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Abstract: This study determines the threshold for the computational rate of actuator motor con-
trollers for unmanned underwater vehicles necessary to accurately follow discontinuous square wave
commands. Motors must track challenging square-wave inputs, and identification of key compu-
tational rates permit application of deterministic artificial intelligence (D.A.I.) to achieve tracking
to a machine-precision degree of accuracy in direct comparison to other state-of-art approaches.
All modeling approaches are validated in MATLAB simulations where the motor process is dis-
cretized at varying step-sizes (inversely proportional to computational rate). At a large step-size (fast
computational rate), discrete D.A.I. shows a mean error more than three times larger than that of a
ubiquitous model-following approach. Yet, at a smaller step size (slower computational rate), the
mean error decreases by a factor of 10, only three percent larger than that of continuous D.A.I. Hence,
the performance of discrete D.A.I. is critically affected by the sampling period for discretization of the
system equations and computational rate. Discrete D.A.I. should be avoided when small step-size
discretization is unavailable. In fact, continuous D.A.I. has surpassed all modeling approaches,
which makes it the safest and most viable solution to future commercial applications in unmanned
underwater vehicles.

Keywords: autonomous surface vehicles (ASV); autonomous underwater vehicle (AUV); control
and guidance; nonlinear control; deterministic artificial intelligence (D.A.I.); model-following; R.L.S.;
marine actuators

1. Introduction

The United States Navy has that recognized unmanned vehicles are a key part of
future naval capabilities [1], as depicted in Figure 1. The development of adaptive and
learning systems has greatly expanded the possibility of unmanned vehicles, allowing
human control in distant operations that are otherwise impossible. The automation of
DC motor control has thus earned its latest highlight as a resurgent, promising field of
research. Deterministic artificial intelligence (D.A.I.) utilizes self-awareness assertion in
the feedforward process dynamics, where the feedback signal is formulated by 2-norm
optimal least squares (learning) or by proportional derivative feedback (adaption). This
manuscript serves both as a sequel to the analysis of discrete D.A.I. (described in the
following literature review), and the publication is written advocating for commercial
application of D.A.I. to unmanned vehicles as depicted in Figure 2. The main text includes
an in-depth comparison to a chosen state-of-the art benchmark approach mainly focusing
on their disparate trajectory tracking ability.
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Figure 1. Office of Naval Research swarm demonstration in the James River in Virginia using 

NASA’s Jet Propulsion Laboratory’s control architecture [1] for robotic agent command and sens-

ing to serve as the core autonomy technology for the ONR Swarm demonstration on the James 

River in Virginia. Image used is consistent with NOAA policy, “NOAA still images, audio files 

and video generally are not copyrighted. You may use this material for educational or informa-

tional purposes, including photo collections, textbooks, public exhibits, computer graphical simu-

lations and webpages.” [2]. 
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Figure 1. Office of Naval Research swarm demonstration in the James River in Virginia using NASA’s
Jet Propulsion Laboratory’s control architecture [2] for robotic agent command and sensing to serve
as the core autonomy technology for the ONR Swarm demonstration on the James River in Virginia.
Image used is consistent with NOAA policy, “NOAA still images, audio files and video generally
are not copyrighted. You may use this material for educational or informational purposes, including
photo collections, textbooks, public exhibits, computer graphical simulations and webpages.” [3].
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Figure 2. Remus 600 unmanned underwater vehicle used by the National Oceanic and Atmospheric
Administration (NOAA) [4]. Image used is consistent with NOAA policy, “NOAA still images,
audio files and video generally are not copyrighted. You may use this material for educational or
informational purposes, including photo collections, textbooks, public exhibits, computer graphical
simulations and webpages.” [3].

Reference [2] describes a tightly integrated instantiation of an autonomous agent called
CARACaS (Control Architecture for Robotic Agent Command and Sensing) developed at
JPL (Jet Propulsion Laboratory, Pasadena, USA) that was designed to address many of the
issues for survivable ASV/AUV control and to provide adaptive mission capabilities (see
Figure 1). Missions naturally suited for utilization include traverse, mapping, and poten-
tially neutralizing mine fields [5,6], as displayed in Figure 3 from the study in reference [7]
for the Phoenix vehicle in Figure 3b.
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Figure 3. Unmanned underwater vehicles like the Phoenix vehicle in subfigure (b) perform dangerous
missions like traversing minefields, as depicted in subfigure (a). Direct current (DC) motors as
diagramed in subfigure (c) actuate the control fins to steer the vehicle.

The development of adaptive and learning systems has a long, distinguished lineage
in the literature [8–35] with many optional techniques available to choose from. The
trendsetting work of Isidori and Byrnes [36] on the control of exogenous signals revealed the
close tie between the nonlinear regulator equations and the output regulation of a nonlinear
system. The momentum continued, and the nonlinear output regulation has been further
explored by numerous authors including Cheng, Tarn, and Spurgeon [37], Khalil [38],
and Wang and Huang [39] across autonomous and nonautonomous systems. The lineage
emphasized in this manuscript stems from a heritage in vehicle guidance and control
techniques [8–15] extended to apply to motor controllers [17–35] that generate vehicle
motion. Vehicle maneuvering is controlled by the actuator fins displayed in Figure 3b
generating navigation as displayed in Figure 3a. Actuation is accomplished by sending
control signals to motors (Figure 3c) that rotate the fins.

This manuscript proposes a preferred instantiation of adaptive and learning sys-
tems [26,27] by evaluating the efficacy of motor control techniques based on iterated
computational rates and system discretization. The materials and methods in Section 2 first
describe model discretization and then introduces the two compared: one adaptive and
one learning each with interconnected lineage of research in the literature.

1.1. Learning Teachniques

The learning techniques examined in this manuscript stem from heritage in Slotine
and Li’s nonlinear adaptive methods developed originally for robotics [8] and space-
craft [9–11], while the method has been similarly applied to ocean vehicles [14,15]. The
method was initially expressed in the non-rotating inertial reference frame [8,9] and re-
sulted in cumbersome numerical burdens, therefore Fossen re-parameterized the method
into the coordinates of the body reference frame [10], while [11] illustrated separate tun-
ability of feedforward and feedback elements. The feedforward elements substantiated
what eventually became known as self-awareness statements [12] of deterministic artificial
intelligence [13].

