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Abstract: In the motion control of AUVs, especially those driven by multiple thrusters, the thruster
misalignment and thrust loss cause the actual force and moment applied to the AUV to deviate
from that desired, making accurate and fast motion control difficult. This paper proposes a sliding
mode control method with dual-observer estimation for the AUV 3D motion control problem in
the presence of thruster misalignment uncertainty and thrust loss uncertainty. Firstly, this paper
considers the force and moment deviation as disturbances that vary with the controller output, and
proposes the TD disturbance observer to address the problem of deviation caused by uncertainty
in thruster misalignment. Secondly, this paper introduces the dynamics equation of thrust loss and
designs the gain disturbance observer to estimate the thrust loss uncertainty during AUV navigation.
The designed controller, verified by simulation and field tests, ensures that the AUV maintains better
motion control despite thruster misalignment and thrust loss.

Keywords: autonomous underwater vehicle; thruster uncertainty; disturbance observer; sliding
mode control

1. Introduction

AUV has been an active field of research and development in exploring unknown
marine environments and carrying out different military missions [1]. One of the critical
bottlenecks in developing AUVs is the technology readiness level (TRL) in the motion
control area. Motion control algorithm design for AUVs is a hard task for the following
reasons: the finite force and moment, velocity and acceleration, inherent nonlinear dy-
namics, structural and nonstructural uncertainties, external disturbances, time-varying
parameters, time-varying environment, shallow water effect, coupling between degrees
of freedom (DOFs), and the limited number of actuators with respect to the DOFs (under
actuator constraints) [2]. Therefore, it is important to consider the above reasons when
developing motion control algorithms for AUVs. In the actual operating environment of an
AUV, there will inevitably be uncertain misalignment in thrusters due to manufacturing
tolerances. Small misalignment has no significant impact on control performance. However,
for attitude tracking, especially for fast-tracking of multi-thruster-driven AUV, thruster
misalignment will cause significant attitude tracking errors [3]. Moreover, the presence
of influences such as incoming flow velocity and thruster motor friction will all cause
uncertain thrust losses from the thruster, which will not achieve the desired thrust and will
affect the dynamic performance of the vehicle [4]. These problems of AUV control force
and moment deviation caused by thruster uncertainty cannot be ignored in the design of
the controller. Some research ideas have been proposed on controller design studies to cope
with the actuator uncertainty problem. Yoon H [5] proposed an adaptive control algorithm
for attitude tracking in the case of uncertainty in actuator misalignment. The proposed
adaptive law applies a smooth projection algorithm to keep the parameter estimation in
the singular-free region, but had the defect of having too many estimated parameters.
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Qinglei Hu [6] proposed an adaptive control law to solve the moment deviation caused by
actuator misalignment. Xiao B [7] proposed a VSC-based compensation scheme for actuator
misalignment and faults, which drove attitude tracking errors and velocity tracking errors
to zero in a limited time. Zhang J [8] designed a new ESO based on SOSM technology and
added a linear correction term to estimate the disturbance caused by actuator misalign-
ment in a finite time, and then proposed an adaptive fast terminal sliding mode controller.
Zhang F [9] proposed a backstepping control method based on adaptive filtering for 6-DOF
translation and attitude tracking control with actuator misalignment. All the above studies
solved the problem of the uncertainty of installation deviation from the control level of the
actuator or solved the control law of the carrier by solving the pseudo inverse of the control
law of the actuator. In some studies, the method of disturbance observer is proposed for
observation compensation, which provides research ideas for this paper.

Different research approaches have been proposed by some scholars to address the
uncertainty of thrust loss. Dydek Z [10] designed an augmented adaptive controller to
reduce the impact of abnormal thrust loss while considering the impact of dead zones.
Cao L et al. [11] estimated the uncertainty of the actuator based on the observer, and
designed a nonsingular terminal sliding mode controller by using this estimation and
full-state measurement. Cao L et al. [12] proposed an observer-based exponential elastic
control method to achieve fast and highly accurate attitude tracking maneuvers. The thrust
loss problem in the above studies is mainly the uncertainty caused by thruster damage or
failure, which is different from the thrust loss caused by AUV navigation studied in this
paper. Luca P [13] proposed a thruster thrust estimation scheme consisting of a nonlinear
thruster moment observer and a mapping of thrust generated from the observed moment,
with the forward speed assumed to be unknown and obtained in experimental tests’
accurate results. TI Fossen [14] used three kinds of state models of thruster speed, carrier
forward velocity, and axial velocity to reconstruct axial velocity, and designed a nonlinear
observer of thruster axial velocity to estimate thrust and moment loss. Kim S Y [15]
proposed a thrust loss suppression algorithm, which regarded the thrust loss caused by
thruster cavitation as the disturbance moment. The disturbance moment is estimated by a
disturbance observer. The thruster speed reference is corrected to suppress the thrust loss by
considering the disturbance moment. Cecchi D [16] considered the quasi-static equations of
motion, deduced the relationship between forwarding velocity and thruster speed, realized
the identification of the quasi-static thrust model of AUV, and designed a simple speed
controller. Zhang L [17] proposed an anti-windup intelligent integral method based on the
S-surface control idea, which determined the adaptive weight by estimating the motion
state of the underwater vehicle and processed the constantly changing propulsion loss.
Finally, speed control, yaw control, and depth control experiments were carried out. The
above studies put forward different solutions to the problem of thrust loss generated during
navigation, but they are all aimed at the carrier with joint rudder-thruster control, which
is different from the multi-thruster-driven carrier studied in this paper. The rest of this
paper is organized as follows. In the second part, this paper establishes the kinematics
and dynamics equations of AUV and establishes the thruster misalignment model and
the thrust loss model. Then, this paper analyzes the influence of the two uncertainties on
the control. In the third part, the observer is designed based on the tracking differentiator
to estimate the disturbance force and moment in the presence of thruster misalignment,
and the stability of the TD observer is also demonstrated. Considering the uncertainty of
thrust loss, this paper designs a gain disturbance observer to estimate thrust loss, and then
proves the stability of the gain observer. In the fourth part, the simulation experiment is
carried out, which proves the effectiveness of the two disturbance observers and ensures
the motion control effect in the presence of thruster misalignment and thrust loss. In the
fifth part, a field test is carried out, which verifies the effectiveness of the controller.

