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Abstract: It is widely recognized that the initial ensemble describes the uncertainty of the variables
and, thus, affects the performance of ensemble-based assimilation techniques, which is investigated
in this paper with experiments using the Community Earth System Model (CESM) and the Data
Assimilation Research Testbed (DART) assimilation software. Five perturbation strategies involving
adding noises of different patterns and with/without extra integration are compared in the observa-
tion system simulation experiments framework, in which the SST is assimilated with the ensemble
adjustment Kalman filter method. The comparison results show that for the observed variables (sea
surface temperature), the differences in the initial ensemble lead to different rate of convergence in
the assimilation, but all experiments reach convergence after three months. However, other variables
(sea surface height and sea surface salinity) are more sensitive to the initial ensemble. The analysis
of variance results reveal that the white-noise perturbation scheme has the largest RMSE. After
excluding the effect of the white noise perturbation scheme, it can be found that the difference in the
effect of different initial ensembles on the SSH with only assimilated SST is concentrated in the region
of the Antarctic Circumpolar Current, which is related to the spread of the covariance between the
SSH and the SST.

Keywords: initial ensemble; perturbation; ensemble Kalman filter

1. Introduction

A strict definition of data assimilation in atmospheric and oceanic sciences is the
process of estimating the state of a dynamic system such as atmospheric and oceanic flow
by combining the observational and model forecast data. In general, data assimilation
methods can be classified into two categories: variational and sequential. Variational
methods, such as 3D-var and 4D-var, are batch methods [1–6], whereas sequential methods
such as the Kalman filter belong to the estimation theory. They both have made great
success in geoscience and have been applied in several operational systems [7–10]. The
data assimilation methods have developed rapidly in recent decades due to the tremendous
progress of satellite remote sensing and computer technology.

The Kalman Filter (KF, [11]) is developed based on statistical estimation theory, which
provides the analytical solutions to the data assimilation problem with linear and Gaussian
assumptions. The extended Kalman filter (EKF) is then proposed to cope with the non-
linearity in model systems [12]. However, the EKF requires a tangent–linear model to
update the model error covariance, which implies it is not appropriate to be used in strong
nonlinear models. Furthermore, updating the error covariance requires large amounts
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of computer storage, which is difficult for large geophysical models. To address these
issues, the Ensemble Kalman filter (EnKF) was developed in the 1990s [13]. The ensemble
Kalman filter uses the ensemble to compute the error covariance used in the KF formula,
such that the computational burden related to updating the covariance can be avoided. An
ensemble member is essentially one realization of the model state, which is integrated with
the numerical models. As a result, the data assimilation for large geophysical models using
EnKF cannot afford too many ensemble members. In operational data assimilation systems,
tens of members are usually used with ensemble-based methods [14].

The ensemble adjustment Kalman filter (EAKF) is a deterministic scheme of EnKF. It
uses the method of ensemble adjustment to avoid perturbing the observations in EnKF [15].
It can also assimilate each single observation sequentially using the local least squares
framework [16], which is very suitable for the assimilation of large geophysical models since
it uses less computer memory and computational resources. Using the EAKF, Anderson
et al. [17] have developed an open-source community facility for data assimilation, which
is named the Data Assimilation Research Testbed (DART).

The EnKF and its variants have been successfully applied in many realistic geophys-
ical models. Haugen and Evensen [18] used EnKF to assimilate sea level anomalies and
sea surface temperature data into an Ocean General Circulation Model (OGCM) for the
Indian ocean. In the last decade, there has been increasing interest in the development of
coupled ocean–atmosphere data assimilation systems which can be used for generating
coupled reanalysis products and for initializing near-term coupled climate predictions.
Chen et al. [19,20] and Ballabrera-Poy et al. [21] used nudging and reduced-order Kalman
filters to establish the initialization process of a simplified ocean–atmosphere coupled
model (ZC model; [22]) to predict ENSO. After the wind stress, sea surface height, and
sea surface temperature are assimilated into the coupled model, the prediction of ENSO is
significantly improved. Zheng et al. [23] applied EnKF to an intermediate coupled model
to improve the ENSO forecasts. However, these efforts are based on relatively simple
coupled ocean–atmosphere models, and it is more challenging to combine a fully coupled
ocean–atmosphere model with data assimilation. The National Oceanic and Atmospheric
Administration Geophysical Fluid Dynamics Laboratory (NOAA GFDL) was the first cen-
tre to produce a coupled reanalysis for initializing seasonal forecasts. Zhang et al. [24–26]
applied EAKF to the GFDL global fully coupled climate model (CM2) [27], which suc-
cessfully reconstructs the 20th century ocean heat content variability and trends in most
locations. Yin et al. [28] use EAKF to assimilated ARGO (Array for Real-time Geostrophic
Oceanography) data (provided by the Coriolis Argo Data Center) into a fully coupled
earth system model (the First Institute of Oceanography Earth System Model). Karspeck
et al. [29] presented a description of the CESM/DART ensemble coupled data assimilation
system based on the Community Earth System Model (CESM) and the DART assimilation
software. Similar to most of the coupled assimilation systems currently being used or
developed, the CESM/DART project leverages previously developed data assimilation
capabilities for the ocean [30], atmosphere [31] and land [32] components of the CESM.