Fossen also prolifically published application to ocean vehicles [14] including the
most recent text [15] which includes contains trajectory tracking control via pole placement
PID, LQR, feedback linearization, nonlinear backstepping, sliding mode control, which
might now be deemed commonly accepted approaches. Reference [7] illustrates the ef-
ficacy of such approaches to guide autonomous underwater vehicles through simulated
minefields illustrated in Figure 3a,b. The feedforward elements were used to develop de-
terministic artificial intelligence through maturation as applied in so-called physics-based
methods championed by Lorenz [16] and his students [11,17–24] for many years, which
also extended the method from vehicles to actuator control circuits where representative
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results following challenging discontinuous commands are depicted in Figure 4. Zhang
et al. [17] illustrated fault-tolerance, while Apoorva et al. [18] revealed loss reduction and
Flieh et al. demonstrated loss minimization [19] and dead-beat control [20] in addition to
self-sensing [21], the precursor to using the physics-based dynamics for virtual sensing [22]
following the illustration of optimality in [23] and self-sensing [24] specifically applied to
DC motors.
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Figure 4. Illustration of difficulty following discontinuous step commands using cascade control
structure to provide sensorless speed control. Speed (in revolutions per min) on the ordinates versus
time in sec on the abscissa. (a) Comparison between the speeds obtained from the measurement and
simulation, with a required speed of 3000 rpm (Figure 24 in reference [24]). (b) Figure 26. Comparison
between the speeds obtained from the measurement and simulation, with stepped changes of required
(Figure 26 in [24]).

Despite stochastic learning methods still holding some interest [25] applied to motor
control, this manuscript continues the investigation of deterministic learning approaches [26]
following Shah’s recommendations [27]. Specifically, [26] illustrated a marked improvement
in tracking performance, while Shah’s attempt in [27] to duplicate the results revealed a strong
correlation to performance improvement and system discretization and speed of computation.
One novelty presented here is analysis of Shah’s identified correlated factors.

1.2. Adaptive Techniques as Benchmarks for Comparison

Many alternative approaches are available as benchmarks for comparison. A short
survey of alternative methods is presented in [30] presenting multiple model adaptive con-
trol (MMAC) techniques available for the control of a DC motor under load changes. Direct
torque control is an option based on discontinuities in rapid modulating commands. [31]
Speed control is presented using a model-reference adaptive control in [32] offering the
possibility to compensate the torque ripples and load torque. Akin to the optimization
approach applied to vehicles (second order systems) [22], extremum-seeking adaptive
control of first-order systems was proposed in [33,34].

Alternative approaches are generally tested with step and/or square wave inputs. The
ability to track step functions or square wave sequences of step functions is a challenging
requirement for DC motor control. Square wave command is chosen because the track-
ing ability of a nonlinear adaptive method can easily be discerned by the magnitude of
overshoot and undershoot at the discontinuities in the square wave. Figure 4 validates the
challenge by illustrating a just-published novel sensor-less methods struggling to follow
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step and square wave commands, respectively. Figure 5 displays the results of model refer-
ence adaptive control and robust adaptive control in Figure 5a and self-tuning regulators
in Figure 5b. These methods display disparate natures illustrating the difficulties.
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Figure 5. (a) Comparison of model reference adaptive control and robust adaptive control tracking
square waves from [29]. Notice the square waves are rounded to reduce the deleterious challenge
of discontinuity; (b) self-tuning regulators tracking square wave commands from [35]. Notice the
square waves are not rounded, implying a relatively more challenging demand.

The chosen comparative benchmark adaptive technique is the model-following self-
tuning regulator [28] in keeping with the prequel research by Shah [27] who sought to
duplicate the results in [26], which seemingly exactly followed a challenging square wave
(with non-rounded discontinuous points) after an initial startup transient.

Following the publication of [26], Shah et al. revealed performance limitations in [27]
indicating computational rate is the driving influence when the system is discretized. This
manuscript presents that recommended sequel to Shah: evaluation of computational rate
and recommendations for application in adaptive and learning methods. Section 3 results
display the results of comparative analysis of computational rate (via step size) and makes
recommendations based on multi-variate figures of merit: target tracking error mean and
standard deviations.

1.3. Proposed Novelties

Several innovations are proposed foremost by analysis in Section 2 followed by vali-
dating simulation experiments in Section 3 culminating in direct comparison to modern
benchmarks in Section 4.

1. Validation of the original prequel [26] seemingly illustrating perfect tracking of chal-
lenging squares compared to a state-of-the-art benchmark as depicted in the figures
in Section 1.
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2. Validation of first sequel’s [27] identification of paramountcy of discretization and
computational speed.

3. Recommendation of key threshold discretization and computational speed to dupli-
cate the results of the original prequel [26].

2. Materials and Methods

This section offers sufficient details to allow others to replicate and build on the
published results. Modeling is described in Section 2.1 followed by adaptive and learning
methods, respectively. The newest method is the learning one: deterministic artificial
intelligence, while the parallel comparison to a well-known state-of-the-art nonlinear
adaptive technique offers contextualization to aid the nature of the novel recommendations.
The complete code of the program is appended at the end of the manuscript to aid the
readers’ repeatability of the results presented in Section 3.

2.1. Discretized Process Truth Model for DC Motor

Consider a continuous-time process, precisely a normalized model for a DC motor. The
process is described by the transfer function in Equation (1). The continuous-time process
is initially discretized at a time step of 050 s using an internal MATLAB function provided
in the Appendix A. Equation (2) shows the discretized process truth model expressed in the
frequency domain. Alternatively, the final system response can be written as Equation (3).

G(s) =
B(s)
A(s)

=
1

s(s + 1)
(1)

G(z) =
Y(z)
U(z)

=
BT

AR + BS
=

0.0984z + 0.0984
z2 − 1.607z + 0.6065

(2)

0.0984u(t) + 0.0984u(t− 1) = y(t + 1)− 1.607y(t) + 0.6065y(t− 1) (3)

2.2. Model-Following Self Tuner

The pulse transfer operator of the process is given by Equation (4) where A and B
are polynomials in the forward shift operator q, and the polynomials are assumed to be
relatively prime. The process model, which is linear in the parameters, may be expressed
in the form of a differential equation whose parameters are estimated by the recursive
least-squares (RLS) method.

H(q) =
B(q)
A(q)

=
b0q + b1

q2 + a1q + a2
(4)

The process is of second order; the coefficients of the controller polynomials (R, S,
and T) are of first order and the closed-loop system is of third order. The compatibility
condition, as described by Equation (5), requires the model to have the same zero as the
process. The desired transfer system thus can be found via cancellation of polynomial
factors B+ and B− that represent canceled zeros and uncanceled zeros, respectively.