The main contributions of this paper are as follows:

1. Firstly, this paper proposes a disturbance observer based on a tracking differentiator
for AUV motion control with the uncertainty of thruster misalignment. The force
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and moment deviations are regarded as disturbances with the change of control
force. A three-dimensional sliding mode motion controller is proposed based on the
disturbance observer, and the stability of the controller and convergence of the TD
disturbance observer is proved theoretically.

2. Secondly, this paper introduces the thruster dynamics model and proposes the gain
disturbance observer to estimate the uncertainty of thruster thrust loss. Then, it
theoretically proves the convergence of the gain disturbance observer.

2. Problem Statement

The influence of thruster misalignment and thrust loss on the motion control of
AUV is particularly obvious in fully thruster-driven AUV carriers, as shown in Figure 1.
The horizontal actuators of the AUV are the two main thrusters on the left and right
sides, respectively, to control the speed and yaw of AUV. The vertical actuator consists of
two tunnel thrusters on the forward and back of AUV, respectively, which can control the
depth and pitch. It belongs to a typical multi-thruster-drive AUV.
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According to ITTC recommendation and SNAME Terminology Bulletin System [18], the
co-ordinate system, as shown in Figure 2, is established with reference to relevant literature.
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The kinematics and dynamics equations of AUV six freedoms are as follows [19]:

.
η = J(η)v (1)

M
.
v + C(v)v + D(v)v + g(η) + τd = τ (2)

where, v =
[

u v w p q r
]T is the velocity vector of AUV in the body co-ordinate

system, η =
[

x y z ϕ θ ψ
]T is the position and attitude angle vector of AUV in

the earth co-ordinate system, J(η) is the co-ordinate transformation matrix,
τ =

[
Tx Ty Tz Mx My Mz

]T is the force and moment generated by the thruster,

and τd =
[

τeu τev τew τep τeq τer
]T is the disturbance force and moment. M is

the is the rigid-body inertia matrix, C(v) is a matrix of rigid-body Coriolis and centripetal
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forces, D(v) is the damping force matrix, and g(η) is the generalized gravity and buoy-
ancy vector. In the study of this paper, gravity is equal to buoyancy. The kinematics and
dynamics equations of the above matrix form are expanded without considering the rolling
motion of AUV, so the following can be obtained.

The kinematic equation of AUV is:

.
x = u cos ψ cos θ − v sin ψ + w cos ψ sin θ
.
y = u sin ψ cos θ + v cos ψ + w sin ψ sin θ
.
z = −u sin θ + w cos θ
.
θ = q
.
ψ = r/cos θ

(3)

The dynamic equation of AUV is:

(m− X .
u)

.
u = X + Xuuu2 + Xvvv2 + Xwww2 + Xqqq2 + τeu

(m−Y .
v)

.
v = −(m−Yur)ur + Yvuv + Yv|v|v|v|+ τev

(m− Z .
w)

.
w = Z− (m− Zuq)uq + Zuwuw + Zw|w|w|w|+ mzgq2 + τew

(Iy −M .
q)

.
q = M + Mq|q|q|q| −Muquq−Muwuw−

(zgw− zbB) sin θ −mzg(wq− vr) + τeq

(Iz − N.
r)

.
r = N + Nuvuv + Nv|v|v|v|+ Nurur + τer

(4)

where, X, Z, M, N is the control force and moment, τeu, τev, τew, τeq, τer is the bounded
time-varying interference force or moment, X(·), Y(·), Z(·), M(·), N(·) is the hydrodynamic
parameters of AUV, m is the mass of AUV, Ix, Iy, Iz is the moment of inertia of AUV rotating
around the three axes of the body co-ordinate system, and zg, zb is the vertical position of
AUV center of gravity and center of buoyancy. The values of the above symbols in this
article are shown in Table 1.

Table 1. Main parameters of AUV-R.

Shape
Parameters

m = 44.1 kg Iy = 8.0980 kg ·m2 Iz = 8.0670 kg ·m2

L = 1.46 m d = 0.21 m zb = 0, zg = 0.0187

Hydrodynamic
Parameters

X .
u = −2.52 kg Xuu = −6.44 kg/m Xrr = −2.29 kg ·m/rad

Xww = 0 kg/m M .
q = −5.43 kg ·m2 Xqq = −2.29 kg ·m/rad

Y .
v = −49.05 kg Yur = 35.41 kg/rad Zuw = −46.65 kg/rad

Muw = 16.43 kg N .
r = −5.31 kg ·m2 Muq = −23.76 kg ·m/rad

Xvv = 0 kg/m Zw|w| = −141.66 kg/m Nur = −27.2 kg ·m2/(s · rad)

Nuv = −14.99 kg Yv|v| = −194.77 kg/m Mq|q| = −3.98 kg ·m2/rad2

Nv|v| = 11.00 kg Yv = −44.96 kg/s

Z .
w = −49.12 kg Zuq = −27.27 kg/rad

In the process of AUV motion control, the calculated control force is distributed to
each thruster through the nominal thrust distribution matrix H. However, due to thruster
misalignment, the thruster output forces applied to the AUV do not match the desired force
and moment. When thruster misalignment exists, the uncertainty matrix of the nominal
control distribution matrix generated by thruster misalignment is H∆, and the pseudo-
inverse method is used for control distribution. When thruster misalignment exists, the
actual force acting on AUV is:

