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Abstract: After the construction of the Three Gorges Dam (Changjiang River), the northern East
China Sea has been exposed to major environmental changes in the summer due to climate change
and freshwater control. However, little is known regarding phytoplankton in this area. Here, we
investigated differences in the summer phytoplankton-community structure as a consequence of
marine-environment changes from 2016 to 2020. In the 2000s, the key dominant species in the summer
phytoplankton community in the northern East China Sea were diatoms and dinoflagellates. In this
study, however, nanoflagellates of ≤20 µm were identified as the dominant species throughout the
survey period, with abundances ranging from 43.1 to 69.7%. This change in the phytoplankton-
community structure may be ascribed to low nutrient concentrations in the area, especially phosphate,
which was below the detection limit, seriously hampering phytoplankton growth. The relative
contribution of picophytoplankton to the total chlorophyll a biomass was highest in the surface
mixed layer with low nutrient concentrations. Spatially, higher percentages were observed along
the east-side stations than the west-side stations, where nutrient concentrations were relatively
high. Conclusively, decreased nutrients led to phytoplankton miniaturization. Accordingly, as the
dominance of picophytoplankton increases, energy transfer is expected to decrease at the upper
trophic level.

Keywords: northern East China Sea; Changjiang diluted water; phytoplankton community; chl-a
size fraction; picophytoplankton; phosphate restriction

1. Introduction

The northern East China Sea is exposed to various currents depending on the season
and exhibits singular seasonal fluctuations [1]. It is known to be a highly valuable fishing
ground because of its high primary productivity [2–4]. In summer, in particular, it shows
diverse water mass characteristics, with the surface layer affected by the freshwater flow-
ing in from the coastal areas of China, the bottom layer affected by the cold deep water
of the Yellow Sea, and the eastern part affected by the high temperature and salinity of
the Kuroshio water. The fronts formed at the boundaries of water masses with different
characteristics show unique biological and chemical patterns and have significant effects on
the distribution of zooplankton and fish along the food chain [5]. The inflow of freshwater
due to Changjiang diluted water shows marked seasonal variability, with the minimum
discharge in the winter and the maximum discharge in the summer, which greatly affects
the seasonal salinity distribution in the northern East China Sea [6,7]. Moreover, as a major
nutrient source [8], the coastal waters of China that are adjacent to the Changjiang are
rich in nutrients, with high primary productivity [9–11] and characteristics of an estuary
dominated by Chinese coastal waters. Geographically, a large difference in water depths is
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observed between the eastern and western waters, and complex topographical characteris-
tics and diverse water masses show complex environmental interactions with seasonally
variable intensity. Thus, the East China Sea, which is characterized by high productivity, is
used jointly by Korea, Japan, and China as the largest fishing ground for migratory fish
species [3]. Studies on phytoplankton distributions in the East China Sea were mainly
conducted by Chinese and Japanese researchers in the 1980s and 1990s [12–18]. The focus
areas of phytoplankton abundances and chlorophyll a (chl-a) concentrations were high in
the waters affected by the Changjiang dilution water in spring and autumn [4], changes
in phytoplankton standing stocks due to the stratification of the bottom layer structure in
summer [19], the relationship between phytoplankton-community structures and water
masses in summer [20,21], zooplankton (phytoplankton predators) [22–25], and changes
in chl-a concentrations related to nutrients and suspended matter along with changes
in phytoplankton-community structures [26]. In Korea, studies have been conducted on
the changes in phytoplankton-community distributions and structures [27–30] since the
1990s. Several studies have been conducted on different topics, including the distribution
characteristics of chl-a according to summer nutrients and suspended substances [31,32]
and long-term changes in surface water temperatures and chl-a biomasses [33]. It was also
reported that the primary productivity decreased by approximately 86% in waters adja-
cent to the Changjiang River after the construction of the Three Gorges Dam and that the
phytoplankton-community structure in the East China Sea changed [34,35]. However, there
appears to be a lack of recent data on this subject matter. Phytoplankton communities in ma-
rine ecosystems are sensitive to environmental changes, resulting in noticeable changes in
community compositions and standing stocks following changes in physical- and chemical-
environmental factors. Therefore, these changes in the phytoplankton-community structure
can be used as an indicator of changes in the marine ecosystem. Moreover, in order to
properly understand the structure and function of a marine ecosystem, it is necessary to
understand temporal and spatial changes that occur in the phytoplankton-community
structure in response to environmental factors [36]. The results of this study and those of
previous studies were compared to confirm the change in the marine environment in the
northern East China Sea due to the effect of constructing the Three Gorges Dam and the
effects on the pelagic ecosystems according to the changes in the phytoplankton community
structure were investigated.