Hm(q) =
Bm(q)
Am(q)

=
bm0q + bm1

q2 + am1q + am2
= β

b0q + b1

q2 + am1q + am2
(5)

The coefficients of controller polynomials are computed by Diophantine equation,
described by AR + BS = Ac. Diophantine equation without process zero-cancellation is
given by Equation (6). The coefficients of controller polynomials may be expressed in terms
of the estimated process parameters, as shown in Equations (7)–(9). The polynomial T
requires an additional model-following condition described by Equation (10).(

q2 + a1q + a2

)
(q + r1) + (b0q + b1)(s0q + s1) =

(
q2 + am1q + am2

)
(q + a0) (6)
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r1 =
b1

b0
+

(b2
1 − am1b0b1 + am2b2

0)(−b1 + a0b0)

b0
(
b2

1 − a1b0b1 + a2b2
0
) (7)

s0 =
b1
(
a0am1 − a2 − am1a1 + a2

1 + am2 − a1a0
)

b2
1 − a1b0b1 + a2b2

0
+

b0(am1a2 − a1a2 − a0am2 + a0a2)

b2
1 − a1b0b1 + a2b2

0
(8)

s1 =
b1(a1a2 − am1a2 + a0am2 − a0a2)

b2
1 − a1b0b1 + a2b2

0
+

b0
(
a2am2 − a2

2 − a0am2a1 + a0a2am1
)

b2
1 − a1b0b1 + a2b2

0
(9)

T(q) = A0B′m = βA0(q) = β(q + a0) (10)

2.3. Deterministic Artificial Intelligence

Deterministic artificial intelligence requires self-awareness assertion, which can be
established by isolating u(t) in the left-hand side of Equation (3). The mathematical ma-
nipulation, as shown by Equation (11), allows u(t) to be expressed as the product of a
matrix of knowns and a vector of unknowns. The matrix of knowns, [φd], represents the
desired trajectory; the vector of unknowns, {θ̂}, represents the learned parameters from
proportional-derivative (PD) feedback to generate the process input. The regression form
of the process input (t) is thus written as u∗(t) as described by Equations (12) and (13).

u(t) =
1

0.0984
y(t + 1)− 1.607

0.0984
y(t) +

0.6065
0.0984

y(t− 1)− u(t− 1) (11)

u∗(t) = â1yd(t + 1)− â2yd(t) + â3yd(t− 1)− b̂1ud(t− 1) (12)

u∗(t) = [φd]{θ̂} = [yd(t + 1)− yd(t) + yd(t− 1)− ud(t− 1)]


â1
â2
â3
b̂1

 (13)

The desired trajectory is computed by propagating states to y (t + 1) and by apply-
ing the feedforward control to Equation (3). The rough initial estimates of the feedback
parameters along with the values of output y and regression u∗(t) are used in recursive
least squares (RLS) to learn the updated feedback parameters {θ̂}.

To evaluate a continuous system using DAI, the transfer function in Equation (1)
should be converted back into an ordinary differential equation (ODE), where ODE is
reparametrized as in Equation (13). Alternatively, the feedback parameters can be learned
in a discrete environment via optimal feedback adjustment introduced by Smeresky [12],
as described by Equation (14).

The updated and optimal feedback parameters are fed back into Equation (12) to
calculate the control u(t) and output a sinusoidal trajectory given by Equation (15), where
A0 and A each represent the original state and the target state, respectively.

u ≡ φd

(
φT

d φd

)−1
φT

d δu (14)

z = (A− A0)[1 + sin(ωt + φ)] (15)

3. Results

This section first compares discrete deterministic artificial intelligence and the mod-
ern benchmark, model-following control. Revelations include a higher susceptibility of
deterministic artificial intelligence to larger step sizes, but increased efficacy relative to
model following when using smaller step sizes. Next is a presentation of results comparing
continuous versus discrete deterministic artificial intelligence.
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3.1. Comparison of Discrete Deterministic Artificial Intelligence and Model-Following Approach

The deterministic artificial intelligence modeling approach shows a significantly larger
tracking error than the model-following approach when the process is discretized with a
large sampling period. Specifically, as seen in Table 1, the mean tracking error is 3.08 times
larger, and the error standard deviation is approximately two times larger at a step-size
of 0.50 s. The large discrepancy in the tracking performance is well illustrated in Figure 1.
The output via the modeling approach almost immediately follows the input signal with
measurable accuracy. Contrarily, deterministic artificial intelligence shows significant
oscillations at discontinuities where the sign of the input signal changes.

Table 1. Error distribution of D.A.I. and model-following method (M.F.) at varying step-sizes.

Method Step-Size
[s] Error Mean Error Standard

Deviation

D.A.I. 0.50 0.0956 0.1632
M.F. 0.50 0.0278 0.0918

D.A.I. 0.27 0.0175 0.0545
M.F. 0.27 0.0471 0.1745

The performance of deterministic artificial intelligence however is elevated consid-
erably when the step-size is reduced. As shown in Table 1, the mean tracking error of
deterministic artificial intelligence is reduced to approximately 20% of its initial value when
the step-size is lowered to 0.27 s. The error standard deviation is also reduced by a factor
of 3. The improvement in deterministic artificial intelligence performance is highlighted
in Figure 2. The output via deterministic artificial intelligence shows marginal overshoots
at discontinuities and follows the input signal with minor tracking error. In contrast,
the model-following approach shows the degradation of performance; at a step-size of
0.27 s, the output shows significant oscillations in the initial transient which is initially not
observed at a step-size of 0.50 s.

3.2. Comparison of Discrete D.A.I. and Continuous D.A.I.

Continuous D.A.I. has high tracking capability. It follows the input signal without
any visible tacking error 50 after the initial transient. From the previous comparison in
Section 2.1 through Section 2.2, it is apparent that D.A.I. is less favorable for a discretized
process with a large step-size. It is also revealed in Table 2 that the performance of determin-
istic artificial intelligence increases significantly when the step-size is reduced and tuned to
precision. In fact, discrete D.A.I. shows tracking performance that is comparable to that of
continuous D.A.I. when the step-size is reduced. The mean error of discrete deterministic
artificial intelligence is nearly equal to that of continuous D.A.I. with a 3% difference.

Table 2. Error distribution of discrete D.A.I. and continuous D.A.I. at varying step-sizes.

Type Step-Size [s] Error Mean Error Std.

