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Abstract: For underwater gliders (UGs), high trajectory accuracy is an important factor in improving
the observation of ocean phenomena. In this paper, a novel method of trajectory optimization is
proposed to increase the trajectory accuracy of UGs, which is approximately based on the nonlinear
dynamic model, rather than the linearization model. Firstly, a dynamic model of UGs is established to
analyze the effect of the input parameters on the trajectory error, based on some approximate models
that replaced the dynamic model due to its strong nonlinearity. Then, an identification strategy for the
trajectory error is proposed, and the trajectory optimization strategy is analyzed while considering
gliding range loss and observation distance loss. Finally, the identification strategy and trajectory
optimization strategy proposed in this paper are verified by a sea trial of Petrel-L. The dynamic
model, identification strategy, and optimization strategy are appropriate for other UGs.

Keywords: dynamic model; underwater glider; dynamic identification; trajectory error

1. Introduction

With the development of marine science and technology, the scientific expedition
vessel is no longer the only way of exploring the ocean. In recent years, autonomous
underwater exploration has become a worldwide research hotspot. Therefore, various
types of underwater equipment have been developed, such as autonomous underwater
gliders, remotely operated vehicles [1], and manned submersibles [2]. The underwater
glider (UG) [3] is one of the most promising ocean observation platforms, and it has been
widely applied to long-duration and long-range ocean phenomena. A UG can ascend and
descend in the water column, realizing horizontal motion by controlling its attitude so that
its wings always generate lift. Thus, its motion is a zigzag. Since the concept of the UG was
first proposed in 1989, various types of UGs have been developed successfully, such as the
Slocum [4], Seaglider [5], Spray [6], Sea-Explorer [7] and Petrel-L [8].

In practical applications, UGs are required to follow planned trajectories, which are
determined by specific mission requirements. Thus, the trajectory-keeping ability is an
important index for UGs to better serve the observation of ocean phenomena. Generally,
dynamic modeling provides an efficient way to study the trajectory accuracy of UGs,
which has been established successfully with many methods, such as the Newton–Euler
method [9], second Lagrange equation [10], Gibbs–Appell equation [11], differential geom-
etry method [12], and Kirchhoff equation [13].

Based on the dynamic model, much significant research on the trajectory analysis of
UGs has been carried out. Wu et al. [14] established a dynamic model of UGs validated
by experimental data and studied an analysis method and a compensation strategy of
glider motion accuracy. Leonard and Graver [9] derived a dynamic model of UGs to study
stability and controllability of glide paths and to derive feedback control laws based on
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linearization. Ziaeefard [15] presented a novel roll mechanism and an efficient control
strategy for UGs using multiple feedforward-feedback controllers. Mahmoudian [16] pre-
sented an approximate analytical expression for steady-turning motion for a realistic UG
model. Mahmoudian and Woolsey [17] described the dynamic modeling of the UG and
the numerical implementation of a motion control system with approximate analytical
expressions for wings-level and turning flight. Sang et al. [18] presented a new hybrid
heading tracking control algorithm, which integrated an adaptive fuzzy incremental PID
and an anti-windup compensator to improve the adaptability and robustness of an under-
water glider’s heading control. Lyu et al. [19] established a dynamic model by considering
the buoyancy and pitch-regulating system and investigated the impact of the winglet
on hydrodynamic performance and gliding trajectory of a blended-wing-body UG. Wu
et al. [20] established a dynamic model and studied a multi-objective optimization method
to determine the control parameter values that improve the performance of the glider.
Smith et al. [21] investigated the implementation of a large-scale, regional ocean model into
the trajectory design for autonomous gliders to improve their navigational accuracy. Wang
et al. [22] designed a linear-quadratic regulator for the underwater glider and studied the
motion path of the feedback control system in an ocean vertical plane. De la Cruz and
Torres [23] presented a pitch-based depth-tracking controller for a hybrid UG propelled by
a constant forward force applied through a single thruster. Yoon and Kim [24] addressed
the optimization of the longitudinal trajectory of a UG operating in water of limited depth,
obtaining the minimum-time trajectory to achieve the maximum-advance speed.

Although the above research reported some results about the trajectory of UGs, few
works consider the following problems, which are summarized from the sea trial data of
the Petrel-L, a UG developed by Tianjin University, China. Generally, UGs only carry an
electronic compass for underwater navigation, which can measure the attitudes of UGs,
including the pitch angle, roll angle, and heading. Disturbed by the ocean environment or
calibration error, the heading of a UG will frequently change, and the UG will adjust to the
planned value when the difference value is large enough, which will lead to the deviation
from the planned trajectory. The UG cannot return to the planned trajectory on the premise
that it is lacking an underwater positioning device. Thus, the problems to be solved can
be summarized as: (1) What is the relationship between the trajectory of the UG and the
sequence of heading adjustments? (2) How can we compute the deviation of the vehicle
trajectory from the planned trajectory? (3) What motion strategies can the UG adopt to
return to the planned trajectory?

