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Abstract: Numerous sandy deposits, interpreted as the remains of old climbing dunes, are preserved
on the cliffy coast of Galicia (northwest Spain). These deposits can be found both in open coastal areas
and in the interior of the Galician Rias. In this paper, a formation age is established for four aeolianite
outcrops dating back to 166 ± 9 ka, 131 ± 6 ka, 128 ± 18 ka and 62 ± 3 ka, using the IRSL290 signal
of feldspars. These sands were mobilised by coastal winds from a sea level lower than the current
one during MIS6 and MIS4. The sea level fall during these regressive episodes shifted the coastline
several kilometres away from its current position. This favoured the action of the wind blowing over
the emerged coastal strip, which acted as a source area for aeolian sands. During warmer episodes,
such as the Eemian and the Holocene, the advance of the sands onto the coast was progressively
reduced as the sea level rose and the oceanic waters flooded the continental shelf.

Keywords: coastal aeolianites; climbing dunes; pIR-IRSL dating; Middle and Upper Pleistocene;
glacio-eustasy; aeolian accretion; Atlantic coast of Galicia (NW Spain)

1. Introduction

On the Atlantic coast of Galicia (NW Spain) (Figure 1), there are fossilised sandy
deposits that are preserved along stretches of low coastlines and also in areas of rocky
coastal cliffs of different elevations, reaching altitudes of +45 m (or more) above the present
sea level (apsl) [1]. In previous literature, the aeolian coastal sediments of Galicia were
considered to be beach deposits [2]. Due to the impossibility of establishing a radiocarbon
chronology for these siliciclastic materials, their position with respect to sea level was
used to obtain a relative age for them. The simplest idea was that they were all beach
levels; thus, the higher the elevation, the older they were and therefore, the sea reached a
hypothetically higher level. However, this reasoning was invalidated by the fact that, as in
this case, there are aeolian deposits that can only be related to regressive marine episodes.
This altitudinal criterion became even more confusing when considering the rise of the
Galician coast during the last 650 ka [3]. More recently, some authors have identified them
as aeolian sands [4–6] and have interpreted the aeolianites as the remains of sedimentary
formations formed and repeatedly destroyed during the glacioeustatic oscillations of the
Pleistocene [7]. At that time, the unavailability of adequate dating techniques did not allow
for a more precise chronology.

A comprehensive characterisation by Gutiérrez-Becker [1] concluded that these sandy
deposits have an aeolian origin, describing them as well-selected, thin (<5 m) and azoic
siliciclastic wedges that correspond to old climbing dunes. This has been confirmed by the
most recent OSL chronology that has been established for some of these aeolian outcrops [8],
which indicates that the dune fields and climbing dunes reached the present coastline
more than 20 ka ago, with a shoreline −100 m below present sea level (bpsl). According
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to the local sedimentary record (as discussed later in Section 5), this process of aeolian
sand accretion on this steep coastline continued during the Holocene transgression [9,10],
only stopping when the sea reached more recent levels and flooded the sand’s source
areas. In general, under the humid temperate climate of the north Atlantic peninsular
coast [11], the most recent (<5 ka) dunes and climbing dunes have been stabilised by
terrestrial vegetation [1,12] and at present these dunes are severely affected by aeolian
erosion processes during storms, with the development of blowout forms - to which must
also be added wave erosion as the sea level rises [13]. In other cases, these sediments have
been fossilised by slope deposits in some coastal cliff sections [1,14], which has allowed for
their preservation and subsequent study—as in the present case (Figure 2).
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Figure 1. Location map. Current aeolian sand dunes (yellow areas) on the Atlantic coast of Galicia
(NW Spain) and the location of the old climbing dunes (red dots) dated in this paper. (M) Monteagudo,
(F) Faro and (S) San Martiño of the Cíes Islands. The 100 m and 50 m isobaths are also shown.

The main objective of this paper is to establish the age of deposition for some of
the aeolianite deposits along the Atlantic margin of Galicia (NW Iberian Peninsula), as
described above and previously characterised by Gutiérrez-Becker [1]. The OSL signal
of quartz is saturated for such deposits; thus, it is appropriate to use infrared stimulated
luminescence (IRSL) on k-feldspars. We used post-infrared IRSL (also denoted by pIR-IRSL).
The obtained chronology allows for the extending of our knowledge about the formation of
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the old climbing dunes that are related to regressive episodes and the better understanding
of the geomorphological processes that modelled the coastal relief, as well as the evolution
of coastal dynamics at the end of the Pleistocene.
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Figure 2. Images of the fossilised climbing dune outcrops Aeolian wedges (Ae) from the climbing
dunes of Punta Langosteira (a,b), Corme (c) and Bornalle (d), usually covered by slope deposits and
terrestrial vegetation [1]. The red circle shows a sampled brick (d).