In the ensemble-based data assimilation methods, the ensemble is employed to de-
scribe the uncertainty of the estimated state, which is also propagated over the assimilate
time window. It has been long considered that the initial ensemble does not have important
impacts on the long-term behavior of a Bayesian-based filter [33]. However, Hoteit et al. [34]
pointed out the importance of including information about the main physical quantities
that govern the evolution of the state in the initial ensemble. They concluded that it could
speed up convergence toward the true ocean state while improving the filter’s behavior in
the early stages of the assimilation window. Wan et al. [35] also emphasized the importance
of examining the initial ensembles before performing the data assimilation. Besides, if the
ensemble-based data assimilation method is applied with a coupled general circulation
model (CGCM), the situation might be much more complicated. It is necessary to further
study the ensemble generation to improve the data assimilation.
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In most ensemble-based applications, initial ensembles are usually generated by
adding some kind of perturbations to initial model states. In the native formulation of
the EnKF, a method for generating pseudo random fields with covariance determined
by prescribed decorrelation length was first introduced by Evensen [36]. This strategy
has been adopted in a variety of applications. Pham et al. [37] introduced the Singular
Evolutive Extended Kalman (SEEK) filter that describes the uncertainty in terms of the
perturbations that span and track the scales and processes where the dominant errors occur.
That motivated the representation of uncertainty using Empirical Orthogonal Functions
(EOFs) of the system variability, by which the EOF-based strategy was later introduced
by Nerger et al. [38] with details. Moreover, in some general circulation models, the
perturbations are added with small amplitude and followed by the model integration over
a period of time [28] This strategy is used to minimize the unbalance due to perturbation,
while causes the ensemble spread to reach a considerable value.

In this work, two perturbation methods (one proposed by Evensen [36], mentioned
above, and one also based on EOF, mentioned above) are combined with integration
strategies to generate initial ensembles for the data assimilation of the Community Earth
System Model (CESM) using EAKF. To be more comprehensive, the perturbation with white
noises is also included for comparison. These comparisons are based on an evaluation
of the system performance. This paper is meant to highlight the initial success of this
effort, discuss some of the challenges, and opens the door for further improvements and
developments of the CESM/DART system.

This paper is organized as follows. In Section 2, the model and experiment settings
are introduced with details of each perturbation strategy. Section 3 presents results of these
assimilation experiments, comparing the differences between them after assimilating SST.
This is followed by a discussion of the findings in Section 4 and a conclusion of the findings
in Section 5.

2. The Ensemble DA System and Experiment Design
2.1. Model and Data Assimilation System

The model used for this experiment is the global coupled configuration of the Commu-
nity Earth System Model (CESM) version 1.2 [39]. The CESM (and its predecessor model,
the Community Climate System model) has a long history as research tools to simulate the
Earth system for seasonal and decadal predictions [40–42]. The CESM uses the Community
Atmosphere Model version 5 (CAM5; [43]) as the atmosphere component, whereas the
ocean component is an extension of the Parallel Ocean Program (POP) Version 2 [44], which
is a level coordinate primitive equation model. We use the standard configuration and
60 levels in the vertical varying from 10m near the surface to 250 m at depth. The sea-ice
component is the Community Ice Code version 4 (CICE4; [45]) and the land model is the
Community Land Model version 4 (CLM4; [46]). Each model may have an “active”, “data”,
“dead”, or “stub” component version allowing for a variety of “plug and play” combination.
Since the active models are relatively expensive to run, data models that cycle input data
are included for testing, spin-up, and model parameterization development. The dead
components generate scientifically invalid data and exist only to support technical system
testing. The dead components must all be run together and should never be combined
with any active or data versions of models. Stub components exist only to satisfy interface
requirements when the component is not needed for the model configuration. The CESM
components can be combined in numerous ways to carry out various scientific or software
experiments. A particular mix of components, along with component-specific configura-
tion and/or namelist settings, is called a component set or “compset”. The component set
“B_1850_CN” uses fully active components configured to produce a present-day simulation
in this research.