Discrete 0.50 0.0956 0.1632
Continuous 0.50 0.0223 0.1654

Discrete 0.27 0.0175 0.0545
Continuous 0.27 0.0169 0.1397

In fact, the error standard deviation of discrete D.A.I. is half of that of continuous
deterministic artificial intelligence. However, it is important to note that the smaller
standard deviation of discrete D.A.I. does not suggest its superior performance over its
continuous twin. The relatively large standard deviation of continuous deterministic
artificial intelligence is due to the oscillations in the initial transient. When the time window
is pushed past the initial transient, it is expected that continuous D.A.I. will outperform
discrete deterministic artificial intelligence due to marginal or no tracking error. The
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results in Section 3 are formulated inside MATLAB. The complete code is attached in the
Appendix A to help replication of the results.

4. Discussion

The results in Tables 3–5 validate the ability of deterministic artificial intelligence
to track challenging, discontinuous square wave commands in a manner that favorably
compares to modern techniques. Foundational research seemed to indicate the efficacy of
continuous deterministic artificial intelligence, but subsequent prequel research discerned
a failure under certain conditions of discretization, and this manuscript validates the
exemplary performance of continuous control and furthermore establishes threshold for
discretization to maintain good performance.

Table 3. Comparison of different discretization methods in discrete D.A.I.

Discretization
Method

Step-Size
[s]

Error
Mean

Error
Standard Deviation

Matched 0.50 0.0956 (0%) 0.1632 (0%)
ZOH 0.50 0.0730 (−24%) 0.1317 (−19%)
Tustin
FOH

0.50
0.50

0.0204 (−79%)
0.0141 (−85%)

0.0525 (−68%)
0.0330 (−80%)

Table 4. Percent performance improvement for D.A.I. and model-following adaptive control.

Method Step-Size
[s]

Error
Mean

Error
Standard Deviation

D.A.I. 0.50 0% 0%
M.F. 0.50 −71% −44%

D.A.I. 0.27 −82% −67%
M.F. 0.27 −51% 7%

Table 5. Percent performance improvement for continuous and discrete D.A.I.

Method Step-Size
[s]

Error
Mean

Error
Standard Deviation

Discrete 0.50 0% 0%
Continuous 0.50 −77% 1%

Discrete 0.27 −82% −67%
Continuous 0.27 −82% −14%

Future Research Recommendations

Following successful duplication of these results to establish the benchmark for the
sequel study, random parameter variation should be explored to ascertain the ability of
deterministic artificial intelligence to learn the time-varying parameters and maintain
high performance.

5. Conclusions

In essence, the manuscript reveals not only that different control algorithms yield
disparate control effects (as seen in Figures 5 and 6), but also that the degree of discretization
in a control algorithm dictates the tracking quality of the algorithm, as presented in Figure 7.
Integration solver step-size was also iterated for both continuous and discrete system
equations. The choosing of different discretization methods, such as zero-order hold
(ZOH), bilinear approximation (Tustin), and linear interpolation (FOH), visibly reduced
the tracking error at a large step-size. The discrepancy in the results decreased with step
size and eventually became negligible and, thus, was omitted. Surprisingly, the best
performance was achieved with discrete deterministic artificial intelligence using a small
step-size with continuous deterministic artificial intelligence performance next best.
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Appendix A

The appendix contains topologies crucial to understanding and reproducing the
research published in this manuscript.

Appendix A.1. Discrete D.A.I.

clear all; clc; close all;

%% DISCRETIZATION
% B=[0 0.1065 0.0902];A=poly([1.1 0.8]);
% Gs = tf(B,A);
% a1=0;a2=0;b0=0.1;b1=0.2; %Shah’s

Bp=[0 0 1];Ap=[1 1 0];Gs=tf(Bp,Ap); %Create continuous time transfer function
Ts=0.5; Hd=c2d(Gs,Ts,‘matched’); % Transform continuous system to discrete system
B = Hd.Numerator{1}; A = Hd.Denominator{1};
b0=0.1; b1=0.1; a0=0.1; a1=0.01; a2=0.01;

%% RLS

Am=poly([0.2+0.2j 0.2-0.2j]);Bm=[0 0.1065 0.0902];
am0=Am(1);am1=Am(2);am2=Am(3);a0=0;

Rmat=[];
factor = 25;

% Reference
T_ref = 25; t_max = 100; time = 0:0.5:t_max; nt = length(time);

% slew stuff
Tslew = 1; Uc = zeros(length(nt));

for j=1:nt
% pos or neg
if mod(time(j),2*T_ref)<T_ref

pn = 1;
else

pn =-1;
end

% slew
if mod(time(j),T_ref)<Tslew

Uc(j)=pn*-1*sin(pi/2+pi/Tslew*mod(time(j),T_ref));
else

Uc(j)=pn;
end

% initial slew special case
if time(j)<Tslew

Uc(j)=1/2*-1*sin(pi/2+pi/Tslew*mod(time(j),T_ref))+1/2;
end

end

n=4;lambda=1.0;
nzeros=2;time=zeros(1,nzeros);Y=zeros(1,nzeros);Ym=zeros(1,nzeros);
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U=ones(1,nzeros);Uc=[zeros(1,nzeros),Uc];
Noise = 0;
P=[100 0 0 0;0 100 0 0;0 0 1 0;0 0 0 1]; THETA_hat(:,1)=[-a1 -a2 b0 b1]’;beta=[];

alpha = 0.5; gamma = 1.2;
for i=1:201

phi=[]; t=i+nzeros; time(t)=i;
Y(t)=[-A(2) -A(3) B(2) B(3)]*[Y(t-1) Y(t-2) U(t-1) U(t-2)]’;
Ym(t)=[-Am(2) -Am(3) Bm(2) Bm(3)]*[Ym(t-1) Ym(t-2) Uc(t-1) Uc(t-2)]’;
BETA=(Am(1)+Am(2)+Am(3))/(b0+b1); beta=[beta BETA];

%RLS implementation
phi=[Y(t-1) Y(t-2) U(t-1) U(t-2)]’; K=P*phi*1/(lambda+phi’*P*phi);

P=P-P*phi*inv(1+phi’*P*phi)*phi’*P/lambda; %RLS-EF
error(i)=Y(t)-phi’*THETA_hat(:,i); THETA_hat(:,i+1)=THETA_hat(:,i)+K*error(i);
a1=-THETA_hat(1,i+1);a2=-THETA_hat(2,i+1);b0=THETA_hat(3,i+1);b1=THETA_

hat(4,i+1);
Af(:,i)=[1 a1 a2]’; Bf(:,i)=[b0 b1]’;