To fill this research gap, this paper proposes a novel method to decrease the deviation
of UGs from the planned trajectory and improve the UGs’ trajectory accuracy. First, a
dynamic model is established to analyze the effect of the heading adjustment on the
trajectory deviation. Then, an identification strategy is presented to obtain the distance
of the UG to the planned trajectory with the surrogate model method. Next, a trajectory
optimization is carried out to study the advantages and disadvantages of a range of heading
adjustments. Finally, a sea trial of Petrel-L verifies the correctness of the method proposed
in this paper. The main contributions of this paper are summarized as follows.

(1) The effect of the heading adjustment, realized by rotating the internal mass block of
the Petrel-L UG, on its trajectory error is studied with the dynamic model.

(2) A systems identification is presented for the first time to obtain the deviation distance
of UGs caused by heading adjustment to the planned trajectory.

(3) To improve the trajectory accuracy of UGs, trajectory optimization schemes are con-
trasted while considering gliding range loss and observation distance loss.

(4) The proposed method is verified using data from a Petrel-L sea trial.

The rest of this paper is organized as follows. Section 2 establishes the dynamic model
of UGs. In Section 3, the identification strategy is introduced. Section 4 gives the trajectory
optimization results and discussion, and Section 5 describes the test verification. Section 6
concludes the paper with a discussion of the future work.
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2. Dynamic Modeling of Petrel-L

As shown in Figure 1, this paper takes the Petrel-L [8,25,26], a long-range UG devel-
oped by Tianjin University, China, as the study object. It consists of a cylindrical pressure
vessel, two fixed wings, two fairings, a vertical stabilizer, and an antenna. After some opti-
mization of hydrodynamic shape [27], pressure hull design [28], motion parameter [8,29]
and multidisciplinary design [30], the gliding range of Petrel-L reached over 4000 km.

Figure 1. Petrel-L glider in South China Sea.

To analyze the trajectory accuracy of Petrel-L, a dynamic model needs to be established.
First, the coordinate frames of Petrel-L are defined to facilitate the subsequent deduction,
as shown in Figure 2. Three frames, including the inertial frame, E-XYZ, body frame, O-xyz,
and velocity frame, O’-x’y’z’, are defined. The directions of all the coordinate axes in one
frame are shown in Figure 2, which obey the right-hand rule.

Figure 2. Coordinate frames of Petrel-L.

2.1. Kinematics

In the inertial frame, the position and the attitude of Petrel-L are expressed by the
position vector, b = [X, Y, Z]T, and the angle vector, η = [ϕ, θ, ψ]T, where the roll angle,
ϕ, pitch angle, θ, and heading, ψ, denote the angles that the body frame rotates around
the X-axis, Y-axis, and Z-axis, respectively, from the attitude, coinciding with the internal
frame. The inertial frame, E-XYZ, can be coincident with the body frame, O-xyz, after
rotating three times and following the rotation matrix of [31].

RE
B =

 cos ψ cos θ sin ψ cos θ − sin θ
cos ψ sin θ sin ϕ− sin ψ cos ϕ sin ψ sin θ sin ϕ + cos ψ cos ϕ cos θ sin ϕ
cos ψ sin θ cos ϕ + sin ψ sin ϕ sin ψ sin θ cos ϕ− cos ψ sin ϕ cos θ cos ϕ

 (1)
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Thus, the rotation matrix from the body frame to the inertial frame is the transpose of
RE

B. The velocity vector of Petrel-L in the inertial frame can be expressed as

X′ = u cos ψ cos θ + v(cos ψ sin θ sin ϕ− sin ψ cos ϕ)
+w(cos ψ sin θ sin ϕ + sin ψ sin ϕ)

Y′ = u sin ψ cos θ + v(sin ψ sin θ sin ϕ + cos ψ cos ϕ)
+w(sin ψ sin θ cos ϕ− cos ψ sin ϕ)

Z′ = −u sin θ + v cos θ sin ϕ + w cos θ cos ϕ

(2)

The motion trajectory, X(t), Y(t), and Z(t), of Petrel-L in the inertial frame can be
expressed by integrating Equation (2).

In the body frame, the velocity and the angular velocity of Petrel-L can be expressed by
the velocity vector, V = [u, v, w]T, and the angular velocity vector, Ω = [p, q, r]T, involving
velocities and angular velocities along the x-axis, y-axis, and z-axis, respectively. The
relationship between body frame and velocity frame is determined by the angle of attack,
α, and the sideslip angle, β, shown in Figure 2, and the rotation matrixes between, which
can be expressed as

RB
V =

(
RV

B

)T
=

 cos α cos β sin β cos β sin α
− cos α sin β cos β − sin α sin β
− sin α 0 cos α

 (3)

Similarly, the relationship between the change rate of the attitude angles and the
angular velocities can be expressed as

ϕ′ = p + q tan θ sin ϕ + r tan θ cos ϕ
θ′ = q cos ϕ− r sin ϕ
ψ′ = (q sin ϕ + r cos ϕ)/cos θ

(4)

The attitude of Petrel-L in the inertial frame, ϕ(t), θ(t), ψ(t), can be obtained by inte-
grating Equation (4).

