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Abstract: This paper investigates the automatic berthing problem of underactuated surface vessels in
the case of uncertain dynamics and yaw rate limitation, given the importance of yaw rate control and
the unmeasurable hydrodynamic parameters of the vessel at low speeds. First, we use the differential
homeomorphism coordinate transformation to solve the problem of underactuation. Second, a radial
basis function network (RBF) is introduced to approximate unknown nonlinear functions. Third,
we apply the barrier Lyapunov function (BLF) approach to limit the yaw rate within a safe range.
Fourth, we use dynamic surface control (DSC) technology and minimum learning parameters (MLP)
to tackle the differential explosion problems in backstepping and computational complexity. Finally,
Lyapunov stability theory proves that signals produced by the designed control scheme are bounded
and effective. The simulation results show that, compared with the control scheme without BLF, the
proposed method can effectively limit the yaw rate within a specific range and effectively solves the
influence of the model uncertainly.

Keywords: barrier Lyapunov function; basis function network; minimum learning parameter; dynamic
surface control; automatic berthing

1. Introduction

Generally, vessels berth with the assistance of thrusters or tugs. However, most ships
sailing at sea are only equipped with main propellers and rudder devices, while some
ships are equipped with either two independent aft thrusters or one main aft thruster and
a rudder without any bow or side thrusters. The insufficient force on the sway direction
makes it difficult to control the vessel, especially when berthing at a low speed. Therefore,
solving this problem will help save investment and construction costs, reduce the weight
of the system, and increase its flexibility and operating reliability during the design process
of the ship [1,2]. Researchers usually regard the underactuated vessel mentioned above as
a multi-input multi-output underactuated system [3].

Solving the problem of underactuated vessel auto-berthing means stabilizing the ship
at the pier by controlling its rudder and propeller. During this process, precisely controlling
the vessel’s position and speed is the key to realizing safe berthing, especially the speed
control. Due to the massive inertia of the ship, excessive speed margin will cause huge
damage to the wharf and hull. Therefore, limiting the yaw rate within a certain range
during berthing will be meaningful. Meanwhile, the underactuated vessel system will be
affected by dynamic uncertainty due to low-speed ships, diving effects, and quay wall
effects. Accurately estimating the dynamic uncertainty of the vessel motion system will
bring the model closer to reality and make the test results more referential.

Intelligent algorithms, classic control, and a combination of the two are the most com-
mon way to tackle the problem of underactuated vessels auto-berthing. In terms of the
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intelligent algorithms, Artificial Neural Network (ANN) and Proximal Policy Optimization
(PPO) [4] are already used in auto-berthing research. As for the former, the training data are
usually obtained manually by controlling the ship to a specific pier in advance and training
the weights and biases of the ANN, which could help realize auto-berthing control in a
specific wharf [5]. However, this method cannot achieve vessel auto-berthing control in
different ports without training data. To solve this problem, the works in [6,7] use coordi-
nate conversion controller switching technology and a distance measurement system and
controller with ship sub-routes to tackle the problems of geographic coordinate limitation,
measurement accuracy, and repeated network training and improve the adaptability of
ANN berthing controllers.

In terms of the classical control methods, the auto-berthing problem tends to be classified
as a stabilization control problem, i.e., to design a control scheme that makes the vessel stable
in a certain position and state. Direct Liapunov method [8,9] and sliding mode control [10] are
the most common methods applied to realize auto berthing. In [8], an auto-berthing controller
based on concise backstepping was proposed. Bu [10] designed a dynamic feedback controller
and applied the recursive decomposition iterative method to tackle the underactuated vessel
control problem. However, classical control theories are all based on the precise model of
the controlled object. Thus, when the vessel berths at a low speed, the underactuated vessel
system is affected by dynamic uncertainty.

