30] to control the FDR. Gene ontology (GO) enrich-
ment analysis was carried out by the GOseq R packages [31]. The statistical enrichment of
DEGs in KEGG pathways was performed by KOBAS [32].

2.6. Quantitative Real-Time PCR (qPCR) Analysis

Ten genes of our interest were randomly selected for qPCR validation, including upreg-
ulated genes EVM0009296/gars-1, EVM0009790/nars-1, EVM0003025/eif-6, EVM0016791/
M01G5.3, EVM0007932/ZK795.3, EVM0017539/F14E5.1, and EVM0007205/mct-6 and
downregulated genes EVM0014526/daf-37, EVM0003946/frpr-1, and EVM0009311/gnrr-5.

For each sample, 500 ng RNA was used for reverse transcription using a cDNA
synthesis with gDNA Remover kit (Toyobo, FSQ-301), then the resulting cDNA was used
for qPCR analysis performed on ABI QuantStudio 6 Flex system using SYBR Green (Toyobo,
QPK-201). The internal reference gene used was EVM0013809/cdc-42. The information
of all primers was shown in Supplementary File S1. Each experiment was performed in
triplicate for each biological replication.

3. Results
3.1. Atearic Acid Promotes Development of L. marina on CeMM

To determine whether stearic acid promotes development of L. marina on chemi-
cal defined food environment, we transferred newly hatched L1 larvae of L. marina to
sea-salt-CeMM plates with stearic acid supplementation. We found that dietary stearic
acid supplementation significantly promoted L. marina development on sea-salt-CeMM
(Figure 1). Compared to the control (DMSO supplementation), the proportion of adults
in the stearic acid supplementation group was significantly increased after 9 days post-
hatching, and the adulthood rate at 15 days was significantly increased from about 40%
(control) to nearly 80% (Figure 1). In line with the finding that stearic acid supplementation
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promotes development of C. elegans on CeMM [23], our data showed that stearic acid was
able to promote the development of marine nematode L. marina on sea-salt CeMM medium,
indicating a conserved developmental regulation role of stearic acid.
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Figure 1. Stearic acid promoted L. marina growth on sea-salt-CeMM diet. (A,B) Daily adult rates of
L. marina with dietary supplementation of SA (stearic acid) or DMSO (solvent control). (A) and (B)
are different representations of the same set of data. DMSO, 6 trials, n = 52 worms on average in each
trial; SA, 6 trials, n = 52 worms on average in each trial. All data shown are mean ± SEM (standard
error of mean). * p < 0.05, ** p < 0.01, *** p < 0.001; two-sided t-test.

3.2. RNA-Seq Analysis in L. marina on Sea-Salt-CeMM with Stearic Acid Supplementation

To investigate transcriptomic responses of L. marina to dietary stearic acid supple-
mentation, we performed high-throughput RNA-seq analysis. Newly hatched L. marina
L1 larvae were cultured for 2.5 h on sea-salt-CeMM with stearic acid supplementation
and DMSO (control) supplementation, respectively (Figure 2A). In total, 551 DEGs were
identified, of which 289 were upregulated and 262 were repressed (Figure 2A,B). Details of
significantly up- and downregulated DEGs are presented in Supplementary File S2.

KEGG and GO enrichment analysis results are shown, respectively in Figures 3 and 4
and Supplementary File S3: Figures S1 and S2.