2. Study Area

The Atlantic coast of Galicia (NW Spain), which is more than 1700 km long, is defined
by a rocky coastline of rias and cliffs (Figures 1 and 2a). The rias are wide estuaries with
their primary origins [15,16] being fluvial valleys flooded during the current post-glacial
transgressive episode. The cliffs are of tectonic origin [17] and reach altitudes of up to
+600 m (apsl), resulting in the irregular and very steep morphology of this coastal relief.
At the current sea level, a high-energy marine dynamic develops in the open coastal areas
due to strong coastal winds, mainly from the S–SW direction [18]. The continental shelf has
a very regular and low-gradient surface, with a width of approximately 20 km when the
−200 m isobath (bpsl) is considered as the boundary between the shelf and the continental
slope [19].

The location, from north to south, of the sandy deposits that are studied in this paper
(Figures 1 and 2) is described as follows. The aeolianite from Punta Langosteira (43◦21′36′′ N;
8◦29′27′′ W) is located in a very steep area of open coast between +5 m and +10 m (apsl) on
the (middle) cliffs near the outer harbour of Arteixo (A Coruña) (Figures 1 and 2a,b). The
aeolianite from Corme (43◦15′45′′ N; 8◦58′04′′ W) (Figures 1 and 2c) is located at +12 m
(apsl) in a cliff area inside the Ria de Corme and Laxe near the most recent climbing dune in
Ponteceso (A Coruña), the height of which reaches more than 100 m (Figure 3a)—as do other
climbing dunes on the coast of Galicia (Figure 3)—and which is covered with terrestrial
vegetation, except in the areas where blowout erosive formations develop (Figure 3). The
aeolianite from Bornalle (42◦47′47′′ N; 9◦00′42′′ W) is located at +2 m (apsl) but in the
interior of the Ria de Muros (A Coruña, Galicia) (Figures 1 and 2d). Finally, the aeolianite
from the Lagoa dos Nenos on the Cíes Islands- (42◦13′29′′ N; 8◦54′17′′ W) is located on the
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most protected eastern slope of the Cíes Islands archipelago (Figure 1)—at the mouth of
the Vigo estuary (Pontevedra, Galicia). This old climbing reaches heights between +6 m
and +10 m (apsl) and is located very close to the dune field that dates back between 25 ka
and 4 ka [9] and to another climbing dune located at +40 m (apsl) that was formed between
35 ka and 17 ka [8].
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Figure 3. Relic climbing dunes from (a) Ponteceso (43◦14′ N; 8◦56′ W) and (b) Trece (43◦11′ N;
9◦08′ W) (WGS84) on the coast of A Coruña (Galicia, NW Spain), over +150 m above present sea
level. Sand dunes (Sd) are currently covered by terrestrial vegetation (v) and even trees. The arrows
indicate blowout erosional formations produced by wind during storm events.

3. Materials and Methods

The Punta Langosteira and Lagoa dos Nenos samples were extracted by hammering
steel cores (large: 20 cm, Ø = 10 cm) and the Corme and Bornalle samples were extracted as
50 cm3 bricks (Figure 2d). In the luminescence laboratory of the University of A Coruña [20],
the outer part of the cores was removed under subdued red light and the central part was
dried and sieved. Coarse sand grains (180–250 µm) were treated with HCl and H2O2 to
remove carbonates and organic matter, respectively. K-feldspars grains were extracted
through centrifugation in a high-density solution of sodium polytungstate (2.58 g/cm3) and
were then treated with HF (10%). The k-feldspar signals were measured on small multigrain
aliquots mounted on stainless steel discs in a Riso-DA15 automated TL/OSL reader that
was equipped with IR (blue light) emitting diodes (LEDs) (470± 30 nm) for stimulation and
a 9235QA photomultiplier, using a combination of Schott-BG 39 and Corning 7–59 glass
filters between the photomultiplier and the samples. To irradiate the samples, beta doses
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were used with a 90Sr/90Y source, which provided a dose rate of 0.120 ± 0.003 Gy/s. The
first five seconds of the IRSL signals were integrated and the background was removed in
the last 25 s.