% Determine R,S, & T for CONTROLLER
r1=(b1/b0)+(b1ˆ2-am1*b0*b1+am2*b0ˆ2)*(-b1+a0*b0)/(b0*(b1ˆ2-a1*b0*b1+a2*b0ˆ2));
s0=b1*(a0*am1-a2-am1*a1+a1ˆ2+am2-a1*a0)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2)+b0*(am1*a2-a1*

a2-a0*am2+a0*a2)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2);
s1=b1*(a1*a2-am1*a2+a0*am2-a0*a2)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2)+b0*(a2*am2-a2ˆ2-a0*

am2*a1+a0*a2*am1)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2);
R=[1 r1];S=[s0 s1];T=BETA*[1 a0];

Rmat=[Rmat r1];

%calculate control signal
U(t)=[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc(t) Uc(t-1) U(t-1) Y(t) Y(t-1)]’;
U(t)=1.3*[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc(t) Uc(t-1) U(t-1) Y(t) Y(t-1)]’;% Arbitrarily in-

creased to duplicate text
end

%% DAI

%Create command signal, Uc based on Example 3.5 plots . . . square wave with 50 sec
period
t_max = 200;
THETA_hat(:,1)=[-a1 -a2 b0 b1]’;
n = length(THETA_hat);
% Sigma=1/25; Noise=Sigma*randn(nt,1);
% Noise = 0;

nzeros=2;
Y_true=zeros(1,nzeros);Ym=zeros(1,nzeros);U=zeros(1,nzeros);
P=[100 0 0 0;0 100 0 0;0 0 1 0;0 0 0 1];
lambda = 1;

eb = Y_true(1) - Uc(1);
err = 0;
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kp = 2.0;
kd = 6.0;

hatvec = zeros(4,1);
for i=1:t_max+1 %Loop through the output data Y(t)

t=i+nzeros;
de = err-eb;
u = kp*err + kd*de;
U(t-1)= u;

Y_true(t)=[Y_true(t-1) Y_true(t-2) U(t-1) U(t-2)]*[-A(2) -A(3) B(2) B(3)]’;

phid = [Y_true(t) -Y_true(t-1) Y_true(t-2) -U(t-2)];
newest = phid\u;
hatvec(:,i) = newest;
eb = err;
%disp(t);
err = Uc(t)-Y_true(t);

end

%% PLOT

tspan = linspace(0,100,201);
tspan = [zeros(1,2) tspan];

figure(1); %DAI
plot(tspan(1:201),Uc(1:201),‘k-’,‘LineWidth’,1); hold on; plot(tspan(1:201),Y_true(2:202),
‘b–’,‘LineWidth’,3); hold off
xlabel(’Time(sec)’); legend(‘Uc’,‘Y’,‘fontsize’,11);
set(gca,‘fontsize’,16); set(gca,‘fontname’,‘Palatino Linotype’); xlim([0 max(time)]); grid;
% p=plot(tspan,Uc(1:203),‘-’,tspan,Y,‘-’); p(2).LineWidth = 2; legend(‘Uc’,‘Y’,‘fontsize’,11);
%DAI
axis([0 100,-1.5 1.5]);

figure(2); %RLS estimation
plot(tspan(1:201),Uc(1:201),‘k-’,‘LineWidth’,1); hold on; plot(tspan(1:201),Y(3:203),‘r–’,
‘LineWidth’,3); hold off
xlabel(’Time(sec)’); legend(‘Uc’,‘Y’,‘fontsize’,11);
set(gca,‘fontsize’,16); set(gca,‘fontname’,‘Palatino Linotype’); xlim([0 max(time)]); grid;
axis([0 100,-1.5 1.5]);

DAI_err_mean = mean(abs(Uc(1:201)-Y_true(2:202)))
DAI_err_std = std(abs(Uc(1:201)-Y_true(2:202)))

RLS_err_mean = mean(abs(Uc(1:201)-Y(3:203)))
RLS_err_std = std(abs(Uc(1:201)-Y(3:203)))

Appendix A.2. Continuous D.A.I.

clear all;clc;close all;

% Enter Given Plant parameters
for k=1:2
Bp=[0 0 1];Ap=[1 1 0];Gs=tf(Bp,Ap); %Create continuous time transfer function
Ts=[0.5 0.27]; Hz=c2d(Gs,Ts(k),‘matched’); % Transform continuous system to discrete
system
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B = Hz.Numerator{1}; A = Hz.Denominator{1};

% Initial estimates of plant parameters for undetermined system from example 3.5
b0=0.1; b1=0.1; a0=0.1; a1=0.01; a2=0.01;

% Reference
T_ref = 25; t_max = 100; time = 0:Ts:t_max; nt = length(time);

% slew stuff
Tslew = 1; Yd = zeros(length(nt));

for i=1:nt
% pos or neg
if mod(time(i),2*T_ref)<T_ref

pn = 1;
else

pn =-1;
end

% slew
if mod(time(i),T_ref)<Tslew

Yd(i)=pn*-1*sin(pi/2+pi/Tslew*mod(time(i),T_ref));
else

Yd(i)=pn;
end

% initial slew special case
if time(i)<Tslew

Yd(i)=1/2*-1*sin(pi/2+pi/Tslew*mod(time(i),T_ref))+1/2;
end

end

THETA_hat(:,1)=[-a1 -a2 b0 b1]’;
n = length(THETA_hat);
Sigma=1/12*0; Noise=Sigma*randn(nt,1);

nzeros=2;Y=zeros(1,nzeros);Y_true=zeros(1,nzeros);
Ym=zeros(1,nzeros);U=zeros(1,nzeros);Yd=[zeros(1,nzeros),Yd];
P=[100 0 0 0;0 100 0 0;0 0 1 0;0 0 0 1];
lambda = 1;

for i=1:nt-1
t=i+nzeros;

% Update Dynamics
Y_true(t)=[Y(t-1) Y(t-2) U(t-1) U(t-2)]*[-A(2) -A(3) B(2) B(3)]’;
Y(t)=Y_true(t)+Noise(i);

phi=[Y(t-1) Y(t-2) U(t-1) U(t-2)]’;
K=P*phi*1/(lambda+phi’*P*phi);
P=P-P*phi/(1+phi’*P*phi)*phi’*P/lambda;
innov_err(i)=Y(t)-phi’*THETA_hat(:,i);
THETA_hat(:,i+1)=THETA_hat(:,i)+K*innov_err(i);
a1=-THETA_hat(1,i+1);a2=-THETA_hat(2,i+1);b0=THETA_hat(3,i+1);b1=THETA_hat