The grids are specified in CESM by setting an overall model resolution. Once the
overall model resolution is set, components will read in appropriate grid’s files and the
coupler will read in appropriate mapping weight’s files. CESM1.2 has a completely new
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naming convention for model resolutions and component grids. “[dlat] × [dlon]” are
regular lon/lat finite volume grids where dlat and dlon are the approximate grid spacing.
An example is 1.9 × 2.5 or f19 for the approximately “two-degree” finite volume grid. Note
that CAM uses a [nlat] × [nlon] naming convection internally for this grid. “gx[D]v[n]”
is a displaced pole grid where D is the approximate resolution in degrees and n is the
grid version. This work creates a case with a model resolution of 0.9 × 1.25_gx1v6 (a
one-degree atmosphere/land grid with a nominal one-degree ocean/ice grid using gx1v6
ocean mask). In this work, only the component set and model grid are selected, whereas
other configurations are default, such as parameterization scheme and vertical levels, etc.

The data assimilation system was established by Karspeck et al. [29] with DART, in
which the EAKF method is implemented in a weakly coupled data assimilation framework.
The analysis scheme of EAKF can be described as a sequential data assimilation method
with a two-stage cycle for each single scalar observation [16]. To implement EAKF, the
analysis scheme first computes the ensemble increments for each observation location and
then calculates the model state increments by regressing the observation space increments
onto the state vector. This procedure goes through all observations sequentially to complete
the analysis stage of an assimilation cycle.

No updates to the land and sea-ice components of the CESM are made—they receive
information only indirectly through the model integration. A schematic representation of
this configuration is shown in Table 1. The multiplicative covariance inflation, which can
address the deficiency of ensemble spread due to the model error and bias, is also available
for prior and posterior ensembles. For simplicity, the spatial-invariant inflation, with a
fixed factor of 1.02, is used only for the prior ensemble. Insufficient ensemble size can result
in spurious correlations between distant locations in the background covariance matrix,
therefore causing observations at one location to affect the analysis of other locations at an
arbitrarily large distance away in an essentially random manner. Covariance localization is
also used to eliminate the background error covariance associated with remote observations.

Table 1. Details of the CESM/DART EAKF for the ocean component.

No. in the ensemble 20
Covariance inflation fixed factor (1.02)

Adaptive (Anderson, [17])
Localization Gaspari and Cohn [47]

Horizontal half-width 110 km
Vertical half-width 600 m

2.2. Initial Perturbation Methods

In this experiment, the initial state for the data assimilation is perturbed with different
noises, which are described as follows. For simplicity, only the potential temperature for
the upper 10 layers (about 100 m) is perturbed with 3 dimensional noises.

2.2.1. White Noise Pattern

The white noise perturbation method can be applied to construct the initial ensembles
for the climate model. This method is to add a very small perturbation in the initial field,
which not only guarantees the dynamic relationship between different variables in the
model, but also avoids the model’s inadaptability to the initial perturbation. Particularly,
the temperature of the mixed layer is slightly perturbed as follows

Tpert
i,j,k = (1 + αβi,j,k)Tinit

i,j,k (1)

where α is the amplitude with an order of 10−3, β is a random number evenly distributed
between (−1,1), and different random numbers are adopted for different samples. Sub-
scripts i, j, and k are the spatial grid numbers, and superscripts pert and init represent
physical variables after and before the perturbation, respectively.
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2.2.2. Pseudo-Random Pattern

Evensen [36] presented the procedure for generating pseudo random fields in Ap-
pendix E. Smooth pseudo random fields with mean values equal to zero, variance equal
to one, and a specified covariance can be computed according to the algorithm involv-
ing the fast Fourier transform (FFT). Some parameters are used to create an ensemble of
two-dimensional pseudo random fields with variance 1 and covariance determined by
the decorrelation length. If the two-dimensional pseudo-random fields such as wk (k = 1,2
. . . ,N) are generated with a horizontal decorrelation length rh. It can be used to generate a
three-dimensional field q with the following equation:

qk = αqk−1 +
√

1− α2wk−1 (2)

where qk indicates the kth layer of q, and q1 = w1. The coefficient α ∈ [0, 1] determines the
vertical decorrelation of the initial field.