The velocity, V, angle of attack, α, and the sideslip angle, β, are respectively ex-
pressed as

V =
√

u2 + v2 + w2 (5)

α = arctan(w/u) (6)

β = arcsin(v/V) (7)

2.2. Force Analysis

When Petrel-L travels in the seawater, it is subject to external forces, including the
buoyancy, weight, inertial forces, and viscous hydrodynamic forces. In addition, there exist
interactive forces between the UG body and the movable internal mass block. All forces
are expressed relative to a local origin, O. Before force analysis, an assumption is adopted
that the displacement of Petrel-L is constant, and the mass of Petrel-L is variable when the
buoyancy changes.

2.2.1. Buoyancy Device and Attitude Device

As shown in Figure 3a, the buoyancy device (BD) can transfer oil between the internal
oil tank and external bladder, which results in the net buoyancy variation required by
Petrel-L for dive or climb motion.
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Figure 3. Buoyancy control device (a) and attitude control device (b).

When Petrel-L is neutrally buoyant at the sea surface, the volume of oil inside the
oil tank is denoted as VbN. Thus, when the oil volume inside the internal oil tank is Vb,
the mass variations of the internal oil tank, ∆mbin, and the external bladder, ∆mbout, are
expressed as

∆mbin = (Vb −VbN)ρoil (8)

∆mbout = −∆mbin +
∆mbin

ρoil
ρw = (Vb −VbN)(ρw − ρoil) (9)

where ρoil and ρw are the density of oil and seawater, respectively.
Thus, compared with the neutrally buoyant state of Petrel-L, the total weight variation

of buoyancy unit Bb can be calculated by Equation (10). When Bb is positive, Petrel-L dives
in the seawater. On the contrary, it climbs when Bb is negative.

Bb = ∆mbg = (∆mbin + ∆mbout)g =
∆mbin

ρoil
ρwg = (Vb −VbN)ρwg (10)

In the body frame, the position variation of the transferred oil, ∆rb1, and mass variation
of seawater inside the rear fairing, ∆rb2, can be expressed as

∆rb1 =

 lbin − lbout
0
0

, ∆rb2 =

 lbout
0
0

 (11)

where lbin and lbout are the distances of the internal oil tank and the external bladder to the
center of buoyancy, respectively.

In this paper, the bladder and the oil tank are considered to be symmetrical relative to
the O-xz, so the inertia tensor variation, ∆Jb, caused by oil transfer can be expressed as

∆Jb = (−∆mbin(lbin − lbout)
2 + ∆mbl2

bout)

 0 0 0
0 1 0
0 0 1

 (12)

Petrel-L adjusts its pitch angle and heading by translating and rotating its internal
mass block. This paper ignores the effect of the acceleration of the mass block on the glider
motion. As shown in Figure 3b, a local coordinate frame, Op-xpypzp, is definite at the center
of weight of the mass block, the initial center of which is rp0 = [xp0, 0, zp0]T.

In the body frame, when the translation distance and the rotation angle of the internal
mass block are lp and ϕr, respectively, the movement of the center of weight, ∆rp, can be
expressed as:

∆rp =

 1 0 0
0 cos ϕr − sin ϕr
0 sin ϕr cos ϕr

rp0 +

 lp
0
0

− rp0 =

 lp
−zp0 sin ϕr

zp0(cos ϕr − 1)

 (13)
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Influenced by the calibration error and some other factors, there usually exists a
rotation angle error, which has an effect on the glide motion. Considering the initial
rotation angle error of the mass block, ∆ϕ, ∆rp can be further expressed by Equation (13).

∆rp =

 lp
−zp0 sin(ϕr + ∆ϕ)

zp0(cos(ϕr + ∆ϕ)− 1)

 (14)

The increment of inertia tensor in the body frame is expressed as

∆Jp =

 ∆Jp,xx ∆Jp,xy ∆Jp,xz
∆Jp,xy ∆Jp,yy ∆Jp,yz
∆Jp,xz ∆Jp,yz ∆Jp,zz

 (15)

where
∆Jp,xx = 0
∆Jp,xy = (Jp0,xz + mp(xp0 + lp)zp0) sin ϕr

∆Jp,xz = −(Jp0,xz + mp(xp0 + lp)zp0)(cos ϕr − 1)−mplpzp0

∆Jp,yy =
(

Jp0,zz − Jp0,yy
)

sin2 ϕr + mplp(2xp0 + lp)

∆Jp,yz = 0.5 sin(2ϕr)(Jp0,yy − Jp0,zz + mpz2
p0)

∆Jp,zz =
(

Jp0,yy − Jp0,zz
)

sin2 ϕr + mplp(2xp0 + lp)

(16)

2.2.2. Weight, Buoyancy and Righting Moment

The gravity force and the buoyancy of the Petrel-L are G0 and B0, respectively. When
the glider is neutrally buoyant, the center of weight, rG0, is

rG0 = [00zG0]
T (17)

where zG0 is the height of the metacenter.
The inertia tensor, J0, of neutrally buoyant Petrel-L in the body frame is

J0 =

 J0,xx 0 −J0,xz
0 J0,yy 0

−J0,xz 0 J0,zz

 (18)

When the oil volume inside the oil tank is Vb, the total mass m of Petrel-L is

m = m0 + ∆mb = m0 + (Vb −VbN)ρw (19)

where m0 is the mass of the UG when it is in the initial neutrally buoyant state.
The center of mass is influenced by the relative motion of the oil and the mass block,

the vector of which, rG, can be expressed as

rG =

 xG
yG
zG

 =
m0rG0 + ∆mbin∆rb1 + ∆mb∆rb2 + mp∆rp

m
(20)

where ∆rb1 and ∆rb2 are the displacement variations of center of weight.
Thus, the total inertia tensor, J, of Petrel-L can be expressed as

J =

 Jx −Jxy −Jxz
−Jxy Jy −Jyz
−Jxz −Jyz Jz

 = J0 + ∆Jb + ∆Jp (21)
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where Jx, Jy, and Jz are the rotational inertias relative to the x-axis, y-axis, and z-axis,
respectively, Jxy, Jyz, and Jxz are the products of inertia relative to the plane, O-xy, the plane,
O-xy, and the plane, O-xy, respectively.