2. Materials and Methods
2.1. Cruises and Sampling

To determine the distribution profiles of summer phytoplankton communities in the
northern East China Sea, we conducted five field surveys from 2016 to 2020 (23 August–6
September 2016; 27 August–6 September 2017; 2–10 August 2018; 20–30 August 2019;
and 3–15 August 2020) at the study site. The study site covered three lines and 15 sam-
pling stations, and the surveys were conducted using the ocean research vessel, Tamgu
3 (797 tons; National Institute of Fisheries Sciences), as indicated in Figure 1 and Table 1.
For nutrient analysis and quantitative analysis of phytoplankton, we collected samples at
seven maximum water depths (0, 10, 20, 30, 50, 75, and 100 m) using Niskin bottles (8 L
polyvinyl chloride) attached to a CTD/rosette sampler. The vertical distributions of water
temperatures and salinities were measured using a calibrated SBE 9/11 CTD instrument
(Sea-Bird Electronics, Bellevue, WA, USA), where descending data were used for the CTD
data analysis.

2.2. Dissolved Inorganic Nutrients

For nutrient analysis, we filtered seawater samples (10 mL) through 0.45 µm disposable
membrane filter units (Advantec, Tokyo, Japan), placed the samples in conical tubes
(15 mL), washed them with hydrochloric acid (HCl, 10%), and immediately stored them
at −20 ◦C. After thawing the samples at room temperature (20 ± 2 ◦C), we analyzed the
ammonium (NH4), nitrite (NO2), nitrate (NO3), phosphate (PO4), and silicon dioxide (SiO2)
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concentrations with an automatic nutrient analyzer (Quaatro, Seal Analytical, Norderstedt,
Germany). The sum of the NH4, NO2, and NO3 concentrations was calculated as the
dissolved inorganic nitrogen (DIN).
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Figure 1. Sampling station in the northern East China Sea, 2016–2020. CDW: Changjiang diluted 
water; YSWC: Yellow Sea cold water; KW: Kuroshio water; TCWW: Taiwan current warm water; 
TSW: Tsushima surface water. 

Table 1. Description of the sampling sites in the northern East China Sea for the cruise period from 
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315-17 32.5 125.9 91 
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316-13 32.0 127.0 119 
316-15 32.0 126.5 99 
316-17 32.0 125.9 76 
316-19 32.0 125.3 55 
316-21 32.0 124.5 39 
317-13 31.5 127.0 105 
317-15 31.5 126.5 88 
317-17 31.5 125.9 67 
317-19 31.5 125.3 54 
317-21 31.5 124.5 46 
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Figure 1. Sampling station in the northern East China Sea, 2016–2020. CDW: Changjiang diluted
water; YSWC: Yellow Sea cold water; KW: Kuroshio water; TCWW: Taiwan current warm water;
TSW: Tsushima surface water.

Table 1. Description of the sampling sites in the northern East China Sea for the cruise period from
2016 to 2020.

Station Latitude Longitude Bottom Depth (m)

315-13 32.5 127.0 125
315-15 32.5 126.5 107
315-17 32.5 125.9 91
315-19 32.5 125.3 68
315-21 32.5 124.5 46
316-13 32.0 127.0 119
316-15 32.0 126.5 99
316-17 32.0 125.9 76
316-19 32.0 125.3 55
316-21 32.0 124.5 39
317-13 31.5 127.0 105
317-15 31.5 126.5 88
317-17 31.5 125.9 67
317-19 31.5 125.3 54
317-21 31.5 124.5 46

2.3. Phytoplankton Abundances and Dominant Species

For quantitative analysis of phytoplankton, each sample was collected in a 1 L square
PE bottle at a standard water depth at each sampling station, fixed with Lugol’s solution
(diluted to a final concentration of 1%), and transported to our laboratory. After 48 h
decantation, the lower layer (200 mL) containing the sedimented algae was put in a small
measuring cylinder. After being allowed 48 h for decantation, the lower layer (20 mL)
containing the sedimented algae was put in a glass vial and stored in a dark box. The
concentrated samples were observed under an optical microscope (Nikon eclipse, Ni-U,
Nikon Imaging Japan Inc., Tokyo, Japan) at 100× to 1000× magnification, using a Sedwick–
Rafter Chamber for species identification and counting [37–40]. The resulting data were
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converted to the number of cells·L−1, and species accounting for >5% of the total standing
stock were classified as dominant species.