(4,i+1);% THETA=[-a1 -a2 b0 b1];
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% Calculate Model control, U(t) optimally
U(t)=[Yd(t+1) Y(t) Y(t-1) U(t-1)]*[1 a1 a2 -b0]’/b1;

end

Y_true(end+1)=Y_true(end);
FS = 2;
time = [-(nzeros-1)*Ts:Ts:0 time];

figure (k)
plot(time,Yd,‘k-’,‘LineWidth’,1); hold on;
h1 = plot(time,Y_true,‘g–’,‘LineWidth’,2); axis([0 100,-1.5 1.5]); hold off; grid;
if k==1

legend(h1,‘T_s = 0.50s’,‘fontsize’,11); xlabel(’Time(sec)’); set(gca,‘fontsize’,
16); set(gca,‘fontname’,‘Palatino Linotype’);
else

legend(h1,‘T_s = 0.27s’,‘fontsize’,11); xlabel(’Time(sec)’); set(gca,‘fontsize’,
16); set(gca,‘fontname’,‘Palatino Linotype’);
end
end

Appendix A.3. D.A.I. All

clear all;clc;close all;

%% DISCRETIZATION
% B=[0 0.1065 0.0902];A=poly([1.1 0.8]);
% Gs = tf(B,A);
% a1=0;a2=0;b0=0.1;b1=0.2; %Shah’s

Bp=[0 0 1];Ap=[1 1 0];Gs=tf(Bp,Ap); %Create continuous time transfer function
Ts=0.5; Hd=c2d(Gs,Ts,‘matched’); % Transform continuous system to discrete system
B = Hd.Numerator{1}; A = Hd.Denominator{1};
b0=0.1; b1=0.1; a0=0.1; a1=0.01; a2=0.01;

%% RLS

Am=poly([0.2+0.2j 0.2-0.2j]);Bm=[0 0.1065 0.0902];
am0=Am(1);am1=Am(2);am2=Am(3);a0=0;

Rmat=[];
factor = 25;

% Reference
T_ref = 25; t_max = 100; time = 0:0.5:t_max; nt = length(time);

% slew stuff
Tslew = 1; Uc = zeros(length(nt));

for j=1:nt
% pos or neg
if mod(time(j),2*T_ref)<T_ref

pn = 1;
else

pn =-1;
end
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% slew
if mod(time(j),T_ref)<Tslew

Uc(j)=pn*-1*sin(pi/2+pi/Tslew*mod(time(j),T_ref));
else

Uc(j)=pn;
end

% initial slew special case
if time(j)<Tslew

Uc(j)=1/2*-1*sin(pi/2+pi/Tslew*mod(time(j),T_ref))+1/2;
end

end

n=4;lambda=1.0;
nzeros=2;time=zeros(1,nzeros);Y=zeros(1,nzeros);Ym=zeros(1,nzeros);
U=ones(1,nzeros);Uc=[zeros(1,nzeros),Uc];
Noise = 0;
P=[100 0 0 0;0 100 0 0;0 0 1 0;0 0 0 1]; THETA_hat(:,1)=[-a1 -a2 b0 b1]’;beta=[];

alpha = 0.5; gamma = 1.2;
for i=1:201

phi=[]; t=i+nzeros; time(t)=i;
Y(t)=[-A(2) -A(3) B(2) B(3)]*[Y(t-1) Y(t-2) U(t-1) U(t-2)]’;
Ym(t)=[-Am(2) -Am(3) Bm(2) Bm(3)]*[Ym(t-1) Ym(t-2) Uc(t-1) Uc(t-2)]’;
BETA=(Am(1)+Am(2)+Am(3))/(b0+b1); beta=[beta BETA];

%RLS implementation
phi=[Y(t-1) Y(t-2) U(t-1) U(t-2)]’; K=P*phi*1/(lambda+phi’*

P*phi); P=P-P*phi*inv(1+phi’*P*phi)*phi’*P/lambda; %RLS-EF
error(i)=Y(t)-phi’*THETA_hat(:,i); THETA_hat(:,i+1)=THETA_hat(:,i)+K*error(i);
a1=-THETA_hat(1,i+1);a2=-THETA_hat(2,i+1);b0=THETA_hat(3,i+1);b1=THETA_hat

(4,i+1);
Af(:,i)=[1 a1 a2]’; Bf(:,i)=[b0 b1]’;

% Determine R,S, & T for CONTROLLER
r1=(b1/b0)+(b1ˆ2-am1*b0*b1+am2*b0ˆ2)*(-b1+a0*b0)/(b0*(b1ˆ2-a1*b0*b1+a2*b0ˆ2));
s0=b1*(a0*am1-a2-am1*a1+a1ˆ2+am2-a1*a0)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2)+b0*(am1*a2-a1*a2-

a0*am2+a0*a2)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2);
s1=b1*(a1*a2-am1*a2+a0*am2-a0*a2)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2)+b0*(a2*am2-a2ˆ2-a0*am2*

a1+a0*a2*am1)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2);
R=[1 r1];S=[s0 s1];T=BETA*[1 a0];

Rmat=[Rmat r1];

%calculate control signal
U(t)=[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc(t) Uc(t-1) U(t-1) Y(t) Y(t-1)]’;
U(t)=1.3*[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc(t) Uc(t-1) U(t-1) Y(t) Y(t-1)]’;% Arbitrarily in-

creased to duplicate text
end

%% DAI

%Create command signal, Uc based on Example 3.5 plots . . . square wave with 50 sec
period
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t_max = 200;
THETA_hat(:,1)=[-a1 -a2 b0 b1]’;
n = length(THETA_hat);
% Sigma=1/25; Noise=Sigma*randn(nt,1);
% Noise = 0;

nzeros=2;
Y_true=zeros(1,nzeros);Ym=zeros(1,nzeros);U=zeros(1,nzeros);
P=[100 0 0 0;0 100 0 0;0 0 1 0;0 0 0 1];
lambda = 1;

eb = Y_true(1) - Uc(1);
err = 0;

kp = 2.0;
kd = 6.0;

hatvec = zeros(4,1);
for i=1:t_max+1 %Loop through the output data Y(t)

t=i+nzeros;
de = err-eb;
u = kp*err + kd*de;
U(t-1) = u;