The weight of Petrel-L FG and righting moment, TG, can be expressed as

FG = mg

 − sin θ
cos θ sin ϕ
cos θ cos ϕ

 (22)

TG = rG × FG = mg

 xG
yG
zG

×
 − sin θ

cos θ sin ϕ
cos θ cos ϕ

 = mg

 −zG cos θ sin ϕ + yG cos θ cos ϕ
−zG sin θ − xG cos θ cos ϕ
yG sin θ + xG cos θ sin ϕ

 (23)

Thus, the buoyancy force, FB, acting on Petrel-L in the body frame is

FB = B0

 − sin θ
cos θ sin ϕ
cos θ cos ϕ

 (24)

In the initial neutrally buoyant state, the weight, G0, is equal to the buoyancy B0.

G0 = m0g = −B0 = −ρ0V0g (25)

where ρ0 is the density of seawater at the surface, V0 is the volume of Petrel-L under the
barometric pressure.

To sum up, the net buoyancy of Petrel-L can be expressed as

FBN = FG + FB = ∆mbg

 − sin θ
cos θ sin ϕ
cos θ cos ϕ

 (26)

2.2.3. Viscous Hydrodynamic Force

The viscous hydrodynamic forces, including the forces, FVHV = [D, SF, L ]T, and the
hydrodynamic moments, TVHV = [ Tx’, Ty’, Tz’ ]T, are caused by the surrounding fluid when
Petrel-L is in the state of steady motion.

FVHV =

 D
SF
L

 =

 CD‖V‖2

CSF‖V‖2

CL‖V‖2

 (27)

TVHV =

 Tx′

Ty′

Tz′

 =

 Cx′‖V‖2

Cy′‖V‖2

Cz′‖V‖2

 (28)

where drag, D, side force, SF, and lift, L, are the hydrodynamic forces in the velocity frame
relative to the x’-axis, y’-axis, and z’-axis, respectively, Tx’,Ty’, and Tz’ are the hydrodynamic
moments in the velocity frame relative to the x’-axis, y’-axis, and z’-axis, respectively, CD,
CSF, and CL are the effective hydrodynamic force coefficients for drag, side force, and lift,
respectively, and Cx’, Cy,’ and Cz’ are the effective hydrodynamic moment coefficient, for
the moments in the velocity frame relative to the x’-axis, y’-axis, and z’-axis, respectively.

According to the coordinate transformation relation of Petrel-L, the hydrodynamic
forces and moments in the body frame can be obtained.

FVH = RV
B FVHV (29)

TVH = RV
B TVHV (30)
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2.2.4. Inertial Hydrodynamic Force

The inertial hydrodynamic forces are caused by the surrounding fluid of Petrel-L
when the UG accelerates in the seawater, which are determined by the shape of Petrel-L
and the density of the fluid. Usually, the inertial hydrodynamic forces are introduced into
the dynamic model by the form of the added mass. Considering the symmetry of Petrel-L,
the added mass λij [31] of Petrel-L is

λij =



λ11 0 0 0 0 0
0 λ22 0 0 0 λ26
0 0 λ33 0 λ35 0
0 0 0 λ44 0 0
0 0 λ35 0 λ55 0
0 λ26 0 0 0 λ66

 (31)

In the body frame, the inertial hydrodynamic forces, FIH, and moments, TIH, are
expressed as

FIH =

 −λ11
.
u

−λ22
.
v− λ26

.
r

−λ33
.

w− λ35
.
q

 (32)

TIH =

 −λ44
.
p

−λ55
.
q− λ35

.
w

−λ66
.
r− λ26

.
v

 (33)

2.3. Dynamics

In the inertial frame, the momentum, p, and the moment of momentum, L, relative to
O are

p = mVG = m
(
V +

.
rG
)
= m(V + Ω× rG) (34)

L = JΩ + mrG × V (35)

where VG = V + Ω × rG is the velocity of the center of mass.
In the body frame, the total external forces and the external moments acted on the

Petrel-L are
F = FG + FB + FVH + FIH (36)

T = TG + TVH + TIH (37)

The dynamic equations can be obtained according to the momentum theorem and the
moment of momentum theorem [20].

dp
dt

=
d̃p
dt

+ Ω× p = m

[
d̃V
dt

+
d̃Ω

dt
× rG + Ω× (V + Ω× rG)

]
= F (38)

dL
dt

=
d̃L
dt

+ Ω× L + V× p = J
d̃Ω

dt
+ mrG ×

d̃V
dt

+ Ω× (JΩ + mrG × V) + V×m(Ω× rG) = T (39)

where d
dt is the time derivative of the vector in the inertia frame, and d̃

dt is the time derivative
of the vector in the body frame.