2.4. Picophytoplankton Abundances

To prepare picophytoplankton samples, collected seawater was filtered through a
3 µm polycarbonate membrane filter (Whatman, Florham Park, NJ, USA), split into 5 mL
aliquots, and placed in cryogenic tubes. Glutaraldehyde was added to each tube at a final
concentration of 1% and allowed to settle for 15 min at room temperature. The samples
were then stored at −80 ◦C. To prepare the samples for picophytoplankton counting, they
were thawed shortly before analysis and mixed with yellow-green fluorescent microspheres
(0.5 µm diameter beads; Polysciences, Inc., Warrington, PA, USA), an internal reference
material for standardizing scattering and fluorescence. Counting was conducted using a
flow cytometer equipped with a 488 nm (1 W) argon ion laser (NovoCyte 2060R, ACEA
Biosciences Inc., San Diego, CA, USA; BD AccuriTM C6 Plus, BD Biosciences Inc., Franklin
Lakes, NJ, USA) (Figure 2), and each picophytoplankton group was distinguished based on
the characteristic side scattering of red fluorescence at a 90◦-angle, the chl-a concentration,
and the orange fluorescence from phycoerythrin (Figure 2). The flow cytometry data were
analyzed using NovoExpress (Ver. 1.2.5, ACEA Biosciences Inc., San Diego, CA, USA) and
BD AccuriTM C6 Plus Analysis Software (Ver. 1.0.23.1, BD Biosciences Inc., Franklin Lakes,
NJ, USA).
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Figure 2. Flow-cytometric analysis of a picophytoplankton sample. The signatures of each picoplank-
ton group were discriminated based on their orange and red fluorescence intensities. PerCP-H:
red-fluorescence, PE-H: orange-fluorescence, P1: picoeukaryote count, P2: Synechococcus count,
P6: Prochlorococcus count.

2.5. Chl-a Size Fractionation

Chl-a concentrations were calculated as previously described [41]. To measure chl-a
concentrations according to the phytoplankton size (>20 µm: micro; 20 µm ≥ chl-a > 3 µm:
nano; ≤3 µm: pico), each phytoplankton sample (0.5 L) was sequentially filtered through
a 20 µm membrane (Polycarbonate Track Etched Membrane disk, 47 mm diameter, GVS,
Sanford, ME, USA), a 3 µm polycarbonate membrane filter (47 mm diameter, Whatman,
Florham Park, NJ, USA), and a 0.45 µm membrane filter (47 mm diameter, ADVANTEC,
Tokyo, Japan) and mounted on the filter holders. After measuring the chl-a concentrations
in the microphytoplankton, nanophytoplankton, and picophytoplankton, the total chl-a
concentration was calculated by addition. All filters were transferred to our lab in frozen
storage (−80 ◦C), and chl-a was extracted after solvation in 90% acetone and settling in a
dark and cool chamber for 24 h. The extract was then filtered through a 0.45 µm syringe
filter (PTFE, Advantec, Florham Park, NJ, USA) to remove particulate matter. Finally, the
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absorbance values were measured using a 10-Au field fluorometer (Tuner Designs, San
Jose, CA, USA) calibrated with standard chl-a (Sigma-Aldrich, Darmstadt, Germany).

2.6. Data Analyses

The R statistical program (Ver. 4.0.3) was used to analyze statistical correlations
between environmental factors and phytoplankton groups collected in the northern East
China Sea. First, the decorana function of the vegan package of R was used to examine the
distributions of biological parameters, which revealed that the DCA1 axis length (1.6993)
was less than 3. Accordingly, a redundancy analysis (RDA) was performed.

3. Results
3.1. Physical Environments

Figures 3 and 4 show plots of the surface and vertical profiles of the mean water
temperature and salinity in the northern East China Sea. The average surface water
temperature in August ranged from 27.3 to 28.9 ◦C, with an overall average of 28.0 ± 0.5 ◦C
and no distinctive spatial-distribution profile (Figure 3, left). The distribution range of
surface salinity was 29.1–32.1, with an average of 30.2 ± 0.9 and a low-west and high-
east distribution profile (Figure 3, right). The average vertical water temperature ranged
from 15.1 to 28.9 ◦C, with an overall average of 22.6 ± 4.8 ◦C, and revealed that a strong
thermocline formed at a depth of 20–30 m (Figure 4, top). The average salinity ranged from
29.1 to 34.5 psu, with an overall average of 32.0 ± 1.6 psu (Figure 4, bottom). The western
part of the sea had a low salinity (≤31.0 psu from the surface layer to a depth of 20 m),
reflecting the influence of the Changjiang dilution water. The deep layer of the eastern
part of the sea had a high salinity of ≥34.0 psu, reflecting the influence of the Kuroshio
water. In August, the northern East China Sea formed a complex water mass structure
under the influence of various water masses, depending on the water depths between the
sampling stations.
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3.2. Dissolved Inorganic Nutrient Concentrations

The average surface-layer DIN, PO4, and SiO2 concentrations in the northern East
China Sea in August were 3.5–10.3 µM, <0.1–0.1 µM, and 2.2–5.5 µM, respectively (Figure 5).
The DIN concentration increased from north to south, while the PO4 and SiO2 concentra-
tions showed a spatial-distribution profile with a gradual decrease from north to south. The
average vertical DIN, PO4, and SiO2 concentration ranges were 2.5–19.5 µM, <0.1–0.8 µM,
and 2.5–19.5 µM, respectively (Figure 6). Throughout the survey period, the DIN tended to
increase from the surface to the bottom layer, and the PO4 concentration was extremely
low in the surface mixed layer, at the detection limit of ≤0.1 µM.
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3.3. Phytoplankton Abundance and Dominant Species