To estimate the equivalent doses (Des), a modified single aliquot regenerative dose
(SAR) protocol [21,22] was used to assess the Des by measuring a IRSL signal at 50 ◦C/200 s
(IRSL50) and a second IRSL signal at 290 ◦C/200 s (IRSL290), including pre-heat treatment
(320 ◦C/60 s) and IR bleaching at 325 ◦C/100 s. Dose recovery tests were performed.
Residual signals from feldspars were measured on aliquots that had been bleached for
1 week and the estimated residual doses were subtracted from the obtained Des. Anomalous
fading tests were conducted following Auclair et al. [23]. All signals were measured and
normalised with a test dose (Lx/Tx) on used aliquots after different storage times between
the irradiation and the measurements and with an extra pre-heat step in between. The
obtained Lx/Tx were plotted against the time delay (log scale) between the irradiation
and measurement periods to assess the g-values and to calculate the fading-corrected ages
following Huntley and Lamothe [24] by RLumShiny [25].

The dose rates (Drs) were estimated using low-background gamma spectrometry
on bulk samples. Marinelli beakers were used, and the measurements were performed
in a coaxial Camberra-XTRA gamma detector (Ge-Intrinsic), model GR6022, within a
10 cm thick lead shield. The conversion factors from Guerin et al. [26] were used. The
internal beta dose rate activity from 40K was calculated based on an assumed effective
potassium content of 12.5 ± 0.5% [27] and assuming an effective Dr-alpha auto-irradiation of
0.1 ± 0.05 Gy/ka [28]. The water content and water saturation values were assessed in the
laboratory for all samples to estimate an average water content and the cosmic dose rates
were calculated according to Prescott and Hutton [29].

4. Results
4.1. Dose Rate (Dr)

To estimate the dose rates (Drs) (Table 1), a percentage of the water content during
the burial time of 20 ± 2% was assumed for the Lagoa dos Nenos, Punta Langosteira and
Bornalle samples and 30 ± 3% for the Corme sample (Table 1), based on the moisture and
saturation data calculated for each sample. The proportion of fine and medium sand in these
materials was higher than 90% [1], so drainage conditions were favourable, thus reducing
Dr attenuation by interstitial water content [30]. Although a high degree of homogeneity
has been described in these outcrops, which would minimise variations related to beta
dosimetry [31], a slight disequilibrium in the 238U series [32,33] was observed in all samples
(Table 1). Considering that this disequilibrium occurred over the burial time, the correction
made was calculated from the maximum and minimum values, assuming both equilibrium
and disequilibrium, (Table 1) and the uncertainty as the sum of the errors. The corrected
Drs for these samples ranged between 3.6 and 4.5 Gy/ka (Table 1).

Table 1. Dose rate (Dr). Radioisotopic activity from the 238-U, 232-Th and 40-K decay series. Dr-Total
assuming equilibrium (e) and disequilibrium (d) between 238-U and 226-Ra and the corrected Dr-Total
(Gy/ka). W, the percentage of estimated water saturation during the burial time.

Samples 238-U
(Bq/kg)

226-Ra
(Bq/kg)

232-Th
(Bq/kg)

40-K
(Bq/kg) W (%) Dr-Total

(Gy/ka)
Corrected
Dr-Total

Corme 53 ± 13 16 ± 1 13 ± 1 552 ± 51 30 ± 3
(e) 3.9 ± 0.3

3.7 ± 0.8(d) 3.3 ± 0.2

Lagoa dos Nenos 60 ± 18 21 ± 2 18 ± 4 756 ± 41 20 ± 2
(e) 4.8 ± 0.4

4.5 ± 0.6(d) 4.1 ± 0.2

Punta Langosteira 48 ± 12 21 ± 1 43 ± 3 539 ± 50 20 ± 2
(e) 3.9 ± 0.2

3.7 ± 0.6(d) 3.4 ± 0.2

Bornalle 24 ± 5 30 ± 1 11 ± 1 676 ± 63 20 ± 2
(e) 3.7 ± 0.3

3.6 ± 0.4(d) 3.5 ± 0.2
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4.2. Equivalent Dose (De) and Ages