T′ = H−1TH∆ (5)
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where, T =
[

X 0 Z M N
]T is the control force output vector of the controller and

T′ is the force vector actually acted on the AUV carrier. In this paper:

H =



1 1 0 0

0 0 0 0

0 0 1 1

0 0 −0.654 0.8

0.187 −0.187 0 0

 (6)

When the thruster misalignment exists, the deviation angles of the two main thrusters
from the positive direction of the x-axis in the xoy plane are γ1 and γ2, respectively, and the
deviation angles with the xoy plane are γ3 and γ4, respectively, and the installation position
deviation in the x-axis, y-axis, and z-axis direction is li (where i = 1, 2, 3 is the left main
thruster; where i = 4, 5, 6 is the right main thruster). The deviation angles of the forward
and backward vertical thruster from the positive direction of z-axial direction are γ5 and
γ6, respectively, and the deviation angles from the positive direction of x-axial direction
in the xoy plane are γ7 and γ8, respectively, and the installation position deviation of the
x-axis, y-axis, and z-axis direction is li (where i = 7, 8, 9 is the forward tunnel thrusters;
where i = 10, 11, 12 is the back tunnel thrusters). Where γi(i = 1, 2, · · · 8) is positive in the
positive direction of each co-ordinate axis to the right, li (i = 1, 2, · · · 12) is positive when it
is the same as the positive direction of each co-ordinate axis; then, the distribution matrix
in case of installation deviation is:

H∆ =



cos γ3 cos γ1 cos γ4 cos γ2 sin γ5 cos γ7 sin γ6 cos γ8

cos γ3 sin γ1 cos γ4 sin γ2 sin γ5 sin γ7 sin γ6 sin γ8

sin γ3 sin γ4 cos γ5 cos γ6

E1 E2 E3 E4

E5 E6 E7 E8

 (7)

In Equation (7), Ei(i = 1, 2 · · · 8) is equal to:

E1 = (0.907− l1) sin γ3

E2 = (0.907− l4) sin γ4

E3 = −(0.654 + l7) cos γ5

E4 = (0.8− l10) cos γ6

E5 = (0.187− l2) cos γ3 cos γ1 − (0.907− l1) cos γ3 sin γ1

E6 = −(0.187 + l5) cos γ4 cos γ2 − (0.907− l1) cos γ4 sin γ2

E7 = −l8 sin γ5 cos γ7 + (0.654 + l7) sin γ5 sin γ7

E8 = −l11 sin γ6 cos γ8 − (0.8− l10) sin γ6 sin γ8

(8)

When there is no thruster misalignment, γi = 0 (i = 1, 2, · · · 8) and li = 0 (i = 1, 2, · · · 12),
then H = H∆. In addition to consideration of thruster misalignment, this paper also
considers the thrust loss of the thruster. Assume that the forces of the thrusters are
F =

[
F1 F2 F3 F4

]T , and the thrust loss is ∆T =
[

∆F1 ∆F2 ∆F3 ∆F4
]T , then:

F′ = F− ∆T (9)

∆T will increase as F increases. If F = 0, ∆T = 0. When F 6= 0, the true force and
moment of AUV are:

T′ = (H−1T− ∆T)H∆ (10)

In order to verify the effect of thruster misalignment and thrust loss on AUV motion
control, take li = 0.02 (i = 1, 2 · · · 12), γ1 = γ3 = γ5 = γ7 = − 3π

90 , γ2 = γ4 = γ6 = γ8 = 5π
90 ,
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ud = 0.5m/s, ψd = 60◦, zd = 10m, θd = 0◦ for simulation test and the results are shown
from Figures 3–6:
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To facilitate the design of the disturbance observer, Formula (4) is deformed and con-
siders the deviation of force and moment caused by thruster misalignment. Then: 

Figure 6. The effect on depth.

It can be seen from Figures 3–6, when there is thruster misalignment and thrust loss,
the velocity control is stable slowly, and the yaw control has 2◦ steady-state error that
cannot be eliminated. The pitch control appears to possess a larger fluctuation maximum
to −15◦, with a minimum fluctuation between −5 ∼ 5◦, and it cannot gain stability. The
depth control also has a big fluctuation, with the maximum exceeding the desired depth of
0.6 m. It can be seen that thruster misalignment and thrust loss have a great impact on the
motion control effect of AUV.

3. Controller Design

In this paper, two observers are designed to compensate the force and moment de-
viation caused by thruster misalignment and thrust loss. The principle of the designed
controller is shown in Figure 7.
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To facilitate the design of the disturbance observer, Formula (4) is deformed and
considers the deviation of force and moment caused by thruster misalignment. Then:
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

.
u = X

mu
+ Xuu

mu
u2 + Xvv

mu
v2 + Xww

mu
w2 +

Xqq
mu

q2 + τeu
mu

.
v = −mur

mv
ur + Yv

mv
uv +

Yv|v|
mv

v|v|+ τev
mv

.
w = Z

mw
− muq

mw
uq + Zuw

mw
uw +

Zw|w|
mw

w|w|+ τew
mw

.
q = M

mq
+

Mq|q|
mq

q|q| − Muq
mq

uq− Muw
mq

uw +
τeq
mq
−

(zgw−zbB) sin θ−mzg(wq−vr)
mq

.
r = N

mr
+ Nuv

mr
uv +

Nv|v|
mr

v|v|+ Nur
mr

ur + τer

(11)

where:
mu = m− X .