In the summer, the average phytoplankton standing stock at the depth of each station
ranged from 7955 to 1,090,202 cells·L−1, with an overall average count of 149,656 ± 192,
162 cells·L−1. Spatially, in the western part of the sea (affected by the Changjiang River
dilution water), the standing stock was approximately three times higher than that in the
eastern part of the sea (affected by offshore waters). Due to strong vertical stratification
in the summer, over 90% of the total standing stock appeared in the surface mixed layer
(water depth: 0–30 m), demonstrating a remarkable difference between the surface and
bottom layers. Nanoflagellates (≤20 µm) appeared to be the dominant species throughout
the survey period. Moreover, with Scrippsiella acuminata (which inhabits the coastal environ-
ment) reaching a high abundance in the western part of the sea, flagellates predominated
in summer. In addition, at specific times during the survey, diatoms such as Chaetoceros
lorenzianus, Guinardia flaccida, Paralia sulcate, and Thalassiosira spp., and dinoflagellates such
as Alexandrium spp. appeared as the dominant species (Table 2).

3.4. Relative Contributions of Size-Fractionated Chl-a to the Overall Chl-a Concentration

The average surface-layer concentration of chl-a in the northern East China Sea in
summer ranged from 0.19 to 1.25 µg·L−1, with an overall average of 0.57 ± 0.33 µg·L−1

that gradually decreased going from west to east (Figure 7). The vertical distribution of
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chl-a ranged from 0.04 to 1.99 µg·L−1 with an overall average of 0.52 ± 0.40 µg·L−1, where
the distribution was higher in the surface mixed layer along the thermocline and gradually
decreased going toward the bottom. In addition, the subsurface chl-a maximum layer
developed at a depth of 10 to 20 m in the western part of the sea, and at 20 to 30 m in the
eastern part, depending on the locations of the sampling stations (Figure 8).
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Table 2. Dominant phytoplankton taxa in the northern East China Sea from 2016 to 2020.

Dominance 2016 2017 2018 2019 2020

1st Nanoflagellates
(<20 µm; 50.5%)

Nanoflagellates
(<20 µm; 50.1%)

Nanoflagellates
(<20 µm; 43.1%)

Nanoflagellates
(<20 µm; 68.6%)

Nanoflagellates
(<20 µm; 69.7%)

2nd Scrippsiella
acuminata (15.2%)

Chaetoceros
lorenzianus (14.3%)

Paralia sulcata
(10.2%)

Alexandrium spp.
(8.4%)

Paralia sulcata
(6.5%)

3rd Guinardia flaccida
(9.4%)

Diploneis spp.
(11.0%)

Chaetoceros spp.
(6.0%)

The average relative contributions of microphytoplankton, nano phytoplankton, and
picophytoplankton to the chl-a concentrations were 2.9–54.1% (23.2 ± 11.9%), 13.7–59.9%
(28.7 ± 12.6%), and 16.4–770% (48.1 ± 16.2%), respectively. Spatially, microphytoplankton
contributed more to the chl-a concentration in the western part of the sea, and picophyto-
plankton contributed more in the eastern part of the sea, showing opposite spatial distribu-
tions. Vertically, the relative contributions of microphytoplankton and nanophytoplankton
increased from the surface layer to the bottom layer, whereas that of the picophytoplankton
tended to decrease toward the bottom layer (Table 3).



J. Mar. Sci. Eng. 2022, 10, 315 8 of 16

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 8 of 17 
 

 

summer. In addition, at specific times during the survey, diatoms such as Chaetoceros lo-
renzianus, Guinardia flaccida, Paralia sulcate, and Thalassiosira spp., and dinoflagellates such 
as Alexandrium spp. appeared as the dominant species (Table 2). 

Table 2. Dominant phytoplankton taxa in the northern East China Sea from 2016 to 2020. 

Dominance 2016 2017 2018 2019 2020 

1st 
Nanoflagellates 
(<20 µm; 50.5%) 

Nanoflagellates 
(<20 µm; 50.1%) 

Nanoflagellates 
(<20 µm; 43.1%) 

Nanoflagellates 
(<20 µm; 68.6%) 

Nanoflagellates 
(<20 µm; 69.7%) 

2nd Scrippsiella acu-
minata (15.2%) 

Chaetoceros lo-
renzianus (14.3%) 

Paralia sulcata 
(10.2%) 

Alexandrium spp. 
(8.4%) 

Paralia sulcata 
(6.5%) 

3rd Guinardia flaccida 
(9.4%) 

Diploneis spp. 
(11.0%) 

Chaetoceros spp. 
(6.0%) 

  

3.4. Relative Contributions of Size-fractionated Chl-a to the Overall Chl-a Concentration 
The average surface-layer concentration of chl-a in the northern East China Sea in 

summer ranged from 0.19 to 1.25 µg·L−1, with an overall average of 0.57 ± 0.33 µg·L−1 that 
gradually decreased going from west to east (Figure 7). The vertical distribution of chl-a 
ranged from 0.04 to 1.99 µg·L−1 with an overall average of 0.52 ± 0.40 µg·L−1, where the 
distribution was higher in the surface mixed layer along the thermocline and gradually 
decreased going toward the bottom. In addition, the subsurface chl-a maximum layer de-
veloped at a depth of 10 to 20 m in the western part of the sea, and at 20 to 30 m in the 
eastern part, depending on the locations of the sampling stations (Figure 8). 