The sandy aeolian sediments studied here are characterised by high sorting [34] and,
unlike other aeolian materials such as loess, show a good degree of signal bleaching due to
good exposure to sunlight, which reduces the likelihood of the overestimation of the dose
equivalent to burial time [35]. The IRSL50 and IRSL290 signals were intense, with fast decay
curves and growth curves suitable for interpolation (Figure 4a). The estimated doses for
each aliquot showed a symmetrical distribution, with a wide dispersion and a good fit to a
normal (Figure 4b), with an associated error of between 5% and 15%. The recovery tests
results were within the appropriate range (0.9–1.1) for the use of the (modified) SAR.
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Figure 4. IRSL signal from feldspars and Des distribution. (a) Some examples of the fast decay curves
of the IRSL290 signal, recorded during the IR stimulus time, from the aeolian samples dated in the
present paper: LN, natural IRSL290 signal; TN, natural IRSL290 signal from test dose; L3, regenerated
IRSL290 in the third cycle of the modified SAR for feldspars [22]. Inset shows the interpolation of the
normalised natural signal in the growth curve constructed from the normalised regenerated signals
(Lx/Tx), thus calculating an estimate of the equivalent dose (De). (b) Radial plots showing the (±2σ)
standard error (grey area) of the standard estimate (s.e.) from CAM [36], the relative error (%) and
the Des (Gy) from each aliquot (black dots).

The Des of each sample (as summarised in Table 2) was calculated using the weighted
mean from the central age model (CAM) [36]. The anomalous fading tests provided variable
g-values (Table 2). The Corme sample showed no significant fading, and a similar De was
estimated from the IRSL50 and IRSL290 signals, with the corrected ages of 59 ± 13 ka and
62 ± 14 ka, respectively (Table 2). For the Lagoa dos Nenos sample, a g-value of 5.2 ± 1.1
was observed in the IRSL50 signal, calculating an apparent age of 79± 11 ka and a corrected
age of 153± 58 ka. The IRSL290 signal of this sample showed no fading (g-value < 0.1), with
an age 128± 18 ka. The Punta Langosteira sample had a g-value of 0.5 for the IRSL50 signal,
with an apparent age of 95 ± 16 ka and a corrected age of 100 ± 16 ka. The IRSL290 signal
for this sample showed no fading, with an age of 131 ± 25 ka. Finally, the IRSL50 signal
from the Bornalle sample had a g-value of 2.3 ± 0.5, with an apparent age of 139 ± 17 ka
and a corrected age of 176 ± 25 ka. The IRSL290 signal from the Bornalle sample had a
g-value of 0.1, with an apparent age of 151 ± 8 ka and a corrected age of 166 ± 20 ka.
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Table 2. Des and corrected ages. Dr, the corrected dose rate; N, the number of aliquots ac-
cepted/analysed; OD, the percentage of overdispersion; OD-Rec., the percentage of overdispersion
from the recovery test; De, the equivalent dose estimated by the CAM model. The estimated fading
values (g-value = g) for the IRSL50 and IRSL290 signals are indicated: Age, apparent and corrected
age (ka, kiloannum = 1000 years).

Samples
Dr

(Gy/ka) N
OD
(%)

OD-Rec.
(%)

De(Gy)
Age (ka)

Apparent Corrected

Corme 3.7 ± 0.8 24/24

IRSL50
(g < 0.1)
217 ± 12

= 59 ± 13

11 ± 2 <5
IRSL290
(g < 0.1)
231 ± 7

= 62 ± 3

Lagoa dos
Nenos

4.5 ± 0.6 17/17

IRSL50
(g = 5.2 ± 1.1)

354 ± 15
79 ± 11 153 ± 58

11 ± 3 <5
IRSL290
(g < 0.1)
576 ± 23

= 128 ± 18

Punta
Langosteira 3.7 ± 0.6 18/26

IRSL50
(g = 0.5)
352 ± 16

95 ± 16 100 ± 16

11 ± 2 <5
IRSL290
(g < 0.1)
484 ± 51

= 131 ± 6

Bornalle 3.6 ± 0.4 17/30

IRSL50
(g = 2.3 ± 0.5)

499 ± 29
139 ± 17 176 ± 25

19 ± 3 <5
IRSL290
(g = 1.0)
600 ± 31

151 ± 8 166 ± 9

5. Discussion

The existence of climbing dunes (present or fossil) on the coastal cliffs of Galicia (NW
Spain) can only be explained by notable aeolian accretion processes that were exacerbated
by the topographic effect of a sea level lower than that of the present day [1]. For this reason,
knowing the age of its formation is a decisive factor in extending our knowledge of coastal
evolution during the regressive cold episodes (glacials) at the end of the Quaternary. In
recent years, thanks to the possibility of applying absolute dating techniques to siliciclastic
coastal deposits [3,14,37], the problem of the chronology of the coastal evolution of Galicia
at the end of the Pleistocene has been re-addressed. In the case of the coastal aeolianites, the
previous characterisation of these deposits by Gutiérrez-Becker [1] was key to prove their
aeolian origins as climbing dunes. The dating of some of these fossil outcrops by OSL [20]
has allowed us to extend the Holocene transgressive model [10], in which the mobilisation
of aeolian materials towards the continent as the sea level rose from the end of the Upper
Pleistocene was proposed.