3.3. Upregulation of Aminoacyl-tRNA Biosynthesis Pathway Genes

Based on KEGG analysis, we observed that the “aminoacyl-tRNA biosynthesis”
pathway-related genes were significantly enriched in upregulated DEGs (Figure 3A). The ex-
pression levels of five amino-acyl tRNA synthetase genes such as EVM0000918/wars-1 (tryp-
tophanyl amino-acyl tRNA synthetase), EVM0003985/cars-1 (cysteinyl amino-acyl tRNA
synthetase), EVM0009296/gars-1 (glycyl amino-acyl tRNA synthetase), EVM0009790/nars-
1 (asparaginyl amino-acyl tRNA synthetase) and EVM0011158/kars-1 (lysyl amino-acyl
tRNA synthetase) were significantly upregulated with dietary stearic acid supplementation
(Figure 5A). Aminoacyl-tRNAs are essential substrates for protein translation [33]. Upregu-
lation of aminoacyl-tRNA biosynthesis pathway genes might enable more proteins to be
translated to support cell division and differentiation in development [33–36].
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Figure 2. Transcriptome characterization of L. marina supplemented with dietary stearic acid (SA).
(A) Experimental design and the transcriptomic characterization of dietary stearic acid supplementa-
tion. (B) Hierarchical clustering of DEGs (differentially expressed genes) in L. marina supplementation
with stearic acid and DMSO using the pheatmap package in R. Relative expression levels (z-score,
gene expression level based on base-2 log-transformed FPKM value) were indicated for each gene
(row) in each sample (column). Red indicates upregulation; blue indicates downregulation. The scale
bar shows the z-score for DEGs.

3.4. Upregulated Expression of Translation Initiation, Elongation, and Ribosome
Biogenesis-Related Genes

We observed that “RNA transport” KEGG pathway genes were significantly upregu-
lated in L. marina with dietary stearic acid supplementation (Figure 3A). RNA transport is
a process in which RNA molecules are actively transported from one position within the
cell to another, including the export of RNA from the nucleus to the cytoplasm through
the nuclear pores, and the microtubule-assisted movement of specific RNAs along the
axon [37–39]. Among eight upregulated DEGs enriched in the “RNA transport” pathway,
five of which were translation initiation or elongation factors, including EVM0011266/eif-
1.A (eukaryotic translation initiation factor 1A), EVM0015069/eif-2Bbeta, EVM0003319/eif-
2Bdelta, EVM0016427/eif-5, and EVM0014509/eef-1A.1 (eukaryotic translation elongation
factor 1α) (Figure 5B).



J. Mar. Sci. Eng. 2022, 10, 428 6 of 17J. Mar. Sci. Eng. 2022, 9, x FOR PEER REVIEW 6 of 18 
 

 

  
Figure 3. KEGG enrichment analysis for DEGs. (A) The top 20 enriched KEGG pathways for up-
regulated DEGs. (B) The top 20 enriched KEGG pathways for downregulated DEGs. Significance of 
enrichment is indicated by color from red to purple. Gene ratio is the ratio of the number of DEGs 
annotated to the KEGG pathway to the total number of DEGs. 

Figure 3. KEGG enrichment analysis for DEGs. (A) The top 20 enriched KEGG pathways for
upregulated DEGs. (B) The top 20 enriched KEGG pathways for downregulated DEGs. Significance
of enrichment is indicated by color from red to purple. Gene ratio is the ratio of the number of DEGs
annotated to the KEGG pathway to the total number of DEGs.
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Figure 4. GO-MF (molecular function) enrichment analysis for DEGs. (A) The top 10 enriched
GO-MF terms for upregulated DEGs. * The full name of this term is “ATPase activity, coupled to
transmembrane movement of substances”. (B) The top 10 enriched GO-MF terms for downregulated
DEGs. Significance of enrichment is indicated by color from red to purple. Gene ratio is the ratio of
the number of DEGs annotated to the GO term to the total number of DEGs.

In addition, we found that the expression of several genes in the “ribosome bio-
genesis in eukaryotes” pathway was significantly increased in L. marina with dietary
stearic acid supplementation (Figure 3A). One of them was EVM0003025/eif-6 (eukary-
otic translation initiation factor 6), which is also a translation initiation factor. The other
four were EVM0013635/F27C1.6, EVM0005281/F55F10.1, EVM0016791/M01G5.3, and
EVM0007932/ZK795.3 (Figure 5C). Ribosome biogenesis is the process of producing ri-
bosomes, the macromolecular machines that are responsible for mRNA translation into
proteins [40,41].