The decomposition equations can be expressed by Equation (39) according to the
projection along the O-x axis, O-y axis, and O-z axis in the body frame.
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

m
[ .
u− vr + wq− xG

(
q2 + r2)+ yG

(
pq− .

r
)
+ zG

(
pr +

.
q
)]

= Fx
m
[ .
v− wp + ur− yG

(
r2 + p2)+ zG

(
rq− .

p
)
+ xG

(
qp +

.
r
)]

= Fy
m
[ .
w− uq + vp− zG

(
p2 + q2)+ xG

(
pr− .

q
)
+ yG

(
rq +

.
p
)]

= Fz
Jx

.
p−

(
Jy − Jz

)
qr + Jxy

(
pr− .

q
)
+ Jyz

(
r2 − q2)− Jxz

( .
r + pq

)
+ myG

( .
w + pv− qu

)
−mzG

( .
v + ru− pw

)
= Tx

Jy
.
q− (Jz − Jx)rp + Jyz

(
qp− .

r
)
+ Jxz

(
p2 − r2)− Jxy

( .
p + qr

)
+ mzG

( .
uz + qw− rv

)
−mxG

( .
w + pv− qu

)
= Ty

Jz
.
r−

(
Jx − Jy

)
pq + Jxz

(
rq− .

p
)
+ Jxy

(
q2 − p2)− Jyz

( .
q + rp

)
+ mxG

( .
v + ru− pw

)
−myG

( .
u + qw− rv

)
= Tz

(40)

where Fx, Fy, Fz and Tx, Ty, Tz are projections of the external force principal vector, F, and
the principal moment, T, along the three axes.

Equations (2), (4) and (40) make up the dynamic model of the glider, which is used
for simulating the glider motion. In this study, we use the MATLAB software to solve the
dynamics, and the numerical method used is ode45, which is widely used for solving the
ordinary differential equation. In the simulation, the initial values of V , Ω, b, and η are
set as 0, and the variations of them can be obtained by importing the input parameters,
including the oil volume VbN, inside the internal oil tank and the position of the mass pack,
consisting of the translation distance, lp, and the rotation angle, ϕr.

3. Trajectory Error Analysis and Identification Strategy
3.1. Trajectory Error Analysis

In this paper, we ignore the effect of the ocean current on the trajectory. Usually,
Petrel-L glides in the vertical plane when the initial rotation angle error, ∆ϕ, of mass block
in Equation (13) is 0◦. However, caused by the trim error and calibration error, the initial
rotation angle error, ∆ϕ, of mass block exists, which leads to the deviation of heading of
Petrel-L. To reduce the energy consumed by frequent heading adjustments, the heading,
∆ψ, is set as 15◦ in the practical engineering, and Petrel-L begins to adjust its heading when
the deviation of its heading to the planned heading, ψT, is larger than ∆ψ. In the process
of deviation of heading, Petrel-L moves in a spiral motion in the three-dimensional space,
which causes Petrel-L to deviate from the vertical plane and results in the trajectory error,
∆Y, shown in Figure 4. Due to the lack of an underwater positioning sensor carried by
Petrel-L, it can only adjust the heading instead of its underwater position.

Compared with the process of the deviation of heading, the adjustment of the heading
is relatively quick because of a larger rotation angle of the internal mass block, ϕr, a
process which is ignored in this study. Although the heading has been adjusted as the
planned heading, Petrel-L cannot return to the planned trajectory, and the trajectory error
is generated. Moreover, as the number of the heading adjustments increase, the trajectory
error gradually increases, and Petrel-L keeps away from the planned trajectory, which is
disadvantageous for its application in ocean observation.

With the dynamic model established in Section 2, the effect of the input parameters on
the trajectory error can be analyzed. Figures 5 and 6 show the trajectory errors of Petrel-L
in dive motion under the different pitch angles, net buoyancies, and rotation angle errors,
respectively, when the deviation of its heading gradually changes from 0◦ to 15◦, which
indicates that the trajectory error increases with the pitch angle and net buoyancy and
decreases with the rotation angle error. Thus, the trajectory error is more dependent on the
velocity of the UG because the UG moves a longer distance under the same deviation of its
heading. The heading of the UG with a larger rotation angle error will change faster, and
the time consumed for the deviation of heading from 0◦ to 15◦ is shorter, so the trajectory
error is smaller.
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Figure 4. Trajectory error caused by heading adjustment.

Figure 5. Three-dimensional trajectory of Petrel-L under different pitch angles (a), net buoyancies (b),
and rotation angle errors (c).

Figure 6. Two-dimensional trajectory of Petrel-L under different pitch angles (a), net buoyancies (b),
and rotation angle errors (c).