 
Figure 7. Spatial distributions of the average surface chl-a concentrations (µg·L−1) in the northern 
East China Sea from 2016 to 2020. 

 
Figure 8. Vertical distributions of the average chl-a concentrations (µg·L−1) in the northern East 
China Sea from 2016 to 2020. 

The average relative contributions of microphytoplankton, nano phytoplankton, and 
picophytoplankton to the chl-a concentrations were 2.9–54.1% (23.2 ± 11.9%), 13.7–59.9% 

Figure 7. Spatial distributions of the average surface chl-a concentrations (µg·L−1) in the northern
East China Sea from 2016 to 2020.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 8 of 17 
 

 

summer. In addition, at specific times during the survey, diatoms such as Chaetoceros lo-
renzianus, Guinardia flaccida, Paralia sulcate, and Thalassiosira spp., and dinoflagellates such 
as Alexandrium spp. appeared as the dominant species (Table 2). 

Table 2. Dominant phytoplankton taxa in the northern East China Sea from 2016 to 2020. 

Dominance 2016 2017 2018 2019 2020 

1st 
Nanoflagellates 
(<20 µm; 50.5%) 

Nanoflagellates 
(<20 µm; 50.1%) 

Nanoflagellates 
(<20 µm; 43.1%) 

Nanoflagellates 
(<20 µm; 68.6%) 

Nanoflagellates 
(<20 µm; 69.7%) 

2nd Scrippsiella acu-
minata (15.2%) 

Chaetoceros lo-
renzianus (14.3%) 

Paralia sulcata 
(10.2%) 

Alexandrium spp. 
(8.4%) 

Paralia sulcata 
(6.5%) 

3rd Guinardia flaccida 
(9.4%) 

Diploneis spp. 
(11.0%) 

Chaetoceros spp. 
(6.0%) 

  

3.4. Relative Contributions of Size-fractionated Chl-a to the Overall Chl-a Concentration 
The average surface-layer concentration of chl-a in the northern East China Sea in 

summer ranged from 0.19 to 1.25 µg·L−1, with an overall average of 0.57 ± 0.33 µg·L−1 that 
gradually decreased going from west to east (Figure 7). The vertical distribution of chl-a 
ranged from 0.04 to 1.99 µg·L−1 with an overall average of 0.52 ± 0.40 µg·L−1, where the 
distribution was higher in the surface mixed layer along the thermocline and gradually 
decreased going toward the bottom. In addition, the subsurface chl-a maximum layer de-
veloped at a depth of 10 to 20 m in the western part of the sea, and at 20 to 30 m in the 
eastern part, depending on the locations of the sampling stations (Figure 8). 

 
Figure 7. Spatial distributions of the average surface chl-a concentrations (µg·L−1) in the northern 
East China Sea from 2016 to 2020. 

 
Figure 8. Vertical distributions of the average chl-a concentrations (µg·L−1) in the northern East 
China Sea from 2016 to 2020. 

The average relative contributions of microphytoplankton, nano phytoplankton, and 
picophytoplankton to the chl-a concentrations were 2.9–54.1% (23.2 ± 11.9%), 13.7–59.9% 

Figure 8. Vertical distributions of the average chl-a concentrations (µg·L−1) in the northern East
China Sea from 2016 to 2020.

Table 3. Vertical variation of the chl-a size composition in the northern East China Sea from 2016
to 2020.

315 Line Chl-a Size
Composition (%) 316 Line Chl-a Size

Composition (%) 317 Line Chl-a Size
Composition (%)

St.* Depth (m) M N P St. Depth (m) M N P St. Depth (m) M N P

13

0 12.0 18.4 69.6

13

0 12.6 14.0 73.4

13

0 20.2 15.0 64.8
10 10.7 17.4 71.9 10 9.3 13.7 77.0 10 16.8 17.0 66.2
20 5.2 18.6 76.2 20 17.0 16.1 66.9 20 16.6 18.9 64.5
30 10.5 21.2 68.3 30 10.6 28.8 60.6 30 12.6 17.0 70.4
50 13.2 21.9 64.9 50 11.3 19.8 68.9 50 17.8 25.3 56.9
75 18.4 31.5 50.1 75 13.7 27.6 58.7 75 18.6 30.3 51.1
100 18.2 44.5 37.3 100 16.7 42.0 41.3 100 23.9 42.3 33.8