3.5. The Expression of Transmembrane Transporters Related Genes Was Upregulated

Based on GO functional enrichment analysis, we found that “transmembrane trans-
porter activity” was the most significant enriched term for upregulated DEGs in MF (molec-
ular function) category (Figure 4A). We observed that “transmembrane transporter activity”-
related genes such as EVM0003002/aat-5, EVM0017539/F14E5.1, EVM0004825/F23F1.6,
EVM0000321/F41C3.2, EVM0013480/hmt-1, EVM0007205/mct-6, EVM0004219/mfsd-8,
EVM0011858/pgp-9, and EVM0003073/slc-17.2 were significantly increased in L. marina
with dietary stearic acid supplementation (Figure 5D).
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3.6. Downregulation of Neuronal Signaling Genes

We found that genes related to KEGG pathway term “neuroactive ligand-receptor
interaction” and GO terms “G-protein coupled receptor activity” and “neuropeptide Y
receptor activity” were significantly decreased in L. marina with dietary stearic acid sup-
plementation (Figures 3B and 4B). G protein-coupled receptors (GPCRs) are cell surface
receptors that detect molecules outside the cell and could be activated by a variety of
ligands such as hormones and neurotransmitters [42] and neuropeptide Y receptors belong
to the class A GPCRs [43]. Significantly down-regulated “neuroactive ligand-receptor inter-
action” pathway genes were EVM0014526/daf-37, EVM0007244/daf-38, EVM0016479/dop-
4, EVM0003946/frpr-1, EVM0006577/frpr-3, EVM0009311/gnrr-5, EVM0014635/mod-1,
and EVM0011288/ntr-1 (Figure 6A). Downregulated “G-protein coupled receptor ac-
tivity” genes include EVM0007244/daf-38, EVM0016479/dop-4, EVM0010643/F52D10.4,
EVM0003946/frpr-1, EVM0006577/frpr-3, EVM0015877/frpr-7, EVM0009311/gnrr-5,
EVM0014635/mod-1, EVM0004184/npr-5m and EVM0011288/ntr-1, among them
EVM0007244/daf-38, EVM0016479/dop-4, EVM0003946/frpr-1, EVM0006577/frpr-3,
EVM0009311/gnrr-5, EVM0014635/mod-1, and EVM0011288/ntr-1 were also enriched
in “neuroactive ligand-receptor interaction” KEGG pathway (Figure 6B). Moreover, we
observed that “neuropeptide Y receptor activity” term genes such as EVM0009621/npr-7,
EVM0000777/npr-10, and EVM0007986/npr-13 were significantly repressed in L. marina
with dietary stearic acid supplementation (Figure 6C).
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level of “G-protein coupled receptor activity” genes. The expression level of downregu-
lated genes EVM0007244/daf-38, EVM0016479/dop-4, EVM0003946/frpr-1, EVM0006577/frpr-3,
EVM0009311/gnrr-5, EVM0014635/mod-1, and EVM0011288/ntr-1 enriched in this term is presented
in (A). (C) Expression level of “neuropeptide Y receptor activity” genes. SA (stearic acid). The error
bars represent SEM of the mean. ** padj < 0.01, *** padj < 0.001.

3.7. Quantitative Real-Time PCR Validation

We conducted qPCR to test the expression of interest genes identified from our
RNA-seq results (Figure 7A). The qPCR results and RNA-seq results showed consistent
trends (Figure 7B, Supplementary File S4). The expression of aminoacyl-tRNA biosyn-
thesis genes EVM0009296/gars-1 and EVM0009790/nars-1, translation initiation factor
gene EVM0003025/eif-6, ribosome biogenesis-related genes EVM0016791/M01G5.3 and
EVM0007932/ZK795.3, and transmembrane transport-related genes EVM0017539/F14E5.1
and EVM0007205/mct-6 was significantly upregulated in L. marina with stearic acid supple-
mentation, while the expression of neuronal signaling-related genes such as EVM0014526/
daf-37, EVM0003946/frpr-1, and EVM0009311/gnrr-5 was significantly downregulated in
L. marina with stearic acid supplementation.
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Figure 7. Validation of the RNA-seq results using qPCR. (A) qPCR analysis of interest genes identified
from the RNA-seq results. Fold changes indicate the ratio of the SA (stearic acid) supplementation
group to the control DMSO group. The error bars represent SEM of the mean, * p < 0.05, ** p < 0.01,
two-sided t-test. (B) Correlation analysis of the results of RNA-seq and qPCR for detected genes. Each
dot represents a gene, with detailed information shown in Supplementary File S4. Correlation analysis
was performed using GraphPad Prism 5 software, Pearson R = 0.9354, with a p-value < 0.0001.