In this work, the perturbation fields are firstly generated to 1◦ grids and then interpo-
lated into the POP grid where the decorrelation length is about 6 degrees in longitude for
each field. And then, the coefficient α = e−0.1 is used to generate a three-dimensional field
in which the temperature in the upper 10 layers is perturbed.

2.2.3. EOF Pattern

According to Hoteit et al. [48], a second-order sampling scheme [49] is used to generate
the initial ensemble. Firstly, the 30-years free run without data assimilation is used to
represent the variability of the model states. Secondly, an Empirical Orthogonal Function
(EOF) analysis is applied to extract the dominant variability from the long period model
trajectory. Then, the initial states are generated using the following equation,

xi
0 = x +

√
NL0σT

i (3)

where N is the ensemble size, L0 is the matrix whose N − 1 columns are the EOFs, x is the
mean of the long-term trajectory, and σi is the ith of a (N − 1)× N random matrix with
orthonormal columns and zero column sums.

Figure 1b–d shows the spatial pattern of these perturbations, which describe and
propagate the uncertainty of the estimate state. It can be seen that Figure 1b has no
spatial correlation because it is generated by white noise. Figure 1c is smoother and has a
clear spatial correlation, whereas Figure 1d shows its mode because it contains the main
variability from the 30 years CESM (POP) data.
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Figure 1. (a) SST of the initial condition which is derived from the model integrations carried out by
CESM from a cold start for 100 years. The distribution of the error of the SST generated by the above
three methods: (b) white noise perturbation, (c) pseudo-perturbation, and (d) EOF perturbation.
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2.3. Analysis of Variance

Analysis of variance, also known as “F-test”, is used to test the significance of two
or more groups with different means [50]. The idea is that the total variation in all data is
equal to the between-group variation plus the within-group variation.

For a matrix k× n, where k denotes the number of groups and n denotes the number
of data in each group, then the off-mean-sum-of-squares of the total variation (SStotal) is
first calculated, that is, the sum of squares of the differences between all data and the total
mean (X).

X =

k
∑

i=1

n
∑

j=1
Xi,j

∑ ni
(4)

SStotal =
k

∑
i=1

n

∑
j=1

(Xi,j − X)
2

(5)

Xi =

n
∑

j=1
Xi,j

ni
(6)

SSwithin =
k

∑
i=1

n

∑
j=1

(Xi,j − Xi)
2 (7)

MSwithin =
SSwithin

n− k
(8)

SSbetween =
k

∑
i=1

ni(Xi − X)
2

(9)

MSbetween =
SSbetween

k− 1
(10)

F =
MSbetween
MSwithin

(11)

where Xi,j is the jth data of the ith group. Xi is the mean of group i, SSwithin is the within-
group variance, i.e., the variance of group, SSbetween is the between-group variance, MS
is the mean squared error, and F is the F-statistics which is the ratio of the mean squared
error. In addition, it can also be calculated as follows.

SStotal = SSwithin + SSbetween (12)

Analysis of variance compares the means of several groups to test the hypothesis
that they are all equal, and sometimes this alternative may be too general. The work may
need information about which pairs of means are significantly different, and which are
not. A multiple comparison test (MCT) can provide this information [51]. The t-test is
not appropriate for MCT, and the commonly used method is the SNK (Student–Newman–
Keuls) method, also known as the q-test.

2.4. Experiment Design
2.4.1. Design of Observation

Coupled data assimilation (CDA) is a multitask problem that involves many issues:
coupled model bias, sampling of the observing system, validation of the analysis scheme,
etc. [24] A CDA system is complicated since any uncertainty in the aspects described above
may cause the evaluation of CDA results to become extremely difficult. To reduce the
complexity, this study excludes the model bias issue by using the Observation System
Simulation Experiment (OSSE). The approach is to experiment with simulated data as
“observations” that need to be assimilated. The Figure 2 displays a schematic diagram
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of the assimilation process. The data obtained from model setting 1 are used as “truth”,
then, observational errors (a white noise with a standard deviation of 0.25 ◦C) are added
to the “truth” as the observations which are assimilated into model setting 2. Then it is
feasible to evaluate the assimilation quality by verifying assimilation results against the
“truth”, so that any up/downgrade of the assimilation system, when a new assimilation
component or observational data type is added, or when an assimilation parameter is
tuned, can be quantified.
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2.4.2. Design of Assimilation Experiments