15

0 14.3 32.6 53.1

15

0 17.9 22.3 59.8

15

0 12.4 22.9 64.7
10 8.6 23.9 67.5 10 11.9 21.0 67.1 10 24.3 17.3 58.4
20 14.2 18.5 67.3 20 2.9 22.2 74.9 20 20.5 21.7 57.8
30 25.8 21.0 53.2 30 15.0 29.5 55.5 30 23.2 27.5 49.3
50 12.1 22.6 65.3 50 19.9 47.2 32.9 50 13.5 41.7 44.8
75 10.0 33.9 56.1 75 13.0 58.2 28.8 75 23.1 50.9 26.0
100 12.7 52.5 34.8 100 17.7 58.9 23.4 � � �

17

0 17.5 20.0 62.5

17

0 40.8 18.5 40.7

17

0 30.6 14.5 54.9
10 19.8 21.1 59.1 10 32.5 17.3 50.2 10 26.0 18.3 55.7
20 10.0 29.6 60.4 20 24.1 20.9 55 20 40.7 16.7 42.6
30 13.7 35.8 50.5 30 27.3 30.9 41.8 30 40.7 22.3 37.0
50 9.9 47.8 42.3 50 24.8 51.2 24.0 50 24.3 45.6 30.1
75 26.9 52.8 20.3 75 23.7 59.9 16.4 � � �
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Table 3. Cont.

315 Line Chl-a Size
Composition (%) 316 Line Chl-a Size

Composition (%) 317 Line Chl-a Size
Composition (%)

St.* Depth (m) M N P St. Depth (m) M N P St. Depth (m) M N P

19

0 23.8 19.4 56.8

19

0 37.2 23.1 39.7

19

0 30.9 21.2 47.9
10 20.7 21.4 57.9 10 34.7 21.2 44.1 10 27.3 18.3 54.4
20 23.4 27.5 49.1 20 27.1 28.3 44.6 20 28.8 19.9 51.3
30 8.9 40.6 50.5 30 37.1 40.3 22.6 30 44.2 30.5 25.3
50 20.8 58.5 20.7 50 25.6 55.7 18.7 50 19.6 47.0 33.4

21

0 29.9 15.8 54.3

21

0 53.6 18.1 28.3

21

0 34.4 29.6 36.0
10 41.9 19.7 38.4 10 45.8 17.7 36.5 10 30.6 31.9 37.5
20 40.4 32.3 27.3 20 47.1 23.1 29.8 20 54.1 16.8 29.1
30 51.4 29.6 19.0 30 35.5 34.5 30.0 30 42.8 25.0 32.2

Mean 18.8 29.3 51.9 Mean 24.4 30.4 45.2 Mean 26.6 26.1 47.3

SD 10.9 12.1 16.0 SD 12.9 14.7 18.3 SD 10.6 10.7 13.7

*St.: station; M: micro (>20 µm); N: nano (20 µm ≥ chl-a > 3 µm); P: pico (≤3 µm).

3.5. Picophytoplankton Cell Abundances

Figure 9 shows plots of the picophytoplankton standing stocks in three groups, as
determined by flow cytometry. Synechococcus and Picoeukaryotes cells did not show
spatially distinct distribution profiles, whereas Prochlorococcus cells appeared to be limited
at some east-side sampling stations (13, 15, 17 on each line) and abundant in the west-side
sampling stations. Regarding the vertical distribution of picophytoplankton in summer,
all three genera showed the highest standing stocks at the depth where the thermocline
formed (rather than at the surface layer) and gradually decreased below the thermocline.
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4. Discussion
4.1. Changes in Phytoplankton-Community Structures in Response to Changes in the Summer
Marine Environment