4. Discussion

It was reported that stearic acid suppresses the development of the mammary gland
in mice [44] and inhibits tumor development in rats [45]. A previous report showed
that dietary stearic acid interferes with polyunsaturated fatty acid required for tumor
development in mice models [46]. In addition, stearic acid inhibits the growth of human
cervical cancer cells [47]. Another study showed that mice fed a diet containing stearic
acid exhibit increased food intake and hedonic eating [48]. In Drosophila melanogaster,
stearic acid supplementation improves animal physiology and mitochondrial function [49].
Certain concentrations of stearic acid can prolong the lifespan of C. elegans, while excessive
stearic acid shortens the body length and longevity [50]. In this report, we found that
dietary stearic acid supplementation promoted development of L. marina on sea-salt-CeMM
(Figure 1), in line with our previous report that stearic acid supplementation promotes the
growth of C. elegans on CeMM [23].

4.1. Stearic Acid Might Promote L. marina Development through Upregulation of Protein
Synthesis Related Genes

Aminoacyl-tRNA synthetases (ARSs) ligate amino acids to the corresponding tRNAs in
protein synthesis [36,51], and has been a growth marker for multiple zooplankton because
of its positive correlation with individual growth rate [34,35]. Aminoacyl-tRNA synthetase
defects lead to protein mistranslation and affect cellular physiology and development [52].
In cultured human HeLa cells, the disruption of MARS (multi-aminoacyl-tRNA synthetase
complex) results in growth retardation due to a decreased rate of protein synthesis [53,54].
Drugs targeting methionyl-tRNA synthetases inhibit protein synthesis and consequently
inhibit malaria parasite development [51]. In C. elegans, mutant of the glp-4 gene encoding
valyl aminoacyl tRNA synthetase has reduced protein translation, displays slow growth,
and shows defects in germline development [55]. A quantitative proteome analysis of
C. elegans found that the level of valyl aminoacyl tRNA synthetase (encoded by glp-4) and
aspartyl aminoacyl tRNA synthetase (encoded by dars-1) is significantly increased at 40 h
after hatching compared to 20 h post hatching, suggesting that the increased aminoacyl-
tRNA synthetases are critical for nematode development [56]. In the present study, we
found that L. marina aminoacyl-tRNA synthetases genes, such as EVM0000918/wars-1,
EVM0003985/cars-1, EVM0009296/gars-1, EVM0009790/nars-1, and EVM0011158/kars-1,
were significantly upregulated with dietary stearic acid supplementation (Figure 5A). Our
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data indicate that stearic acid supplementation might promote development of L. marina
via upregulating aminoacyl-tRNA synthetases to induce protein synthesis.

Eukaryotic initiation factors (eIFs) are essential in the initiation stage of eukaryotic
translation, and contribute to the stabilization of ribosomal preinitiation complexes for-
mation around the start codon [57,58]. Mutation of the eIF-5A homologue iff-2 or partial
reduction of the expression of eIF-5B coding gene iffb-1 delays larval development in
C. elegans [59,60]. Translation elongation factors help to elongate the polypeptide chain in
translation [61]. A study in yeast has shown that elongation factor 1β mutant reduced total
protein synthesis and growth defects [62]. C. elegans translation elongation factor 4 (EF4)
localizes to mitochondria, and EF4 impairment delays development [63]. These reports
suggest that translation initiation and elongation factors critically mediate the protein syn-
thesis process and their deficiency might inhibit animal growth. In the present study, we
found that several translation initiation and elongation factors such as EVM0011266/eif-1.A,
EVM0015069/eif-2Bbeta, EVM0003319/eif-2Bdelta, EVM0016427/eif-5, and EVM0014509/eef-
1A.1 were significantly upregulated in L. marina with dietary stearic acid supplementation
(Figure 5B). Among them, previous studies have reported that RNAi inhibition of eif-
1.A [64,65], eif-2Bbeta [66], eif-2Bdelta [64], or eif-6 [66] all slow down the growth of C. elegans.
Therefore, our data indicate that stearic acid supplementation might promote develop-
ment of L. marina on CeMM through inducing the expression of translation initiation and
elongation factors genes.