As an example, the study and dating of the Figueiras aeolianite outcrop on Mon-
teagudo Island (Cíes Islands, Pontevedra, Galicia) [8] has allowed (i) the establishing of
the source area of aeolian sediments, (ii) the defining of their evolution since the end of
the last glacial episode, (iii) the justification of the location of the aeolianites on the present
coastline and (iv) the reinterpretation of isolated data from the local sedimentary record
as a whole. This old climbing dune, currently located at +40 m (apsl) on a granitic ridge
surrounded by sea (Monteagudo Island), has a lower limit of 35 ka and an upper limit
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of 17 ka. Considering the global record, this dune has been active since the end of the
last regressive cold episode (MIS2) [38,39], coinciding with a maximum (marine) regres-
sive episode of −120 m (bpsl) [40]. Local studies have established a sea level of below
−100 m (bpsl) [41] 20 ka ago, although glacial ablation episodes were already occurring
in the inland mountains of Galicia during this period [42,43], suggesting that the Upper
Pleistocene glacial maximum was earlier and probably had a lower sea level. These sand
dunes were, therefore, mobilised towards the mainland by prevailing S–SE winds [18] from
a strip of emerged continental shelf (the source area of the sand supply) that was several
kilometres wide [19] (Figure 5). The location of this old climbing dune is evidence that
the dune fields were able to overcome the completely emerged relief of the Cíes Islands,
which was more than 300 m above sea level at the time, and also cover part of the emerged
relief that today forms the current Ria de Vigo. Subsequently, as the sea level rose during
the post-glacial transgression, aeolian mobilisation was progressively reduced due to the
lack of sand supply. This circumstance explains the placement of dunes on the present-day
coastline on the eastern slope of the Cíes Islands, as evidenced by the chronology of the
dune fields formed between 25 ka and 4 ka [9] both on the coast of Galicia and on the north-
ern coast of Portugal [18,44–46]. All of this suggests that the process of the accumulation
and mobilisation of sandy materials during regressive cold episodes could be extrapolated
to the entire Atlantic coast of the NW Iberian Peninsula.
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Figure 5. Climbing dunes and the evolution of the Atlantic coast of Galicia (NW Spain) during Late
Pleistocene regressive cold events. A model map of the coastline at −120 m and −50 m (bpsl) (blue
area and red dotted line, respectively) during MIS6, MIS4 and MIS2 [39,40] and the emerged strip
of the continental platform covered by sand [16] (orange and yellow areas), using the bathymetric
data from EDMOnet [19]. Sand was transported by coastal winds as proposed by Costas et al. [18].
The red dots show the location of the IRSL-dated climbing dunes in this paper and the climbing
dune from Figueiras, in the Cíes Islands, [8] dated by OSL as from 35 ka to 17 ka (MIS2) [39]. All of
these fossil climbing dunes were located in the area of the current coastline, from a lower sea level.
Dune fields (hypothetically represented) were mobilised towards the continent during the Eemian
and Holocene transgressions, only stopping when the sea reached its present level and flooded the
emerged continental shelf (as evidenced by the relic dunes preserved on the current coast of Galicia:
white triangles).
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The chronology established in this paper also allows us to apply the model of old
climbing dunes formation to the different cold stages of the Late Pleistocene [14]. Consid-
ering the climatic record of the Earth (Figure 6), the formation of the Bornalle aeolianite
coincided with a positive sea level fluctuation throughout the first half of the MIS6 cold
stage, which started from a sea level below −50 m (bpsl) [40]. During this period, and as
a reference, alluvial sedimentation processes developed 180 ka ago at the present mouth
of the Ulla River in the Ria de Arousa (Galicia, Pontevedra) (Figure 1), which have been
ascribed to regressive episodes [47]. This also coincides with the chronology [3] of some of
the lower terrace levels of the Sil–Miño fluvial system (Pontevedra, Galicia, Spain) (Figure 1)
and with some of the dated coastal fluvial levels in northern Portugal [48]. The formation
of the Punta Langosteira aeolianite has been ascribed to the end of the penultimate glacial
episode of the Pleistocene, when the maximum regressive levels were similar to those
achieved at the end of the last glacial episode (Figure 6); and it continued during the
Eemian post-glacial transgression [49].
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Figure 6. 180 ka global climatic record and the formation age of the coastal climbing dunes dated by
pIR-IRSL. The global temperature variation from Vostok ice cores [38], global sea level oscillation [40]
and cold marine isotope stages (MIS6, MIS4 and MIS2) [39]. The formation ages (and error) for the
coastal climbing dunes from Punta Langosteira, Corme, Bornalle and Lagoa dos Nenos. The figure
also shows the formation age of the climbing dune from Figueiras, in the Cíes Islands-, dated from
35 ka to 17 ka by OSL [8], the formation age of the current dune fields on the Cíes Islands dating back
25 ka to 4 ka [9] and the episodes of glacier ablation in the mountains of Galicia (NW Spain) [42,43].