To determine the changes in the phytoplankton-community structure associated with
changes in the marine environment of the northern East China Sea in the summer, we
compared the data obtained from the same sampling stations (Lines 315 and 316) at the same
depth in a previous study and in this study (Table 4). The comparison revealed decreased
nutrients (especially phosphate) in the surface layer as a characteristic difference in the
marine environment. In terms of the community structure, diatoms and dinoflagellates
were identified as the dominant species in the previous study conducted by Oh [42], and
nanoflagellates (≤20 µm) were identified as the dominant species in this study. This
difference may be ascribed to decreased nutrients, especially in terms of phosphate. Among
the nutrients flowing into the East China Sea, the DIN concentration in the estuary of the
Changjiang River doubled from 1985 to 1998, and the DIN flux increased by 1.3-fold [43]. As
a result, in the estuary and coastal waters of China, the area containing red tides increased
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from 2000 km2 in the 1980s to over 7000 km2 in the 2000s [44] and contributed to a 21-fold
increase in the number of red tide occurrences. The frequent occurrence of red tides in
the Changjiang River estuary consumes a large amount of phosphorus, resulting in a
phosphorus deficiency (rather than excessive nitrogen) [11,45]. The Changjiang dilution
water affects the northern East China Sea. However, the transport volume decreased
by 9–18% after the construction of the Three Gorges Dam (2003–2009), and the amount
of suspended solids decreased by up to 56% [46]. The decrease in the inflow of the
Changjiang dilution water also decreased the amount of nutrients, which caused a change
in the community structure of phytoplankton from being dominated by diatoms to being
dominated by flagellates [47]. Furthermore, the main source of phosphorus in the East
China Sea is the Kuroshio water mass, although its influence has recently decreased in
the northern East China Sea. In this regard, it was reported that the phosphate inflow
decreased as the influence of the Taiwan warm current (which is caused by upwelling of
the Kuroshio water mass) also weakened [48]. The decrease in phosphate in the East China
Sea caused a decrease in the proportion of diatoms from 85% in 1984 to 60% in 2000 [49].
These results were observed in both the East China Sea and the Yellow Sea. In this respect,
Lin et al. [43] reported that the standing stock of diatoms markedly decreased from the
1980s to the 1990s because of the increased surface-water temperature of the Yellow Sea and
decreased silicate and phosphate concentrations. Likewise, Lee [50] reported extremely low
phosphate concentrations, even below the detection limit, in a study of the central part of
the Yellow Sea in summer, which resulted in a phytoplankton transition due to phosphate
restriction, in which flagellates (≤10 µm) were the dominant species at all sampling stations,
except for some bottom layer-dominant species, such as species in the Navicula spp. and
Skeleonema spp. It was also reported that the restriction of nutrients greatly affects the
growth of phytoplankton when their concentrations fall below the minimum levels of
DIN 1.0 µM, phosphate 0.2 µM, and silicate 2.0 µM [51]. Phosphate can also act as an
important factor that hampers the growth of diatoms rather than flagellates [49], and if
phosphate is deficient, then even if nitrate is abundant, phytoplankton cannot use nitrate,
which hinders growth [52]. In this survey, the surface mixed layer, which accounted for
90% of the total standing stock, maintained sufficient nitrate and silicate concentrations,
but had an extremely low phosphate concentration, even lower than 0.1 µM. The fact that
nanoflagellates with relatively low nutrient requirements could dominate over diatoms
in all sampling stations can be explained by the phosphate concentration acting as a
limiting factor.

Table 4. Comparison of environmental variables and dominant species in the northern East China
Sea between August 1998 [42] and August 2016 to 2020 (this study).

Parameters August 1998 August 2016–2020

Temperature (◦C) Surface 27.4–29.4 (28.7 ± 0.5) 25.4–31.3 (28.0 ± 1.4)
Vertical 12.7–29.4 (21.5 ± 5.9) 11.8–31.3 (23.1 ± 5.5)

Salinity Surface 26.7–29.7 (28.3 ± 0.9) 26.2–34.0 (30.1 ± 1.9)
Vertical 27.5–34.7 (31.2 ± 2.5) 26.2–34.6 (31.7 ± 1.9)

Nitrite (µM)
Surface 0.07–0.36 (0.21 ± 0.08) 0.01–0.16 (0.05 ± 0.04)
Vertical 0.07–0.57 (0.19 ± 0.14) 0.01–1.61 (0.15 ± 0.26)

Nitrate (µM)
Surface 1.26–3.54 (2.51 ± 0.66) 0.12–11.37 (2.77 ± 2.70)
Vertical 0.87–3.54 (2.05 ± 0.74) 0.09–35.40 (5.87 ± 5.54)

Phosphate (µM) Surface 0.16–0.45 (0.25 ± 0.09) ND–0.16 (0.05 ± 0.04)
Vertical 0.16–1.03 (0.39 ± 0.23) ND–0.82 (0.21 ± 0.24)

Silicate (µM)
Surface 8.95–13.77 (9.69 ± 1.45) 0.01–11.46 (4.23 ± 3.10)
Vertical 8.95–13.77 (9.59 ± 0.88) 0.01–40.17 (7.87 ± 5.71)

Dominant species
Pseudonitzschia pungens
Prorocentrum dentatum

Skeleonema costatum

Nanoflagellates (<20 µm)
Scrippsiella acuminata

Paralia sulcata

Values in parentheses are means.
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4.2. Changes in Phytoplankton Community Sizes and Structures in the Northern East China Sea