Ribosomes are the fundamental macromolecular organelles that play a central role in
the translation process, allowing the information encoded within mRNA to be converted
into proteins [40]; a large number of ribosomes are required for cell growth [41]. A previous
report showed that RBD-1 is essential for the early development of C. elegans through 18S
ribosomal RNA processing [67]. The C. elegans nucleostemin promotes cell growth via
increasing the ribosome biogenesis [68]. Here, we found that the expression of several
ribosome biogenesis-related genes was significantly upregulated in L. marina with dietary
stearic acid supplementation (Figure 5C), indicating that stearic acid supplementation might
promote L. marina development via upregulation of ribosome biogenesis-related genes.

4.2. Stearic Acid Might Promote L. marina Development via Upregulation of Transmembrane
Transporter Genes

Transmembrane transporters facilitate nutrient sensing and transport [69–71], and
have been implicated in various diseases [72–74]. In this study, we observed that the
expression of multiple transmembrane transporter genes such as aat-5, hmt-1, mct-6, mfsd-8,
pgp-9, and slc-17.2 were significantly increased in marine nematode L. marina supplemented
with stearic acid (Figure 5D). aat-5 encodes a L-amino acid transmembrane transporter, hmt-
1 enables cadmium ion transmembrane transporter activity, mct-6 encodes a monocarboxylic
acid transmembrane transporter, mfsd-8 is an ortholog of human MFSD8 and enables
transmembrane transporter activity, pgp-9 is an ortholog of human ABCB1 and ABCB4,
and slc-17.2 is predicted to be involved in anion transport (www.wormbase.org, accessed
on 4 February 2022).

It was reported that RNAi knockdown of aat-5 could partially rescue the reduced
brood size in C. elegans pept-1 (intestinal peptide transporter) mutant [75]. C. elegans hmt-1,
a member of ABCB belonging to the ABC transporter superfamily, detoxifies cadmium,
copper, and arsenic [76,77]. C. elegans ABCE is a transmembrane transporter, and RNAi
knock-down the expression of abce-1 leads to slow growth [78]. MFSD (major facilitator
superfamily domain) family members are known to be involved in energy consumption
and homeostasis [79–82]. A previous report showed that Mfsd2a knockout mice are smaller
and leaner [80], and mfsd-6 promotes PLM (posterior lateral microtubule) regrowth in
C. elegans [83]. gem-1, encoding the SLC16 monocarboxylate transporter-related protein,
promotes gonadal cell divisions in C. elegans [84]. T09F3.2 encodes a pyrimidine nucleotide
transporter belonging to the SLC transporter family, and C. elegans T09F3.2 mutant exhibits
slow growth and movement [85]. Together, our data suggest that stearic acid supplementa-
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tion might promote development of L. marina via upregulation of certain transmembrane
transporter genes.