The patterns of perturbations that would be added to the initial conditions are de-
scribed in Section 2.2. There are also two strategies to generate the initial ensemble. One is
to add the perturbations directly to the initial conditions, whereas the second strategy first
perturbs the initial conditions with small amplitude and then integrates the model for one
year. After a period of adjustment, it can ensure the ensemble spread grows sufficiently
while the dynamic balance of model variables is preserved. It is noteworthy that the white-
noise perturbation is not added directly in the experiment, since the random perturbation
fields without a spin-up period are not well in dynamic balance to integrate the model.
Therefore, five perturbation strategies are compared in this experiment, as listed in Table 2.
In this experiment, only the potential temperature of the model states in the mixed layers
of ocean are perturbed. All the data assimilation simulations are run for two years and the
SST observations are assimilated every five days.

Table 2. Experiment design.

Experiment Generated Operation Amplitude

EvensenT Adding directly 1 ◦C
EOFT Adding directly 1 ◦C

WNP1y Adding directly and integrating
the model for 1 year 0.001 ◦C

EvensenT1y Adding directly and integrating
the model for 1 year 0.001 ◦C

EOFT1y Adding directly and integrating
the model for 1 year 0.001 ◦C

Control No operation None

3. Results
3.1. The Initial Uncertainties and Ensemble Spread

The initial ensembles play an important role in data assimilation. The initial ensembles
generated from the above procedure should be examined before running data assimilation
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with them. In this section, we first examine their spreads and check if they can present the
actual uncertainties that can be estimated using model minus observations. Since only the
SST was assimilated, we concentrate on the error statistics of the SST in this paper. Figure 3a
depicts the SST errors of the initial guess against observation and Figure 3b–f shows the
ensemble spreads (standard deviations) of the initial ensembles. SST errors are greatest
in the East Equatorial Pacific, with about 1.6 to 1.8 ◦C. The values of the ensemble spread
in the five experiments are of comparable amplitude. With the exception of EvensenT
experiment (Figure 3b), the spreads of other initial ensembles have similar patterns as
the model errors and all overestimate the value of ensemble spread in the mid and high
latitudes. It is clear that the SSTs in mid and high latitudes are most sensitive to small-scale
perturbations. This indicates that the background error covariance in these regions is
probably triggered by small-scale physical processes, while the Equatorial region is more
sensitive to perturbations of the ENSO mode. The effect of this irrational spread on the
field of assimilation analysis is further investigated, as follows.
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3.2. Assessing Differences between Assimilation Experiments
3.2.1. Spatial Distributions

The results of the 24-month mean spatial distribution of RMSE from the various
experiments are displayed in Figure 4. In addition, to avoid interfering with high latitude
inaccuracies due to the model and observation deficiency, the region between 70◦ S and
70◦ N is evaluated in this work. Figure 4a is the same as Figure 3a, except that the color
bar has been changed to show the effect of assimilation. It can be seen that the model’s
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simulations of SST in the Kuroshio Extension, tropical eastern Pacific, and high latitude
in the southern Pacific and southwest of the Atlantic have considerable bias, with the
maximum value exceeding 1.4 ◦C. In comparison to the control experiment (Figure 4a),
the assimilation experiments (Figure 4b–f) show that the simulation of SST improves
significantly. However, some small differences can be found in the results of the assimilation
experiments, for example, the errors of the EvensenT experiment are the largest in the
Eastern Equatorial Pacific, about 0.3 ◦C, but other experiments can even reach 0.1 ◦C. This
is due to the fact that the perturbation of the EvensenT experiment is a pseudo-random
pattern, as also mentioned in the previous chapter, which makes the standard deviation of
its SST not reasonably distributed in the Eastern Equatorial Pacific (Figure 3b). Then, in the
early stage of assimilation, the SST error will certainly be larger than the SST error of other
experiments; therefore, such a result will be obtained after time averaging. In addition, SST
assimilation improves not only areas with high bias, but also areas with low bias, such as
the Indian Ocean.
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Although only the SST was assimilated, the results of other variables, such as sea
surface salinity, also need to be examined. Figure 5 shows the comparison between assimi-
lation experiments and control experiments in terms of sea surface salinity (SSS) errors. As
seen in the control experiment (Figure 5a), the sea surface salinity errors in the model are
mainly distributed in the western Pacific warm pool and extend to the southeastern seas,
where they are as high as 0.8 psu. Such large errors also occur in the nearshore region, from
uncertainties in runoff simulations, and in the high-latitude polar region, from uncertainties
in sea ice simulations, but both are due to uncertainties in freshwater fluxes that lead to
large SSS errors. After assimilation, the simulation of SSS improves noticeably in these
areas. While the simulation of SSS has improved significantly, results of SSS demonstrate
that the differences between the various assimilation experiments have begun to emerge. It
is clear that in the white noise experiment (Figure 5d), there are still significant SSS errors
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in the western Pacific warm pool, with values close to the model error, both about 0.4 psu.
The improvement effect is obviously not as strong as in the other assimilation experiments,
which were able to reduce the SSS error to 0.1 psu in the western Pacific warm pool.
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In addition, the sea surface height is also an important variable. Figure 6 shows
the comparison between assimilation experiments and control experiments in terms of
sea surface height (SSH) errors. The simulation of SSH is also greatly improved. As
demonstrated by the control experiment (Figure 6a), the model is biased toward low
latitudes in the Pacific, near the equator in the Indian Ocean, and the high latitude region
in North Atlantic, reaching up to 12 cm. However, the error in SSH can be reduced to
about 2 cm after assimilation of SST. Although there is a significant improvement in these
areas after assimilation, the SSH error in the westerlies in the Southern Ocean is not much
reduced, and here, the covariance between SSH and SST is more influenced by small-scale
physical processes. The results of SSH also indicate that the discrepancies between various
assimilation experiments have begun to emerge. It can be found that the initial ensemble of
the experiment is adjusted by the model integration, then, the SSH error in the Kuroshio
Extension (Japan’s East coast) will grow rapidly, and its value even exceeds the error of
the model (3~4 cm). When comparing the white noise experiment to other assimilation
experiments, it is also clear there is still a significant SSH simulation bias in the north of
the equatorial Pacific in the white noise experiment (Figure 6d), and the improvement is
obviously not as good as other assimilation experiments.
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3.2.2. Time Series