Y_true(t)=[Y_true(t-1) Y_true(t-2) U(t-1) U(t-2)]*[-A(2) -A(3) B(2) B(3)]’;

phid = [Y_true(t) -Y_true(t-1) Y_true(t-2) -U(t-2)];
newest = phid\u;
hatvec(:,i) = newest;
eb = err;
%disp(t);
err = Uc(t)-Y_true(t);

end

%% PLOT

tspan = linspace(0,100,201);
tspan = [zeros(1,2) tspan];

figure(1); %DAI
plot(tspan(1:201),Uc(1:201),‘k-’,‘LineWidth’,1); hold on; plot(tspan(1:201),Y_true(2:202),‘b–
’,‘LineWidth’,3); hold off
xlabel(’Time(sec)’); legend(‘Uc’,‘Y’,‘fontsize’,11);
set(gca,‘fontsize’,16); set(gca,‘fontname’,‘Palatino Linotype’); xlim([0 max(time)]); grid;
% p=plot(tspan,Uc(1:203),‘-’,tspan,Y,‘-’); p(2).LineWidth = 2; legend(‘Uc’,‘Y’,‘fontsize’,11);
%DAI
axis([0 100,-1.5 1.5]);

figure(2); %RLS estimation
plot(tspan(1:201),Uc(1:201),‘k-’,‘LineWidth’,1); hold on; plot(tspan(1:201),Y(3:203),‘r–’,
‘LineWidth’,3); hold off
xlabel(’Time(sec)’); legend(‘Uc’,‘Y’,‘fontsize’,11);
set(gca,‘fontsize’,16); set(gca,‘fontname’,‘Palatino Linotype’); xlim([0 max(time)]); grid;
axis([0 100,-1.5 1.5]);
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DAI_err_mean = mean(abs(Uc(1:201)-Y_true(2:202)))
DAI_err_std = std(abs(Uc(1:201)-Y_true(2:202)))

RLS_err_mean = mean(abs(Uc(1:201)-Y(3:203)))
RLS_err_std = std(abs(Uc(1:201)-Y(3:203)))

References
1. Harker, T. Department of the Navy Unmanned Campaign Framework, 16 March 2021. Available online: https://www.navy.mil/

Portals/1/Strategic/20210315%20Unmanned%20Campaign_Final_LowRes.pdf?ver=LtCZ-BPlWki6vCBTdgtDMA%3D%3D
(accessed on 24 January 2022).

2. See, H.A. Coordinated Guidance Strategy for Multiple USVs during Maritime Interdiction Operations. Master’s Thesis, Naval
Postgraduate School, Monterey, CA, USA, September 2017. Photo Is Figure 7 Taken from 2014 NASA Website, Wolf, M.
Autonomy and Situational Awareness for UMS. Available online: https://www-robotics.jpl.nasa.gov/tasks/showBrowseImage.
cfm?TaskID=271&tdaID=700075 (accessed on 6 January 2022).

3. NOAA Image Use Policy. Available online: https://www.omao.noaa.gov/find/media/images/image-licensing-usage-info
(accessed on 24 December 2021).

4. What Is an AUV. NOAA Ocean Exploration National Oceanic and Atmospheric Administration, U.S. Department of Commerce.
Available online: https://oceanexplorer.noaa.gov/facts/auv.html (accessed on 24 December 2021).

5. Sulzberger, G.; Bono, J.; Manley, R.; Clem, T.; Vaizer, L.; Holtzapple, R. Hunting sea mines with UUV-based magnetic and
electro-optic sensors. In Proceedings of the OCEANS 2009, Biloxi, MS, USA, 26–29 October 2009; pp. 1–5. [CrossRef]

6. Huntsberger, T.; Woodward, G. Intelligent autonomy for unmanned surface and underwater vehicles. In Proceedings of the
MTS/IEEE OCEANS’11, Waikoloa, HI, USA, 19–22 September 2011. [CrossRef]

7. Sands, T.; Bollino, K.; Kaminer, I.; Healey, A. Autonomous Minimum Safe Distance Maintenance from Submersed Obstacles in
Ocean Currents. J. Mar. Sci. Eng. 2018, 6, 98. [CrossRef]

8. Slotine, J.; Weiping, L. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991.
9. Slotine, J.; Benedetto, M. Hamiltonian adaptive control on spacecraft. IEEE Trans. Autom. Control 1990, 35, 848–852. [CrossRef]
10. Fossen, T. Comments on “Hamiltonian Adaptive Control of Spacecraft”. IEEE Trans. Autom. Control 1993, 38, 671–672. [CrossRef]
11. Sands, T.; Kim, J.J.; Agrawal, B.N. Improved Hamiltonian adaptive control of spacecraft. In Proceedings of the IEEE Aerospace,

Big Sky, MT, USA, 7–14 March 2009; IEEE Publishing: Piscataway, NJ, USA, 2009; pp. 1–10.
12. Smeresky, B.; Rizzo, A.; Sands, T. Optimal Learning and Self-Awareness Versus PDI. Algorithms 2020, 13, 23. [CrossRef]
13. Sands, T. Development of deterministic artificial intelligence for unmanned underwater vehicles (UUV). J. Mar. Sci. Eng. 2020, 8, 578.

[CrossRef]
14. Fossen, T. Guidance and Control of Ocean Vehicles; John Wiley & Sons Inc.: Chichester, UK, 1994.
15. Fossen, T. Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2021;

ISBN 978-1-119-57505-4.
16. Available online: https://site.ieee.org/ias-idc/2019/01/29/prof-bob-lorenz-passed-away/ (accessed on 25 January 2022).
17. Zhang, L.; Fan, Y.; Cui, R.; Lorenz, R.; Cheng, M. Fault-Tolerant Direct Torque Control of Five-Phase FTFSCW-IPM Motor Based

on Analogous Three-phase SVPWM for Electric Vehicle Applications. IEEE Trans. Veh. Technol. 2018, 67, 910–919. [CrossRef]
18. Apoorva, A.; Erato, D.; Lorenz, R. Enabling Driving Cycle Loss Reduction in Variable Flux PMSMs Via Closed-Loop Magnetization

State Control. IEEE Trans. Ind. Appl. 2018, 54, 3350–3359. [CrossRef]
19. Flieh, H.; Lorenz, R.; Totoki, E.; Yamaguchi, S.; Nakamura, Y. Investigation of Different Servo Motor Designs for Servo Cycle

Operations and Loss Minimizing Control Performance. IEEE Trans. Ind. Appl. 2018, 54, 5791–5801. [CrossRef]
20. Flieh, H.; Lorenz, R.; Totoki, E.; Yamaguchi, S.; Nakamura, Y. Dynamic Loss Minimizing Control of a Permanent Magnet

Servomotor Operating Even at the Voltage Limit When Using Deadbeat-Direct Torque and Flux Control. IEEE Trans. Ind. Appl.
2019, 3, 2710–2720. [CrossRef]