u, mv = m−Y .
v, mw = m− Z .

u

mur = m−Yur, muq = m− Zuq

mr = Iz − N.
r, mq = Iy −M .

q

Equation (11) can be rewritten into the equation of state in the form:

.
u = f1 + g1X + d1
.
v = f2 + d2
.

w = f3 + g3Z + d3
.
q = f4 + g4M + d4
.
r = f5 + g5N + d5

(12)

where:

f1 =
Xuu

mu
u2 +

Xvv

mu
v2 +

Xww

mu
w2 +

Xqq

mu
q2

f2 = −mur

mv
ur +

Yv

mv
uv +

Yv|v|
mv

v|v|

f3 = −
muq

mw
uq +

Zuw

mw
uw +

Zw|w|
mw

w|w|

f4 =
Mq|q|
mq

q|q| −
Muq

mq
uq− Muw

mq
uw

f5 =
N
mr

+
Nuv

mr
uv +

Nv|v|
mr

v|v|+ Nur

mr
ur

g1 =
1

mu
, g3 =

1
mw

, g4 =
1

mq
, g5 =

1
mr

d1 = τeu, d2 = τev, d3 = τew, d4 = τeq, d5 = τer

In the three-dimensional motion control of AUV, velocity, yaw, depth, and pitch are
controlled, so the velocity control law, depth control law, pitch control law, and yaw control
law should be designed so that:

lim
t→∞

(u− ud) = 0, lim
t→∞

(ψ− ψd) = 0, lim
t→∞

(θ − θd) = 0, lim
t→∞

(z− zd) = 0

Define the error as:
eu = u− ud

eψ = ψ− ψd

ez = z− zd

eθ = θ − θd

(13)
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where, ud is the desired speed, ψd is the desired yaw, zd is the desired depth, and θd is the
desired pitch.

The sliding mode surface is defined as:

S1 = eu + ku
∫ t

0 eudt

S2 = kψeψ +
.
eψ

S3 = kzez +
.
ez

S4 = kθeθ +
.
eθ

(14)

where, ku, kψ, kz, kθ > 0 is the parameters of sliding mode surface. Define the Lyapunov
function as:

V1 =
1
2
(S1

2 + S2
2 + S3

2 + S4
2) (15)

The derivative of Equation (15) can be obtained:

.
V1 = S1

.
S1 + S2

.
S2 + S3

.
S3 + S4

.
S4 (16)

In order to reduce jitter in the sliding mode controller, the following convergence law
is adopted:

.
S1 = −k1tanh(S1)− k2S1
.
S2 = −k3tanh(S2)− k4S2
.
S3 = −k5tanh(S3)− k6S3
.
S4 = −k7tanh(S4)− k8S4

(17)

where ki > 0 (i = 1, 2, · · · 8) is the parameters of the sliding mode controller.
Substitute Equation (16) into Equation (17) to obtain:

.
V1 = S1(−k1tanh(S1)− k2S1) + S2(−k3tanh(S2)− k4S2)

+S3(−k5tanh(S3)− k6S3) + S4(−k7tanh(S4)− k8S3)

= −k1tanh(S1)S1 − k3tanh(S2)S2 − k5tanh(S3)S3 − k7tanh(S4)S4

−k2S1
2 − k4S2

2 − k6S3
2 − k8S4

2

(18)

Since the hyperbolic tangent function is odd function, the velocity error, yaw error,
depth error, and pitch error are gradually stable. According to Equation (14), we can obtain:

.
S1 =

.
eu + kueu

.
S2 = kψ

.
eψ +

..
eψ

.
S3 = kz

.
ez +

..
ez

.
S4 = kθ

.
eθ +

..
eθ

(19)

According Equation (13), Equation (19) can be rewritten as:

.
S1 =

.
u + kueu

.
S2 = kψr +

.
r

.
S3 = kz

.
z +

.
w

.
S4 = kθ

.
θ +

.
q

(20)
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According to Equations (17) and (20), we can obtain:

.
u = −k1tanh(S1)− k2S1 − kueu
.
r = −k3tanh(S2)− k4S2 − kψr
.
q = −k7tanh(S4)− k8S4 − kθq
.

w = 1
cos θ (−k5tanh(S3)− k6S3 − kz

.
ez +

.
u sin θ − uq cos θ + wq sin θ)

(21)

Then, the control force of AUV is:
X = mu(−k1tanh(S1)− k2S1 − kueu) + du − d1

Z = mW
cos θ (−k5tanh(S3)− k6S3 − kz

.
ez +

.
u sin θ − uq cos θ + wq sin θ) + dw − d3

M = mq(−k7tanh(S4)− k8S4 − kθq) + dq − d4

N = mr(−k3tanh(S2)− k4S2 − kψr) + dr − d5

(22)

where:
du = −Xuuu2 − Xvvv2 − Xwww2 − Xqqq2

dw = −Zuwuw− Zw|w|w|w| −mzgq2

dr = −Nuvuv− Nv|v|v|v| − Nurur

dq = −Mq|q|q|q|+ Muquq + Muwuw + (zgw− zbB) sin θ + mzg(wq− vr)

In Equation (22), di(i = 1, 3, 4, 5) is unknown and increases with the increase in control
force. Therefore, the observer is designed to estimate the disturbance. This gives the
following theorem:

Theorem 1. For the following system:{ .
x1 = x2
.
x2 = −a1|x1|barctan(x1)− a2|x2|barctan(x2)

(23)

Define the Lyapunov function as follows:

V2 =
∫ x1

0
a1|x1|barctan(ξ)dξ +

1
2

x2
2 (24)

The derivative of Equation (24) can be obtained:

.
V 2 = a1

.
x1 |x1|barctan(x1) + x2

.
x2

= a1x2|x1|barctan(x1) + x2(−a1|x1|barctan(x1)− a2|x2|barctan(x2))

= −a2x2|x2|barctan(x2) ≤ 0

(25)

Therefore, when a1 > 0, a2 > 0, x1 ∈ R, x2 ∈ R, the system is asymptotically stable
at (0, 0).