The results of this survey study indicated that the picophytoplankton contributed to
>60% of the chl-a concentration in summer standing stock; in particular, the surface mixed
layer (from the surface to a depth of 20 m), which had low nutrient concentrations, had the
highest relative chl-a concentration. Spatially, higher chl-a percentages were observed at
the east-side stations than at the west-side stations, where nutrient concentrations were
relatively high (Table 3). These tendencies were verified using statistical analysis. RDA of
environmental factors and the chl-a size revealed that the nutrient concentrations increased
with increasing water depths, which was indicative of an environment where the nutrient
availability became increasingly limited from the bottom layer to the surface layer due
to strong stratification caused by the rise in the surface water temperature in summer.
Regarding the relationship between the phytoplankton size and environmental factors,
the fraction of nanophytoplankton increased toward the bottom layer, where nutrient
concentrations were relatively high, whereas picophytoplankton were inversely related
to all nutrients, showing the highest fraction at the surface layer, where nutrient concen-
trations were low. In particular, picophytoplankton had the strongest inverse correlation
with phosphate, which was associated with extreme phosphate depletion in the surface
mixed layer (Figure 10). Similar results have been reported in other sea areas in recent
years. Size-fractionation analysis that integrated satellite-data analysis results and field
observations in the Mediterranean Sea confirmed that picophytoplankton < 2 µm accounted
for 31–92% of the total phytoplankton biomass with seasonal variations, primarily due
to low nitrogen and phosphorus availability [53,54]. Agawin et al. [55] reported that the
relative contribution of picophytoplankton to the total chl-a biomass was over 50% in Blanes
Bay in the Mediterranean Sea, which was attributed primarily to high temperatures and
nutrient-poor waters. The composition ratio of picophytoplankton was 44–90% and 54–64%,
respectively, in the Mediterranean Tyrrhenian Sea and Levantine Basin waters [56,57]. An
analysis of summer satellite data of the Yamato Basin and Japan Basin showed that the
percentage of picophytoplankton was more than 50% [58]. In addition, the composition
ratio of nanophytoplankton and picophytoplankton in many waters was reported to be over
60% [53,59–62] (Table 5). In summer surveys of the East Sea of Korea, the relative contribu-
tion of picophytoplankton to the total chl-a biomass ranged from 35 to 63% [58,63], whereas
those of nanophytoplankton and picophytoplankton (≤20 µm) were 74% on average in
the surface layer of the eastern Yellow Sea, in a study focused on the dominance of small
phytoplankton [50]. Similarly, Furuya et al. [64] showed that picophytoplankton made a
high relative contribution (up to 80%) due to the oligotrophic environment of the surface
layer in a summer survey of the northern East China Sea. Son et al. [33] also reported that
their analysis of long-term satellite observations of the chl-a biomass led to the finding that
the contribution of microphytoplankton to the chl-a concentration sharply decreased in
the northern East China Sea, whereas those of nanophytoplankton and picophytoplankton
increased. These results have a common denominator in that they were derived from
oligotrophic environments, where smaller phytoplankton cells had larger surface areas per
unit volume, making small phytoplankton become dominant, owing to their capacity for
rapid nutrient exchange through the cell surface [65–67].

Miniaturization of the phytoplankton size can result in decreased primary productiv-
ity. Indeed, analysis of primary productivity data derived from the Moderate Resolution
Imaging Spectroradiometer Aqua led to a report showing that the annual primary pro-
duction in the East Sea is decreasing by 13% per decade, as a result of an increase in the
relative contribution of picophytoplankton (≤2 µm) to the total biomass [68]. Moreover,
Lee et al. [63] verified a strong inverse correlation between the dominance rate of phyto-
plankton of ≤5 µm and the total primary production in the Amundsen Sea and attributed
this to the low rate of carbon uptake by small phytoplankton. The miniaturization of
phytoplankton also affects the food web, and it is projected that the increase in picophy-
toplankton abundance would lead to the dominance of microzooplankton (<200 µm) and
gelatinous zooplankton (salps, doliolids, and ctenophores) and a decrease in biomass [69].
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Moreover, a previous study showed that mesozooplankton (<200 µm), e.g., copepods, did
not directly feed on picophytoplankton, but rather indirectly fed on ciliates that feed on
picophytoplankton [70]. Accordingly, as the dominance of picophytoplankton increases,
the biomass of mesozooplankton that do not directly feed on them will likely decrease.
Consequently, the marine food chain will likely change from a simple diatom-based web
with high primary productivity to a complex microbial food web centering on small phy-
toplankton with low productivity, negatively affecting overall marine productivity and
reducing the efficiency of carbon transfer to consumers at higher trophic levels (Figure 11).
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Figure 11. Changes in the food chain due to succession of the phytoplankton community in the
northern East China Sea.
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Table 5. Size fractionation of phytoplankton observed in the different coastal waters of the northern
East China Sea and global waters.

Relative Ratio (%)

Area Date Pico Size Nano Size Micro Size References

Northen East
China Sea

2018–2020/
seasonally 45.6 31.2 23.2 This study

Blanes Bay 1997/summer >50 [55]
Levantine Basin March 1992 54.3–64.2 [56]
Tyrrhenian Sea

(South)
July 2005 44–81

[57]December 2005 76–90
Western Subarctic

Pacific 23–29 June 2010 63

[58]Japan Basin 5–11 July 2010 56
Yamato Basin 18–20 July 2010 56
Ulleung Basin 22–24 July 2010 38

Mediterranean Sea 31–92 [53]
Adriatic Sea

(North)
August 1986 and 1988;

July 1987 10–23 [59]

Atlantic
Meridional

Transect
(Oligortophic)

April, October 1996
April, October 1997 80 16 4 [60]

Algerian Basin October 1996 42–62 38–58 [61]

South China Sea
summer 1998 63 22 16

[62]winter 1998 51 14 36
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