21. Flieh, H.; Slininger, T.; Lorenz, R.; Totoki, E. Self-Sensing via Flux Injection with Rapid Servo Dynamics Including a Smooth
Transition to Back-EMF Tracking Self-Sensing. IEEE Trans. Ind. Appl. 2020, 56, 2673–2684. [CrossRef]

22. Sands, T. Virtual sensoring of motion using Pontryagin’s treatment of Hamiltonian systems. Sensors 2021, 21, 4603. [CrossRef]
23. Sands, T. Comparison and Interpretation Methods for Predictive Control of Mechanics. Algorithms 2019, 12, 232. [CrossRef]
24. Vidlak, M.; Gorel, L.; Makys, P.; Stano, M. Sensorless Speed Control of Brushed DC Motor Based at New Current Ripple

Component Signal Processing. Energies 2021, 14, 5359. [CrossRef]
25. Banda, G.; Kolli, S.G. An Intelligent Adaptive Neural Network Controller for a Direct Torque Controlled eCAR Propulsion

System. World Electr. Veh. J. 2021, 12, 44. [CrossRef]
26. Sands, T. Control of DC Motors to Guide Unmanned Underwater Vehicles. Appl. Sci. 2021, 11, 2144. [CrossRef]
27. Shah, R.; Sands, T. Comparing Methods of DC Motor Control for UUVs. Appl. Sci. 2021, 11, 4972. [CrossRef]
28. Åström, K.; Wittenmark, B. Adaptive Control; Addison-Wesley: Boston, FL, USA, 1995.
29. Chen, J.; Wang, J.; Wang, W. Robust Adaptive Control for Nonlinear Aircraft System with Uncertainties. Appl. Sci. 2020, 10, 4270.

[CrossRef]

https://www.navy.mil/Portals/1/Strategic/20210315%20Unmanned%20Campaign_Final_LowRes.pdf?ver=LtCZ-BPlWki6vCBTdgtDMA%3D%3D
https://www.navy.mil/Portals/1/Strategic/20210315%20Unmanned%20Campaign_Final_LowRes.pdf?ver=LtCZ-BPlWki6vCBTdgtDMA%3D%3D
https://www-robotics.jpl.nasa.gov/tasks/showBrowseImage.cfm?TaskID=271&tdaID=700075
https://www-robotics.jpl.nasa.gov/tasks/showBrowseImage.cfm?TaskID=271&tdaID=700075
https://www.omao.noaa.gov/find/media/images/image-licensing-usage-info
https://oceanexplorer.noaa.gov/facts/auv.html
http://doi.org/10.23919/OCEANS.2009.5422086
http://doi.org/10.23919/OCEANS.2011.6107312
http://doi.org/10.3390/jmse6030098
http://doi.org/10.1109/9.57028
http://doi.org/10.1109/9.250547
http://doi.org/10.3390/a13010023
http://doi.org/10.3390/jmse8080578
https://site.ieee.org/ias-idc/2019/01/29/prof-bob-lorenz-passed-away/
http://doi.org/10.1109/TVT.2017.2760980
http://doi.org/10.1109/TIA.2018.2810804
http://doi.org/10.1109/TIA.2018.2849725
http://doi.org/10.1109/TIA.2018.2888801
http://doi.org/10.1109/TIA.2020.2970150
http://doi.org/10.3390/s21134603
http://doi.org/10.3390/a12110232
http://doi.org/10.3390/en14175359
http://doi.org/10.3390/wevj12010044
http://doi.org/10.3390/app11052144
http://doi.org/10.3390/app11114972
http://doi.org/10.3390/app10124270


J. Mar. Sci. Eng. 2022, 10, 419 19 of 19

30. Cezayirli, A.; Ciliz, M. Multiple model based adaptive control of a DC motor under load changes. In Proceedings of the IEEE
International Conference on Mechatronics, Istanbul, Turkey, 5 June 2004; pp. 328–333. [CrossRef]

31. Sri Gowri, K.; Reddy, T.B.; Sai Babu, C. Direct torque control of induction motor based on advanced discontinuous PWM
algorithm for reduced current ripple. Electr. Eng. 2010, 92, 245–255. [CrossRef]

32. Bernat, J.; Stepien, S. The adaptive speed controller for the BLDC motor using MRAC technique. IFAC Proc. Vol. 2011, 44,
4143–4148. [CrossRef]

33. Rathaiah, M.; Reddy, R.; Anjaneyulu, K. Design of Optimum Adaptive Control for DC Motor. Int. J. Electr. Eng. 2014, 7, 353–366.
34. Haghi, P.; Ariyur, K. Adaptive First Order Nonlinear Systems Using Extremum Seeking. In Proceedings of the 50th Annual

Allerton Conference on Communication Control, Monticello, IL, USA, 1–5 October 2012; pp. 1510–1516.
35. Sands, T. Nonlinear-Adaptive Mathematical System Identification. Computation 2017, 5, 47. [CrossRef]
36. Isidori, A.; Byrnes, C. Output Regulation of Nonlinear Systems. IEEE Trans. Autom. Control 1990, 35, 131–140. [CrossRef]
37. Cheng, D.; Tarn, T.; Spurgeon, S. On the Design of Output Regulators for Nonlinear Systems. Syst. Control. Lett. 2001, 43, 167–179.

[CrossRef]
38. Khalil, H. Nonlinear Systems; Prentice Hall: Englewood Cliffs, NJ, USA, 1996.
39. Wang, D.; Huang, J. Solving the Discrete-time Output Regulation Problem with Taylor series Method. In Proceedings of the

Chinese Control Conference, Hongkong China, 6–8 December 2000.

http://doi.org/10.1109/ICMECH.2004.1364460
http://doi.org/10.1007/s00202-010-0182-2
http://doi.org/10.3182/20110828-6-IT-1002.01497
http://doi.org/10.3390/computation5040047
http://doi.org/10.1109/9.45168
http://doi.org/10.1016/S0167-6911(01)00088-3

	Introduction 
	Learning Teachniques 
	Adaptive Techniques as Benchmarks for Comparison 
	Proposed Novelties 

	Materials and Methods 
	Discretized Process Truth Model for DC Motor 
	Model-Following Self Tuner 
	Deterministic Artificial Intelligence 

	Results 
	Comparison of Discrete Deterministic Artificial Intelligence and Model-Following Approach 
	Comparison of Discrete D.A.I. and Continuous D.A.I. 

	Discussion 
	Conclusions 
	Appendix A
	Discrete D.A.I. 
	Continuous D.A.I. 
	D.A.I. All 

	References