In addition to examining the performance of assimilation, it is also important to test
the time evolution of the RMSE of the variables. Figure 7 illustrates the results of time series
of the ensemble root mean square error (RMSE) of variables such as SST, SSS, and SSH.
According to the results of SST (Figure 7a), the assimilation experiment’s RMSE is much
more reduced than that of the control experiment. The differences between assimilation
experiments are primarily due to assimilation prior to achieving stability. Approximately
three months after assimilation, all assimilation experiments’ RMSE have decreased to
a steady-state, and the assimilation method has achieved convergent solution, with the
global average RMSE decreasing to 0.08 ◦C. It is obvious that the rates of decline for various
experiments vary. As demonstrated by the spread of SST (Figure 7b), all assimilation
experiments can achieve a steady state. Furthermore, the magnitude of this steady state
value is comparable to the RMSE, which is fairly reasonable.

Then, based on the results of SSS (Figure 8a), it is clear that the SSS and SST conclusions
are considerably dissimilar. However, the assimilation experiments’ RMSE are much
smaller than that of the control experiment. In contrast to the preceding experiment, the
RMSE of the assimilation experiment decreases, but not as rapidly as the result of SST.
The experiments do not achieve apparent stability after two years. Additionally, there are
discrepancies among assimilation experiments, with one experiment (WNP1y) exhibiting
much larger bias than others over a two-year period. This is achieved by integrating
the model after adding white noise perturbation to the initial state. SSS has a similar
distribution to SST (Figure 8b). The spread of SSS in the initial ensemble is adjusted to
the steady-state via assimilation, but the spread of SSS is much smaller than its RMSE,
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indicating that the covariance between SST and SSS in assimilation cannot effectively adjust
SSS and the change in SSS is due to the constraint in CESM.
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The SSH result is shown in following figure (Figure 9a). The assimilation experiments’
RMSE is also much less than that of the control experiment, however, SSH’s result is not
as close to a critical value as those of SST. Therefore, while the assimilation can improve
the simulation of SSS and SSH, it cannot induce a steady state in any physical variable
except SST in a short time. However, the RMSE of the WNP1y assimilation experiment is
larger than that of other assimilation experiments. It is discovered in the previous spatial
distribution that the white noise experiments result in much greater RMSEs in SSS and SSH
than other experiments. The spread of SSH (Figure 9b) shows that the five experiments
are clearly split into two groups. One is integrated by the model and the other is not, i.e.,
the spread of SSH begins at zero and continues to increase in all assimilation experiments.
While it does not achieve a steady state, its magnitude is close to the RMSE, demonstrating
that covariance between SST and SSH during assimilation can effectively adjust SSH.
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3.2.3. Significance Test