Considering global glacioesustatic oscillations, the placement of this climbing dune
(Punta Langosteira) on the present-day coastline between +5 m and +9 m (apsl) coincides
with a sea level below−120 m (bpsl) [40]. This suggests that, as with the Bornalle aeolianite
during MIS6, the mobilisation of sand by wind along the strip of emerged continental shelf
(Figure 5) reached the middle cliffs that define the current Atlantic coast of this area. The
age calculated for the aeolianite from the Lagoa dos Nenos coincided with the MIS6–MIS5e
transition. This suggests that, during the Eemian interglacial transgression, this climbing
dune connected the islands of Monteagudo and Faro (see aeolianite 4 in Figure 1) in the same
way that the dune fields do today [9]. Furthermore, this climbing dune would have been
similar to the present-day climbing dunes (they do not receive supplies and are covered by
vegetation and present blowout erosional formations) (Figure 3) and would not have been
completely eroded by the wind once the aeolian supplies stopped during the maximum
transgressive levels of the Eemian. In this sense, it would not be difficult to understand
the preservation of this type of aeolian formation during the glacial–interglacial–glacial
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transitions, justifying their small size and their characterisation as thin aeolian wedges [1].
Finally, the formation of the Corme aeolianite coincided with the MIS4 cold fluctuation
(Figure 6). The oscillation of the sea level during this period [40], established a lowering of
about −50 m (bpsl) (Figure 5), followed by a rise of about 20 m at the beginning of MIS3
(Figure 6). Thus, this active climbing dune in the middle of the Upper Pleistocene reached
heights above +70 m above the sea level at this time and mobilised over several kilometres
from the emerged continental shelf (Figure 5).

Therefore, a parallel exists between the aeolian accretion process identified in the Ria
de Vigo (the southernmost of the Galician rias) at the end of MIS2 [8] and the processes that
led to the advance of the Corme climbing dune and it reaching the inner part of the Ria
de Corme and Laxe during MIS4, the formation of the climbing dune in the open coastal
area of Punta Langosteira at the end of MIS6 and the formation of the Bornalle climbing
dune in the inner part of the Ria de Muros during MIS6. All of these aeolian formations
reached the present coastline when the sea level was between −50 and −100 m (or even
more) below the present one, covering all available surfaces and even overcoming a very
steep cliff relief, such as the one that characterised the Atlantic coast of Galicia at that time.

6. Conclusions

The pIR-IRSL dating technique was suitable to establish a precise chronology of the
aeolianite outcrops studied in this paper, which were characterised as climbing dunes [1].
The formation age of the Bornalle aeolianite, dating back 166 ka, coincided with the cold
regressive episode MIS6. The formation of the Punta Langosteira and Lagoa dos Nenos
aeolianites of 131 ka and 128 ka, respectively, took place at the end of the penultimate
glacial (MIS6) and throughout the Eemian interglacial period. The formation of the Corme
aeolianite took place 62 ka ago, during the MIS4 regressive cold episode.

According to the global climatic record and the local sedimentary record, all of these
aeolian materials that are still preserved on the Atlantic coast of Galicia were mobilised
from the emerged continental shelf towards the continent at lower sea levels and reached
the current coastline. During the Middle and Late Holocene, the process of aeolian accretion
along this coast was interrupted as a consequence of the flooding of the sand source areas
as the sea reached its present levels, along with the development of blowout erosional
forms that degraded the climbing dunes. Considering the chronology established in this
paper and the cyclical fluctuations of both the regressive cold episodes and the warmer
transgressive episodes at the end of the Quaternary, this circumstance could be extrapolated
to the penultimate glacial episode and the Eemian interglacial episode.
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