4.3. Stearic Acid Might Promote Development of L. marina through Reduced Neuronal Signaling

Neuronal signaling is essential for nutrition sensation, feeding behavior, and devel-
opmental regulation in animals [16,86–88]. In particular, acetylcholine neuronal signaling
plays an essential role in regulating diet consumption and energy homeostasis [89,90]. Im-
pairment of cholinergic signaling increases food intake and leads to obesity [90]. Nicotine,
as a known appetite suppressant, was reported to reduce food intake by activating nico-
tinic acetylcholine receptors (nAChRs) [91]. We previously reported that transmembrane
channel-like gene tmc-1 attenuates the development of C. elegans via nicotinic acetylcholine
receptor gene eat-2 [16], and this developmental regulating effect of tmc-1/eat-2 is achieved
by altering fatty acid metabolism [23]. Our transcriptomic data showed that dietary stearic
acid supplementation did not significantly change the expression of tmc-1 and eat-2 genes
in L. marina, while we identified more than a dozen neuronal signaling receptor genes
such as daf-37, daf-38, dop-4, frpr-1, frpr-3, frpr-7, gnrr-5, mod-1, npr-5, npr-7, npr-10, npr-13,
and ntr-1 that were significantly downregulated in L. marina with dietary stearic acid
supplementation (Figure 6). Both daf-37 and daf-38 encode G protein-coupled receptors,
which cooperatively mediate pheromone perception and are involved in dauer formation
in C. elegans [92]. DOP-4 protein is a dopamine neurotransmitter receptor [93], frpr-1, frpr-3,
and frpr-7 all belong to the FMRFamide peptide receptor gene family, gnrr-5 is a homolog
of human gonadotropin-releasing hormone receptor (GnRHR) gene, mod-1 is a serotonergic
chloride channel, npr-5, npr-7, npr-10, and npr-13 belong to the neuropeptide Y receptor fam-
ily, and ntr-1 is a homolog of human AVPR1B and AVPR2 (www.wormbase.org, accessed
on 4 February 2022).

A previous report showed that the dop-4 mutants are shorter compared to the wild-type
C. elegans [94]. External food supply promotes C. elegans avoidance responses to soluble
repellents in a dop-4 dependent manner [95]. C. elegans FRPR-3 serves as a receptor for the
FLP-20 (FMRF-like peptide 20) released by primary mechanosensory neurons, and regulates
arousal and other behavioral states [96]. C. elegans AVK interneurons mediate food sensation
by releasing the FLP-1 neuropeptides and the receptors are NPR-6 and FRPR-7 [97]. mod-
1 is required for locomotor rate reduction when food-deprived C. elegans re-encounter
food [98], and is involved in serotonin-induced fat loss [99]. NPR-1 is reported to regulate
C. elegans foraging [100], and a previous report showed that npr-5 encodes a receptor gene
for the FLP-18 neuropeptide, and flp-18 mutants exhibits defects in chemosensation and
foraging [101]. It has been reported that FMRFamide neuropeptides inducing C. elegans
sleep act via NPR-7 [102]. NPR-10 encodes a receptor for neuropeptides encoded by nlp-
14, and NLP-14 activates NPR-10 to repress serotonin-induced aversive responses [103].
NTR-1 is a receptor for nematocin, which is a vasopressin/oxytocin-related neuropeptide.
Previous reports showed that nematocin controls male mating behaviors, as well as salt
chemotaxis of gustatory associative learning in C. elegans [104,105]. Given that impairing the
function of acetylcholine neuronal signaling genes such as tmc-1 or eat-2 promote C. elegans
development on CeMM [16,23], our data indicate that stearic acid supplementation might
accelerate the growth of L. marina via repressing the expression of dopamine, serotonin,
FMRFamide peptide, neuropeptide Y, and other neural receptor genes.

5. Conclusions

In conclusion, we found that dietary stearic acid supplementation promotes devel-
opment of the marine nematode L. marina on an axenic chemical defined sea-salt-CeMM
medium, indicating a conserved role of stearic acid in developmental regulation. Our
results provide important insights into how a single fatty acid stearic acid regulates ani-
mal development, together with the advantage that the composition and amount of each
chemical can be manipulated in the chemically defined CeMM medium. Further research
with genome editing might illustrate the molecular mechanisms underlying how a single

www.wormbase.org


J. Mar. Sci. Eng. 2022, 10, 428 13 of 17

metabolite regulates animal development and physiology in response to global climate
change with a dynamic nutritional environment.
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Component) enrichment analysis for DEGs. Supplementary File S4: Correlation analysis of the results
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