Are the differences between these five assimilation experiments significant in terms
of SSS and SSH results? ANOVA is used to examine the time series of RMSE of the five
assimilation experiments, that is, the sequence of five groups of numbers, in order to
calculate the P-value. If the P-value is more than 0.05, it indicates that no significant
difference exists between the various experiments. As shown in Table 3, there is no
significant difference between assimilation experiments for SST; the P-value is significantly
more than 0.05, which indicates the consequence of assimilating solely SST data. However,
the P-value is smaller than 0.05 for SSS and SSH. The spatial distribution (Figure 5b–f,
Figure 6b–f) demonstrates which areas exhibit these disparities. In the western Pacific
warm pool, the SSS is drastically different, whereas in the northern equatorial Pacific and
Kuroshio Extension, the SSH is drastically different.
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Table 3. p-Values obtained by ANOVA (the bold font represents the values greater than 0.05).

SST SSS SSH

p-Value 0.9748 0.0036 0.0007

Although the ANOVA results indicate a highly significant difference in the assimilation
of distinct experimental simulations of SSS and SSH, this does not mean that any two
assimilation experiments have highly significant differences. The MCT is used to examine
significance between each of the two experiments, as results show in Table 4. All P-values
are clearly lower when compared to the third assimilation experiment (WNP1y). This
demonstrates that the third assimilation experiment is quantitatively distinct from others.
The time series of the four assimilation experiments without the WNP1y is then analyzed
using ANOVA. SSS and SSH have P-Values of 0.8606 and 0.5183, respectively, which are
much greater than 0.05. This indicates that the initial ensemble of the third assimilation
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experiment has the poorest assimilation impact and is significantly different from the other
assimilation experiments, while the other assimilation experiments show little difference
of significance.

Table 4. p-Values by MCT. (“a-b represents the comparison of the “a” experiment with the “b”
experiment, 1: EvensenT, 2: EOFT, 3: WNP1y, 4: EvensenT1y, 5: EOFT1y; the bold font represents the
values greater than 0.05).

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

SSS 0.9812 0.0053 0.9987 0.9715 0.0321 0.9987 1.0000 0.0136 0.0389 0.9970

SSH 0.9796 0.0054 0.9767 0.9694 0.0341 0.7755 1.0000 0.0005 0.0413 0.7373

The ANOVA is used to analyze individual points to see which regions exhibit signifi-
cant changes in the SST, SSS, and SSH simulations, except for WNP1y. For SST (Figure 10a),
the result is perfect, with no discernible change in the horizontal distribution of SST among
the four groups of assimilation experiments. However, there is no evident pattern for
SSS (Figure 10b). Due to the small spread of SSS in the preceding study, EAKF does not
successfully modify SSS via the covariance between SSS and SST, but instead via the phys-
ical relationship in CESM. SSH (Figure 10c) exhibits a distinct pattern. In other words,
the region where the assimilation experiments differ is mostly the area surrounding the
Antarctic Circumpolar Current (ACC). As previously discussed, the spread of SSH in the
assimilation experiment is normal, and because the covariance can be used to alter SSH,
this covariance pattern can be linked to the ANOVA pattern.

EAKF estimates the covariance between a component of a particular state variable
and observation variables as the increment for that component. Covariance is a critical
aspect in determining the magnitude of increments. Of course, it is not the region with
high covariance that accounts for the significant difference in the simulations of the four
assimilation experiments, but the difference in the covariance between SST and SSH for
each assimilation experiment, which is equivalent to analyzing the spread of the covariance.
As a result, prior to conducting CESM-EAKF, it is important to determine the horizontal
distribution of covariance between SSH and SST. As illustrated in Figure 11, the spread
of covariance between SSH and SST is greater in the Antarctic Circumpolar Current area
during assimilation; this region exhibits one of the largest differences in SSH in the EAKF
update. This also explains why there is a pattern of SSH in Figure 10 by ANOVA, and it
demonstrates that the covariance correction in assimilation has a noticeable effect on SSH.

3.2.4. Vertical Distribution

SST observations provide sea surface information. Therefore, it is natural that the as-
similation process improves the modeled SST or other variables of the sea surface. Whether
or not the subsurface thermohaline structure is improved is investigated in this section.