To obtain the trajectory error of Petrel-L for trajectory optimization, an identification
strategy needs to be proposed based on the dynamic model and glider datasets in the sea
trial. Due to the strong nonlinearity of the dynamic model, the relationship between the
input parameters (net buoyancy, pitch angle, and rotation angle errors) and the output
parameters (vertical velocity, Z’, horizontal velocity, VXY, and heading angular velocity ψ´)
cannot be explicitly expressed by a function, which makes it difficult to directly identify
the trajectory error by the data of Petrel-L. Thus, the approximate models are established to
express these relationships replacing the dynamic model. The establishment processes of
the approximate models are shown as follows.

(1) Design space: the design space of the approximate models needs to be determined
according to the engineering practice, which is shown in Table 1.
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Table 1. Design space of approximate models.

Parameter Value Range Parameter Type

|FBN| 1–9 N Real
∆ϕ 0–10◦ Real
|θ| 10~30◦ Real

(2) Data collection: The optimal Latin hypercube method [32] is adopted the design space
which can ensure a uniform distribution of the sampling points. The initial sample
size is 400. Considering the symmetry of the glide motion, we use the approximated
dynamic model and record from the pitch, heading, and depth sensors to estimate the
trajectory error while the vehicle dives.

(3) Establishment and verification: Seventy-five percent of the datasets are used to estab-
lish the approximate models in which the response surface method [33] is used. The
surplus 25 percent of the datasets are used to verify the accuracies of the approximate
models. If the correlation coefficients are smaller than 0.99, we will increase the sample
number and repeat the processes (1)–(3) until the accuracies meet the requirements.

The approximate models established by 300 datasets are shown in Figures 7–9, which
indicate the effect of the design variables on the output parameters. Figures 7 and 8
indicate that the vertical velocity, Z´, and the horizontal velocity, VXY, increase with the
net buoyancy, FBN, and the pitch angle, θ, and vary little with the rotation angle error, ∆ϕ.
Figure 9 indicates that the heading angular velocity, ψ´, increases with the net buoyancy,
FBN, the pitch angle, θ, and the rotation angle error, ∆ϕ.

Figure 7. Approximate model of vertical velocity.

 
(a) VXY-FBN-Δφ (b) VXY-FBN-θ (c) VXY-Δφ-θ 

Figure 8. Approximate model of horizontal velocity. 

 
(a) ψ´-FBN-Δφ (b) ψ´-FBN-θ (c) ψ´-Δφ-θ 

Figure 9. Approximate model of heading angular velocity. 
 

Figure 8. Approximate model of horizontal velocity.
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Figure 10a–c show the accuracy of the approximate models. By verification with the
100 datasets, the correlation coefficients of these three approximate models are 0.995, 0.996,
and 0.999 respectively, which indicate that the approximate models are effective to be used
in the identification of the trajectory error. Equations (40)–(42) are the specific expressions of
approximate models in the dive motion, and the approximate models in the climb motion
can be obtained from them.

Figure 10. Accuracy of approximate models (Z´(a), VXY(b) and ψ´(c) ).

VXY = −0.022 + 0.012|θ| − 1.07× 10−4∆ϕ + 0.052|FBN| − 2.27× 10−4|θ|2+7.17× 10−7∆ϕ2

−2.4× 10−3FBN
2 + 7.42× 10−7|θ|∆ϕ+6.8× 10−4|θFBN|+1.36× 10−5∆ϕ|FBN|

(41)

Z′ = 7.79× 10−3 + 4.1× 10−5|θ| − 3.91× 10−5∆ϕ + 8.38× 10−3|FBN|+ 1.02× 10−4|θ|2+4.58× 10−6∆ϕ2

−1.05× 10−3FBN
2+7.94× 10−7|θ|∆ϕ+1.02× 10−3|θFBN|+2.59× 10−6∆ϕ|FBN|

(42)

ψ′ = −7.54× 10−3 − 8.14× 10−4|θ|+ 0.92∆ϕ + 0.014|FBN| − 2.65× 10−5|θ|2
+6.76× 10−5∆ϕ2 − 1.58× 10−3FBN

2 − 0.023|θ|∆ϕ+1.39× 10−4|θFBN|+0.015∆ϕ|FBN|
(43)

3.2. Identification Strategy of Trajectory Error

In this section, we try to identify the trajectory error of Petrel-L by the approximate
models established above and its time series datasets in the sea trial. In Equations (41)–(43),
some variables can be directly measured by the sensors carried by Petrel-L, including the
pitch angle, θ, and the heading angular velocity, ψ´, measured by a TCM3 sensor and
vertical velocity, Z´, measured by a pressure sensor. Other variables are unknown and
need to be identified.

As shown in Figure 4, the trajectory error, ∆Y, can be deduced by the deviation of the
heading, ∆ψ, and the arc length is calculated by the vertical velocity and heading angular
velocity, ψ´, shown as

∆Y =
∫ t2

t1

VXYt sinψTdt (44)

where t1 and t2 are the start time and end time of the datasets, respectively, t is the time of
datasets, and ψT is the target heading of Petrel-L.
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According to Equations (41)–(44), the following identification strategies of trajectory
error are generated.

(1) By data processing of the Petrel-L when its heading gradually changes in the sea trial,
the time series datasets, including the pitch angle, θ, vertical velocity, Z´, and heading
angular velocity, ψ´, can be obtained.