Lemma 1. For the following systems: { .
x1 = x2
.
x2 = F(x1, x2)

(26)



J. Mar. Sci. Eng. 2022, 10, 349 11 of 27

where x1 ∈ R, x2 ∈ R, F(·) : R2 → R . If the solution of Equation (26) satisfies x1(t)→ 0 ,
x2(t)→ 0(t→ ∞) , then, for any bounded and integrable function v(t), and T > 0, R > 0, the
solution of the following system:{ .

x1 = x2
.
x2 = R2F(x1 − v(t), x2/R)

(27)

satisfies:

lim
R→∞

∫ T

0
|x1(t)− v(t)|dt = 0 (28)

That is, the generalized derivative of x1(t) converges v(t) on average; x2(t) weakly
converges on v(t). According to Lemma 1 and Theorem 1, the following disturbance
estimators are designed:

.
û = X

mu
+ Xuu

mu
u2 + Xvv

mu
v2 + Xww

mu
w2 +

Xqq
mu

q2 + d̂1
mu

.
d̂1 = R1

2
[
−L1|û− u|b1arctan(û− u)− L2

∣∣∣d̂1/R1

∣∣∣b1
arctan(d̂1/R1)

] (29)


.

ŵ = Z
mw
− muq

mw
uq + Zuw

mw
uw +

Zw|w|
mw

w|w|+ d̂3
mw

.
d̂3 = R3

2
[
−L3|ŵ− w|b3arctan(ŵ− w)− L4

∣∣∣d̂3/R3

∣∣∣b3
arctan(d̂3/R3)

] (30)



.
θ̂ = q̂
.
q̂ = M

mq
+

Mq|q|
mq

q|q| − Muq
mq

uq− Muw
mq

uw + d̂4
mq

.
d̂4 = R4

2
[
−L5

∣∣θ̂ − θ
∣∣b4arctan(θ̂ − θ)− L6

∣∣∣d̂4/R4

∣∣∣b4
arctan(d̂4/R4)

] (31)



.
ψ̂ = r̂
.
r̂ = N

mr
+ Nuv

mr
uv +

Nv|v|
mr

v|v|+ Nur
mr

ur + d̂5
mr

.
d̂ 5 = R5

2
[
−L7

∣∣ψ̂− ψ
∣∣b5arctan(ψ̂− ψ)− L8

∣∣∣d̂5/R5

∣∣∣b5
arctan(d̂5/R5)

] (32)

When T > 0 and Ri > 0 (i = 1, 3, 4, 5):

lim
R1→∞

∫ T
0 |û− u|dt = 0

lim
R3→∞

∫ T
0 |ŵ− w|dt = 0

lim
R4→∞

∫ T
0

∣∣θ̂ − θ
∣∣dt = 0

lim
R5→∞

∫ T
0

∣∣ψ̂− ψ
∣∣dt = 0

(33)

From the above formula, we can know:
û→ u

ŵ→ w

θ̂ → θ

ψ̂→ ψ

(34)
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From d̂1 − d1 = û − u, d̂3 − d3 = ŵ − w, d̂4 − d4 = q̂ − q,d̂5 − d5 = r̂ − r, we can
obtain: 

d̂1 → d1

d̂3 → d3

d̂4 → d4

d̂5 → d5

(35)

Let the state estimation error and the disturbance estimation error be:

ũ = û− u, w̃ = ŵ− w, θ̃ = θ̂ − θ, ψ̃ = ψ̂− ψ

d̃1 = d̂1 − d1, d̃3 = d̂3 − d3, d̃4 = d̂4 − d4, d̃5 = d̂5 − d5
(36)

According to Equations (34) and (35), state estimation error and disturbance estimation
error converge.

The thrust distribution of the control force can be obtained:
1 1 0 0

0 0 0 0

0 0 1 1
vspace3pt 0 0 −0.654 0.8

0.187 −0.187 0 0




X
0
Z
M
N

 =


F1
F2
F3
F4

 (37)

The calculation formula of thruster thrust can also be obtained from AUV hydrody-
namic test:

Fi = Cnni|ni| (38)

where Fi(i = 1, 2, 3, 4) is the thrust of the four thrusters and ni(i = 1, 2, 3, 4) is the speed
of the four thrusters. At the same time, the thruster system has thrust loss due to the
instability of incoming flow and the existence of model error. Therefore, a nonlinear state
observer is designed to estimate the thrust loss. The differential equation describing thrust
loss can be expressed as:

.
∆T

i = − 1
τi

∆T
i + wi (39)

where τi(i = 1, 2, 3, 4) represents time constant, wi(i = 1, 2, 3, 4) represents bounded noise,
and ∆T

i(i = 1, 2, 3, 4) represents the thrust of four thrusters. It is very difficult to obtain
an accurate model because of unknown flow velocity and unsteady flow disturbance of
the thruster, but this model is often used to estimate unknown variables. The equation of
thruster dynamics can be written as:

2π Jm
i .
n = Qm

i −Qp
i − 2πKn

ini (40)

where ni(i = 1, 2, 3, 4) is thruster speed, Jm
i(i = 1, 2, 3, 4) is thruster moment of inertia,

Kn
i(i = 1, 2, 3, 4) is linear damping coefficient, Qm

i(i = 1, 2, 3, 4) is motor command moment,
Qp

i(i = 1, 2, 3, 4) is thruster moment, and ∆T
i(i = 1, 2, 3, 4) represents thrust loss. From