Figure 12a,b shows vertical profiles of the RMSEs of global temperature and salinity,
respectively. All assimilation experiments improve the temperature simulation in the upper
500 m, with the best improvement in the mixed layer, which is reduced by about 0.4 ◦C. This
is because the assimilation data is SST, which improves only the physical characteristics
in the mixed layer. With increasing depth, the RMSE of all experiments approaches zero.
As with time series analysis, all experiments are quite similar to the SST simulation and
have the same effect. The largest errors are in the thermocline, about 0.25 ◦C, which is
attributed to the substantial error in the model’s original simulation of thermocline. After
all, the ocean incorporates intricate physical processes such as subsurface entrainment,
which makes it difficult for models to simulate it. Additionally, the vertical distribution of
temperature RMSE indicates that the WNP1y assimilation experiment has a little larger
RMSE than other assimilation experiments below the surface.
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Although the salinity improvement is most pronounced in the surface layer, with a de-
crease of 0.095 psu, the error is still the largest over the entire profile, at about 0.09 psu. This
is because the surface salinity is poorly constrained and impact of erroneous fresh-water
fluxes and ocean mixing manifests itself in errors in the salinity field. The improvement in
salinity by data assimilation is more robust in the mixed layer. This improvement is not
only due to the direct assimilation of SST observations, but also to the balance relations
between temperature and salinity. As previously observed, the vertical profiles of salinity
bias indicate that the WNP1y assimilation experiment has a greater RMSE than other
assimilation experiments in the upper 300 m.

4. Discussion

This work only provides an insight on the issue of the generation of the initial ensemble,
especially for the data assimilation of complex CGCMs. Nevertheless, there are still some
areas that deserve more attention and need further improvement.

This work is made on the foundation of the OSSE with the perfect model assump-
tion. However, it is much more complicated in real data assimilations. The observation
error added to the “truth” is quite coarse and is just a white noise. However, the actual
observation error has a more complex distribution in both space and time. In the ensemble
assimilation, both the observation error and the model error greatly affect the increment of
the variables. In addition, many other factors such as the feasibility, computational burdens,
and efficiency should be taken into consideration, which we will pursue in our future work.

Improving the performance of the assimilation system by continuously improving the
initial ensemble is also beneficial for high-resolution numerical simulations. In particular,
in this work, the assimilated variable is the SST, and the SST data are advantageous as
an observation with small observation error and large data volume. This can make the
simulated SST more accurate and can also help us to better understand some physical
processes affected by SST [52,53].
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5. Conclusions

In this work, we have compared different perturbation strategies of the initial ensemble
for ocean data assimilation in a fully coupled earth system model (the NCAR/CESM). The
data assimilation system is already established with an open-source community tool, DART.
We have designed the twin experiments with the observation system simulation experiment
framework, in which the observations are simulated and assimilated to the model with
perturbed initial ensembles to investigate the influence of initial perturbations.

Three perturbation patterns, white noises, pseudo-random fields, and EOF patterns,
are considered and combined with various integration strategies. In total, five perturbation
strategies are compared with the OSSE. The following conclusions are made accordingly.

For the observed variables (SST), experiments with perturbations added directly to the
initial conditions will necessarily lead to larger errors at the beginning than those adjusted
by model integration. However, its convergence will also be faster than the latter. Therefore,
regardless of the strategy used to create the initial ensemble, all experiments have a nearly
identical effect after three or four months.

For adjusted variables (SSS and SSH), it is discovered that RMSE in horizontal distri-
bution, time series, and vertical distribution of one assimilation experiment is significantly
greater than that of other experiments, namely, the experiment of adding small-scale white
noise perturbation and integrating the model for one year (WNP1y). This indicates that
although there is a model integral to help adjust the spread of the other variables, the
added perturbation is white noise, which results in a distribution of spread that does not
properly represent the error statistics of the model states. This is critical for development of
reanalysis data and Ensemble Prediction, as it is vital to avoid an initial ensemble with a
large RMSE.

The significance of difference between five assimilation experiments is also examined.
It indicates that the differences in observed variables (SST) are not significant, however,
differences in adjusted variables (SSS and SSH, etc.) are significant, which are attributed
to the WNP1y experiment. In different areas, the significance of difference for the four
strategies varies. Results of SST (assimilated variable) are ideal; global differences are not
significant. The SSS (adjusted variable) result is opposite, and no discernible pattern exists.
By analyzing the spread of covariance, it is demonstrated that result of SSS is not optimal,
primarily because the spread is much smaller than the RMSE, implying the covariance
correction has no effect on SSS. The result of SSH (adjusted variable) is acceptable, owing
to a large difference in the Antarctic Circumpolar Current.
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