(2) By importing the dataset [θ Z´ ψ´] obtained in (1) into Equations (42) and (43), the net
buoyancy, FBN, and rotation angle error, ∆ϕ, can be obtained by solving the equation
set.

(3) By importing the dataset [θ FBN ∆ϕ] into Equation (41), the vertical velocity, VXY, can
be calculated.

(4) By importing the vertical velocity, VXY, into Equation (44), the trajectory error, ∆Y,
under the deviation of the heading, ∆ψ, can be obtained, and the total trajectory error
can be obtained by repeating processes (1)–(4).

4. Trajectory Optimization Strategy and Discussion

A trajectory error, ∆Y, is caused when the rotation-steering angle has an error, ∆ϕ,
after Petrel-L has adjusted its heading. The trajectory error, ∆Y, generates when the rotation
angle error, ∆ϕ, of the mass block exists, and Petrel-L adjusts the heading. According to the
above analysis, the trajectory error, ∆Y, can be identified by the approximate models and
the datasets of Petrel-L. To make Petrel-L return to the planned trajectory and travel in the
vertical plane, a trajectory optimization strategy can be proposed with a given trajectory
error, ∆Y, the processes of which are shown as follows.

(1) Petrel-L begins to adjust its heading when the deviation of the heading, ∆ψ, is larger
than 15◦. To compensate the trajectory error, ∆Y, a heading adjustment, ψo, is required,
shown by the red dotted lines in Figure 11. Thus, the distance travelled by Petrel-L is

Ld = ∆Y/sin ψo (45)

Figure 11. Trajectory optimization strategy.

(2) With the identification strategy proposed in Section 3, the rotation angle error, ∆ϕ,
of the mass block can be obtained. After the heading adjustment 1, a rotation angle,
−∆ϕ, of the mass block needs to compensate for Petrel-L to realize glide motion in
the vertical plane instead of the spiral motion in the three-dimensional space.

(3) With the compensation of the rotation angle, −∆ϕ, of the mass block, the ∆ϕ in
Equations (41) and (42) can be set as 0, and the heading angular velocity, ψ´, in
Equation (43) is close to 0. Thus, Equations (46) and (47) can be obtained.

(4) With Equation (47) and the pitch angle of Petrel-L, the real-time net buoyancy can be
calculated. by importing which into Equation (46) the horizontal velocity VXY can be
calculated.

(5) The distance travelled by Petrel-L can be obtained by the time integration of horizontal
velocity, VXY, and the heading need, be adjusted to the planned heading when the
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distance travelled by Petrel-L reaches Ld. Finally, Petrel-L will continue to glide in the
planned trajectory.

VXY = −0.022 + 0.012|θ|+ 0.052|FBN| − 2.27× 10−4|θ|2 − 2.4× 10−3FBN
2+6.8× 10−4|θFBN| (46)

Z′ = 7.79× 10−3 + 4.1× 10−5|θ|+ 8.38× 10−3|FBN|+ 1.02× 10−4|θ|2
−1.05× 10−3FBN

2+1.02× 10−3|θFBN|
(47)

Although the trajectory of Petrel-L can be optimized and adjusted using the above
strategy to improve the trajectory accuracy, a gliding range loss of Petrel-L caused by
the trajectory error and trajectory optimization strategy will be generated. In addition,
the observation distance of Petrel-L along the planned trajectory becomes shorter. Thus,
considering the gliding range loss and the observation distance loss, the selection of the
heading, ψo, needs to be discussed.

As shown in Figure 11, the gliding range loss can be obtained by the difference value
of the actual trajectory and its projection on the planned trajectory, shown as

Rloss = ∆Y/(1− cos ∆ψ)∆ψ(rad) + ∆Y/sin ψo
−∆Y/(1− cos ∆ψ) sin ∆ψ− ∆Y/sin ψo cos ψo

(48)

The observation distance loss along the planned trajectory is calculated as

Lloss = ∆Y/(1− cos ∆ψ) sin ∆ψ + ∆Y/sin ψo cos ψo (49)

The selection range of the heading, ψo, is 0–90◦, and the deviation of the heading, ∆ψ, is
15◦ for Petrel-L. Figure 12a,b show the gliding range loss and the observation distance loss
with the heading, ψo, respectively. As shown in Figure 12a, the gliding range loss increases
with the heading, ψo, the trend of which is basically linear. However, the observation
distance loss rapidly decreases with the heading, ψo, when the heading, ψo, is smaller
than around 10◦ and varies little when it is larger than 10◦. By contrasting Figure 12a,b,
the conclusion can be drawn that the gliding range loss is far less than the observation
distance loss.

Figure 12. Gliding range loss (a) and observation distance loss (b).