Qp
i = K1ni

2 + K2∆T
i, we can obtain:

2π Jm
i .
ni = Qm

i − K1ni
2 − K2∆T

i − 2πKn
ini (41)

Command moment of the motor is:

Qm
i =

DiKQ
i

KTi Tpd
i (42)
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The observer is designed according to Equations (23) and (25), and the system output
is expressed as yi = ni, K1 > 0, K2 > 0. Assuming nonlinear gain, p and m are used to
estimate thrust loss: 2π Jm

i
.
n̂i = Qm

i − K1n̂i
2 − K2∆̂T

i − 2πKn
in̂i + pi(yi − ŷi)

.
∆̂T

i = − 1
τi

∆T
i + mi(yi − ŷi)

(43)

Let ñi = ni − n̂i, ∆̃T
i = ∆T

i − ∆̂T
i, then the error model of the observer is: 2π Jm

i
.
ñi = (−K1ni

2 − K1n̂i
2)− K2∆̃T

i − (pi + 2πKn
i)ñi

.
∆̃T

i = − 1
τi

∆̃T
i −miñi + wi

(44)

Define the Lyapunov function as:

V3 =
1
2

ñi
2 +

1
2

∆̃T
i2 (45)

The derivative of Equation (45) can be obtained:

.
V3 = ñi

.
ñi + ∆̃T

i
.
∆̃T

i

=
[
(−K1ni

2−K1n̂i
2)−K2∆̃T

i−(pi+2πKn
i)ñi

2π Jmi

]
ñi + (− 1

τi
∆̃T

i −miñi + wi)∆̃T
i

= −( pi
2π Jmi +

Kn
i

Jmi )ñi
2 − 1

τi
∆̃T

i2 − ( K2
2π Jmi + mi)ñi∆̃T

i + wi∆̃T
i − K1

2π Jmi (ni
2 − n̂i

2)ñi

(46)

For any ni and n̂i, (ni
2 − n̂i

2)(ni − n̂i) ≥ 0; according to this property, to transform
Equation (46):

.
V3 = −( pi

2π Jmi +
Kn

i

Jmi )ñi
2 − 1

τi
∆̃T

i2 − ( K2
2π Jmi + mi)ñi ∆̃T

i + wi∆̃T
i − K1

2π Jmi (ni
2 − n̂i

2)ñi

≤ −
[

ñi ∆̃T
i
] pi+2πKn

i

2π Jmi
K2+2π Jm

imi
4π Jmi

K2+2π Jm
imi

4π Jmi
1
τi

[ ñi
∆̃T

i

]
+ wi∆̃T

i
(47)

Let ẽi =
[

ñi ∆̃T
i
]T

, Qi =

 pi+2πKn
i

2π Jmi
K2+2π Jm

imi
4π Jmi

K2+2π Jm
imi

4π Jmi
1
τi

; then, Formula (45) can be

written in matrix form as: .
V3 ≤ −ẽi

T Qiẽi + wi∆̃T
i (48)

When w = 0 and the matrix Q is positive definite, the observer error is asymptotically
stable. When Equation (46) can be written as:

.
V3 ≤ −λi

min{Q}i‖ẽi ‖2 +
∣∣∣∆̃T

i
∣∣∣|wi| ≤ −λi

min{Qi}‖ẽi ‖2 + |wi|‖ẽi ‖2

≤ −(1− θi)λ
i
min{Qi}‖ẽi ‖2 − θiλ

i
min{Qi}‖ẽi ‖2 + |wi|‖ẽi ‖2

(49)

where λi
min is the minimum eigenvalue of Qi, when 0 < θi < 1, for any ‖ẽi‖, as long as:

‖ẽi ‖ ≥
|wi|

θiλi
min{Qi}

= ρ(|wi|) (50)

it can be derived: .
V3 ≤ −(1− θi)λ

i
min{Qi}‖ẽi ‖2 (51)
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In Equation (50), ρ is a linear function; then, the system is about |w| stability. Therefore,
when the gain satisfies the condition:

pi > −2πKn
i∣∣∣ K2 pi

2π Jmi + mi

∣∣∣ > 2
√

2πKni+pi
2πτi Jmi

(52)

the observer system estimate converges to the neighborhood of the real value.

4. Simulation Test

In order to verify the effectiveness of the designed controller, a simulation test is
carried out, and each of the parameters in the simulation test are shown in Table 2.

Table 2. The simulation parameters.

Parameter Value Parameter Value

li(i = 1, 2, · · · 12) 0.2 Li(i = 3, 4) 1

γi(i = 1, 2, · · · 8) 3π
90 K1 0.03

Jm
i(i = 1, 2, 3, 4) 0.16 K2 0.0073

Kn
i(i = 1, 2, 3, 4) 0.1167 k3 2

bi(i = 1, 3, 4, 5) 0.1 τ1 4

Di(i = 1, 2, 3, 4) 0.1 Cn 0.87

KQ
i(i = 1, 2, 3, 4) 0.0224 Ri(i = 1, 5) 1

Kt
i(i = 1, 2, 3, 4) 0.2189 R3 2

ki(i = 5, 6, 7, 8) 1 R4 0.3

mi(i = 1, 2, 3, 4) 0.5 pi(i = 1, 2) 20

τi(i = 2, 3, 4) 3 pi(i = 3, 4) 5

Li(i = 1, 2, 5, 6, 7, 8) 5 ki(i = u, ψ, θ, z, 1, 2, 4) 0.1

Make the AUV do the following motion:
ψd = π

4 sin(0.01t)

ud = 0.5 m/s

θd = 0◦

zd = 10 m

(53)