In practical engineering, the heading, ψo, can be determined by the specific observation
missions. In some long-term observation missions, a smaller heading, ψo, is suggested
to realize a smaller gliding range loss. However, some observation missions, such as the
networking observation mission with multiple gliders, require a high trajectory accuracy,
and a larger heading, ψo, is suggested for obtaining a smaller observation distance loss.
Generally, a heading, ψo, around 10◦ has a comprehensive performance for realizing a
smaller gliding range loss and observation distance loss.
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5. Test Verification

To verify the effectiveness of the identification strategy proposed in this paper, we
adopt some datasets of Petrel-L from 2018 in the South China Sea, the position of which is
shown in Figure 13. Considering the effect of the ocean current on the trajectory error, the
datasets of some profiles with lower ocean currents are selected. We choose two continuous
1000 m depth profiles of Petrel-L with the same parameter settings except for the rotation
angle error, ∆ϕ, of the mass block. The rotation angle error, ∆ϕ, of the mass block in
these two profiles are set as 0◦ and −7◦, respectively. By using the datasets of Petrel-L,
the approach proposed in this paper can be carried out to obtain the theoretical position
and trajectory error of the Petrel-L at the sea surface after the profile. By contrasting
the trajectory error in the sea trial and the identification results, the effectiveness of the
identification strategy proposed in this paper can be verified. Moreover, after compensating
the rotation angle, −∆ϕ, of the mass block, the trend of heading can also be contrasted
with that before compensation, which can verify the correctness of the approximate models.
The identification of the trajectory error is carried out with the software, MATLAB, in a
computer with the Windows 10 system and a RAM of 8G, and the process of identification
consumes about 1 min.

Figure 13. Sea trial position.

Figures 14 and 15 show the datasets of Petrel-L in the dive motion and the climb
motion, which will be used in the identification strategy of trajectory error. As shown in
Figures 14c and 15c, the heading in the dive motion is steady, which indicates that the
rotation angle error, ∆ϕ, of the mass block is small enough in the dive motion. However,
there exists a larger rotation angle error, ∆ϕ, of the mass block in the climb motion, which
causes Petrel-L to frequently adjust its heading. This large difference is caused by the
asymmetry of Petrel-L along the O-xz plane, which may be caused by the problems of
assembly error, biofouling, or corrosion. In the verification, the actual position and the
theoretical position of Petrel-L at the sea surface can be purely contrasted due to the lack of
the real-time location of Petrel-L. Due to the accumulation of the trajectory errors in dive
motion and climb motion, the datasets with the above large difference in dive motion and
climb motion can better verify the approach proposed in this paper.
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In the dive motion, Petrel-L has adjusted its heading for only one time from 6010 s to
6100 s, the process of which is ignored, and other datasets can be used in the identification.
According to the identification strategy in Section 3.2, the average rotation angle error, ∆ϕ,
is 0.34◦, and the identification results are shown in Figure 16. As shown in Figure 16b, the
trajectory error of Petrel-L at the end of the dive motion is −17.17 m.
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In the climb motion, Petrel-L has adjusted its heading for only six times, the process
of which is ignored, and other datasets can be used in the identification. According to the
identification strategy in Section 3.2, the average rotation angle error, ∆ϕ, is 6.72◦, and the
identification results are shown in Figure 17. As shown in Figure 17b, the trajectory error of
Petrel-L in the dive motion is −274.74 m.
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To sum up, the total estimated trajectory error, ∆Y, from the dive motion and the climb
motion is −292 m, which is reasonably close to the measured trajectory error of around
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−379 m in the sea trial. Except the influence of the ocean current, the unsteady motion
processes of Petrel-L, such as the heading adjustment and the buoyancy adjustment, may
also influence the identification accuracy.

As shown in Figure 18, after giving a compensation of −7◦ of rotation angle error, the
heading of Petrel-L varies little in the climb motion and does not need to be frequently
adjusted anymore, which verifies the correctness of the identification results.

To sum up, by contrasting the theoretical trajectory error obtained by the approach
proposed in this paper and the actual trajectory error, the identification strategy and the
identification results are preliminarily verified. Thus, the underwater trajectory of Petrel-L
can be adjusted by our approach in the lack of the underwater positioning sensor. To
implement the approach in practical engineering, the relevant procedure can be written
in the control system of Petrel-L to explore the efficiency of the approach. However, the
approach proposed in this paper does not consider the effect of the ocean current on the
motion of the UG, which has a certain influence on the trajectory of the UG.

Figure 18. Parameter variation caused by compensation of rotation angle error.

6. Conclusions

In this paper, a dynamic model of Petrel-L is first established to carry out the trajectory
error analysis. Then, the approximate models are established based on the dynamic model,
with which an identification strategy of trajectory error for Petrel-L is proposed to obtain
the real-time error. To reduce the trajectory error, we propose a trajectory optimization
strategy while considering the gliding range loss and observation distance loss. Finally, the
error of 87 m between the identification result and the actual trajectory error preliminarily
verifies the approach proposed in this paper.

The uniqueness and contribution of this study are fourfold. First, the effect of the
heading adjustment on the trajectory error of the Petrel-L glider is studied with the dynamic
model. Second, the identification strategy is presented for the first time to obtain the
deviation distance of UGs. Third, to improve the trajectory accuracy of UGs, the trajectory
optimization schemes are contrasted while considering gliding range loss and observation
distance loss. Forth, the proposed method is verified by the datasets of Petrel-L in the
sea trial.

For future works to adequately verify the approach proposed in this paper, an under-
water positioning device will be integrated by Petrel-L to obtain the real-time position of
Petrel-L, and the comparison can be carried out between the theoretical real-time position
and actual real-time position. In addition, the ocean current will be considered in the
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analysis of the trajectory error of underwater gliders, which has a certain influence on its
trajectory.
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