Sliding mode control is a kind of nonlinear control method with a fast response,
corresponding parameter change, and disturbance insensitive characteristics, while S-
plane control is based on fuzzy control mode, referring to the structure of PID control,
and deduced a new simple and effective control method. The method of this paper is to
improve the traditional sliding mode control method for the proposed problems, so it is
compared with the traditional sliding mode control method. At the same time, the S-plane
control method is selected, which reflects the superiority of the method proposed in this
paper. The simulation results are as shown from Figures 8–12.
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To evaluate the control effect, the performance index function suitable for the motion
control of the autonomous underwater vehicle is selected. The performance index of time
absolute error integral (ITAE) is a kind of control system performance evaluation index
with good engineering practicability and selectivity. It reflects the control accuracy and
speed of the control system. The smaller the value is, the better. Compared with other
performance index functions, the ITAE criterion is less affected by the initial deviation
and becomes more sensitive to the overshoot and steady-state error in the middle and late
period with the increase in time, thus focusing on the evaluation of rapidity and accuracy.
Its expression is as follows:

Φp =
∫ t

0
t|e(t)|dt (54)

Based on the ITAE guidelines, the proposed method is compared with the traditional
sliding mode and s-surface control methods, and the following results are as shown in
Table 3.

Table 3. The ITAE value comparisons of velocity control.

Φu
p

SMC with
Uncertainty SSC with Uncertainty SMC with

Observer

108.7 20.83 31.03

Table 3 shows when there are thruster misalignment and thrust loss, the Φu
p value

of s-surface speed control is smaller than that of sliding mode control and dual-observer
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sliding mode control. It proves that the effect of s-surface speed control is better than that
of sliding mode control. It can be seen from Figure 8, when there are thruster misalignment
and thrust loss, the control effect of velocity control becomes worse, and the overshoot of
traditional sliding mode control and s-surface control increases and the stabilization time
becomes longer. The overshoot of dual-observer sliding mode controller is small and the
stabilization time is short.

As can be seen from Table 4, when there are thruster misalignment and thrust loss,
the Φψ

p value of the dual-observer sliding mode control is smaller than that of traditional s-
surface and sliding mode control. It can be seen from Figure 9, at this time, there are obvious
deviations that cannot be eliminated and the tracking accuracy is decreased. The yaw of
dual-observer sliding mode control can track the desired yaw well, which is approximately
the same as that without thruster misalignment and thrust loss.

Table 4. The ITAE value comparisons of yaw control.

Φψ
p

SMC with
Uncertainty SSC with Uncertainty SMC with

Observer

19230 4542 2976

As can be seen from Table 5, when there are thruster misalignment and thrust loss, the
Φθ

p value of dual-observer sliding mode control is smaller than that of traditional s-surface
and sliding mode control. It can be seen from Figures 10 and 11, when there are thruster
misalignment and thrust loss, the vertical velocity cannot be zero due to the existence of
the pitch. Meanwhile, the pitch changes greatly, and the large stable pitch error is difficult
to eliminate. The vertical velocity of the dual-observer sliding mode controller is almost
zero and the pitch decreases obviously.

Table 5. The ITAE value comparisons of pitch control.

Φθ
p

SMC with
Uncertainty SSC with Uncertainty SMC with

Observer

9474 340 56.35

As can be seen from Table 6, when there are thruster misalignment and thrust loss,
the Φz

p value of dual-observer sliding mode control is smaller than that of traditional
s-surface and sliding mode control. It can be seen from Figure 12, when there are thruster
misalignment and thrust loss, the traditional sliding mode control has a large steady-state
error, which is difficult to eliminate, and the response speed of s-surface control is slow.
The dual-observer sliding mode controller has a fast response and no steady-state error.

Table 6. The ITAE value comparisons of depth control.

Φz
p

SMC with
Uncertainty SSC with Uncertainty SMC with

Observer

62,150 6613 1218

It can be seen from Figure 13, when there are thruster misalignment and thrust loss,
the oscillation of the velocity control force in the horizontal plane becomes larger and the
stabilization time becomes longer. After the observer compensation, the control force and
the expected forward force basically coincide. It can be seen from Figure 14, the deviation
of the yaw control moment in the horizontal plane is larger and the stabilization rate slows
down. The error between the yaw control moment and the expected moment is small after
the estimator compensation. It can be seen from Figure 15 that the response time of the
vertical force becomes longer in the vertical plane. After stabilization, due to the influence
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of the pitch, the vertical velocity is not zero. It can be seen from Figure 16 that the pitch
moment is not zero because there is a stable pitch error, which is difficult to eliminate.
After compensation by the observer, the force and moment are basically coincident with
the expected force and moment.
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It can be seen from Figures 17 and 18 that, in the presence of thrust loss, the thrust
generated by the two thrusters in the horizontal plane is less than the expected thrust value.
After compensation by the observer, the thrust is basically equal to the expected thrust. It
can be seen from Figures 19 and 20 that the force generated by the two vertical thrusts in
the vertical plane is less than the expected thrust value, and, after compensation by the
observer, the thrust basically reaches the expected thrust value.
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It can be seen from Figures 21 and 22 that the observer error of the thrust loss of the 
four thrusters converges to zero. The observer errors of the thruster misalignment con-
verge to zero in the horizontal plane and vertical plane.  

Figure 18. Right thruster force comparisons.
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It can be seen from Figures 21 and 22 that the observer error of the thrust loss of the 
four thrusters converges to zero. The observer errors of the thruster misalignment con-
verge to zero in the horizontal plane and vertical plane.  

Figure 19. Front thruster force comparisons.
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It can be seen from Figures 21 and 22 that the observer error of the thrust loss of the
four thrusters converges to zero. The observer errors of the thruster misalignment converge
to zero in the horizontal plane and vertical plane.
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Figure 21. Thruster force loss estimator error.



J. Mar. Sci. Eng. 2022, 10, 349 21 of 27

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 23 of 29 
 

 

0 100 200 300 400 500

-4

-2

0

2

4

6

0 100 200 300 400 500

-4

-2

0

2

4

6

 Thruster1

Er
ro
r (
N
)

Time (s)
 Thruster2

Er
ro
r (
N
)

Time (s)  

0 100 200 300 400 500
-5

0

5

10

15

20

25

0 100 200 300 400 500

-5

0

5

10

15

20

 Thruster3

Er
ro
r (
N
)

Time (s)

 Thruster4

Er
ro
r (
N
)

Time (s)  
Figure 21. Thruster force loss estimator error.  

0 100 200 300 400 500
-10
-8
-6
-4
-2
0
2
4
6
8

10

0 100 200 300 400 500
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Er
ro
r (
N
)

Time (s)

 Force

Er
ro
r(N

⋅m
)

Time (s)

 Moment

 

0 100 200 300 400 500
-20

0

20

40

0 100 200 300 400 500
-2
-1
0
1
2
3
4
5
6
7

Er
ro
r (
N
)

Time (s)

 Force

Er
ro
r(N

⋅m
)

Time (s)

 Moment

 
Figure 22. The actuator misalignment estimator error. 

Figure 23 shows that, when the speed increases, the control force also increases and 
the thrust loss of the four thrusters increases. It can be seen from Figure 24 that, when the 
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Figure 22. The actuator misalignment estimator error.

Figure 23 shows that, when the speed increases, the control force also increases and the
thrust loss of the four thrusters increases. It can be seen from Figure 24 that, when the speed
increases, the errors of force and moment caused by thruster misalignment also increase.
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Figure 22. The actuator misalignment estimator error. 

Figure 23 shows that, when the speed increases, the control force also increases and 
the thrust loss of the four thrusters increases. It can be seen from Figure 24 that, when the 
speed increases, the errors of force and moment caused by thruster misalignment also 
increase. 
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Figure 26. Velocity and yaw. 
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5. Field Test

The field test scene is shown in Figure 25.
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Figure 25. Field test scene.

In order to verify the effectiveness of the algorithm, an experiment was carried out in a lake
in Harbin in June 2021. The experiments were carried out at 1 m/s and 0.5 m/s, respectively.

Test 1: Set the desired velocity at 1 m/s and the desired yaw at −90◦ → −120◦ → 40◦ .
The experimental results obtained are shown from the Figures 26–31.
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Figure 28. Force and moment error estimated. 
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Figure 29. Thruster loss estimated. 
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Figure 27. Force and moment.
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Figure 28. Force and moment error estimated.
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Figure 29. Thruster loss estimated.
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Figure 29. Thruster loss estimated. 
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Figure 30. The thrust of the main thruster.
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Figure 32. Velocity and yaw. 

0 20 40 60 80 100
0

2

4

6

8

10

0 20 40 60 80 100
-10
-8
-6
-4
-2
0
2
4

 Force

Fo
rc
e 
(N
)

Time (s)

M
om

en
t(N

⋅m
)

Time (s)

 Moment

 
Figure 33. Force and moment. 

Figure 31. The voltage of the main thruster.
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It can be seen from Figure 26 of test 1 that the actual AUV velocity reaches the
expected velocity, the AUV velocity estimated by TD disturbance observer is close to the
actual velocity obtained by the actual test, the actual yaw reaches the desired yaw, and the
yaw estimated by TD disturbance observer is close to the yaw obtained by the actual test. It
can be seen from Figure 30 that the calculated output of the thruster is basically consistent
with the output estimated by the gain disturbance observer.

Test 2: Set the desired speed at 0.5 m/s and the desired yaw at
150◦ → −100◦ → −120◦ → 50◦ . The experimental results obtained are shown from the
Figures 32–37.
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Figure 37. The voltage of main thruster.

It can be seen from Figure 32 of test 2 that the actual velocity is about the desired
velocity, the velocity estimated by TD disturbance observer is close to the actual velocity
obtained by the actual test, the actual yaw is close to the desired yaw, and the yaw estimated
by TD disturbance observer is close to the yaw obtained by the actual test. It can be seen
from Figure 36 that the calculated output of the thruster is basically consistent with the
output estimated by the gain disturbance observer.

It can be seen from Figure 28 of test 1 and Figure 34 of test 2, when the control force
increases, the deviation of force and moment caused by thruster misalignment increases
accordingly. According to Figure 31 of test 1 and Figure 37 of test 2, when the control force
increases, the thrust loss of the thruster increases correspondingly.
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6. Conclusions

This paper addresses the AUV motion control problem in the presence of thruster
misalignment and thrust loss by conducting the following studies:

1. For the thruster misalignment problem, the deviation of force and torque caused
by the thruster installation error is regarded as a nonlinear disturbance that varies
with the control force, and a TD disturbance observer is designed for estimation. A
sliding mode controller is designed based on the TD disturbance observer to ensure
the motion control effect in the presence of thruster installation error, and a Lyapunov
function is designed to prove the stability of the system.

2. To address the thrust loss problem of the thruster, the thruster dynamics model is
introduced and the gain disturbance observer is designed to estimate the thrust loss
and the actual output thrust in the presence of thrust loss. When the incoming flow
velocity is unknown, the thrust loss is accurately estimated.

3. Simulation tests were conducted for AUV motion control in the presence of thruster
installation error and thrust loss. The tests proved that the AUV could ensure better
control with the compensation of TD interference observer and gain interference
observer. At the same time, an external field test was conducted to further verify the
effectiveness of the controller.
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