In summary, whether intelligent algorithms are applied to implement ship berthing
controllers or simple classical control methods are limited by the need for accurate mathe-
matical models of ships, offline data training, or data consistency issues will occur, thus
causing certain limitations to the engineering application of the controller. Therefore, re-
searchers have been trying to combine the advantages of the two methods, which mainly
focus on the control itself and berthing path planning. From the perspective of ship berthing
control, in [11], proportional derivative (PD) control was introduced into the ANN berthing
controller designation to tackle the problem of training data consistency during auto
berthing. In [12], controllers are proposed that realized ship auto-berthing in a turn-around
way and solved the dynamic uncertainty with RBF. From the perspective of berthing path
planning, a controller based on Immune Memory-Particle Swarm Optimization (IM-PSO)
is proposed to optimize the proportional integral derivative control parameters of berthing
path tracking [13]. An extended dynamic window approach for the automatic berthing of
underactuated surface vessels [14] could realize the automatic berthing under the influ-
ence of wind loads and obstacles. Han [15] introduced a layered artificial potential field
method to the berthing trajectory planning to tackle the problem of excessive turning of
the berthing trajectory. The research mentioned above mainly focuses on the steady-state
characteristics of the underactuated vessel motion control system but pays less attention to
the transient performance, which might cause a collision with nearby vessels as discussed
in [16]. Dai et al. [17] pointed out that when a ship is operating in a narrow waterway, the
force will change. The system state will be restricted, i.e., the output or state of the ship is
not allowed to exceed a certain constraint distance of the reference trajectory path, which is
similar to a finite time control method [18] proposed based on barrier Lyapunov function
realized course keeping to improve control performance significantly. Tee, K.P., et al. [19]
used barrier Lyapunov to tackle the problem of restricted location during berthing. With
the full-drive system with state constraints or output constraints as the research object [20],
the barrier Lyapunov function is used to reach infinity when its parameters are close to
the constraint boundary, and stable control of the constraint system is realized. However,
the above research does not involve the attempt to limit the speed in automatic berthing,
which is very important for safe berthing.

Given the above, this paper focuses on solving the auto-berthing of underactuated
surface vessels in the presence of uncertain dynamics and yaw rate limitation. The differen-
tial homeomorphism transformation approach is applied to convert the vessel to a cascade
form. The RBF network estimates the unknown nonlinear functions. Furthermore, a filter
based on dynamic surface control (DSC) is constructed. An auto-berthing control scheme
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is derived by combining minimum learning parameters technique (MLP), RBF, DSC, and
applying the BLF method. The Lyapunov theory proves the stability. The significance of
this paper can be summarized as follows.

(1) A novel auto-berthing control scheme considering BLF is proposed to successfully
restrict the yaw rate within a smaller range during ship berthing, which has essential
safety significance for real ship berthing.

(2) The vessel model dynamic uncertainty caused by underactuation has been fully solved
using the RBF. This is compared with the research in [8] that, without considering
vessel model dynamic uncertainty, showed that an adaptive control scheme based on
RBF can effectively approximate the unknown term and keep the output bounded.

The rest of this paper is organized as follows. The Section 2 is the preliminary in-
troduction. The Section 3 introduces the process of the underactuated problem of the
ship motion model with uncertain dynamics. The Section 4 presents the design of the
automatic berthing controller using the BLF, RBF, DSC, and MLP. The Section 5 shows the
simulation results and discussion. The last part presents conclusions and prospects for
further research.

2. Preliminaries

Definition 1 ([21]). Barrier Lyapunov function V(X) is a scalar function about system ẋ = f (x, t)
defined in open set D with origin has the following characteristics:

(1) V(X) is a continuous and positive function. (2) The derivative of V(X) is available on
open set D. (3) When x is close to the boundary of D, the V(x) → ∞ holds. (4) If, x(0) ∈ D, for
∀t > 0 and the V(x(t)) ≤ b holds.

For any V(x), if e → −Υa or e → Υb, V(e) → ∞ holds. Further, if Υa = Υb, V(x) is
symmetrical barrier Lyapunov function, if Υa 6= Υb the V(e) is asymmetrical barrier Lyapunov
function, in which, Υa and Υb are constraint value of output error e, rc and Ῡc are the constraint
value of the control systems’ output satisfies Υa = yd(t)− Υc, Υb = Ῡc − yd(t).

Lemma 1 ([14]). For any error variable |e| < Υb, Υb ∈ R is a positive constant, and the following
inequality (1) holds.

ln
Υ2

b
Υ2

b − e2
≤ e2

Υ2
b − e2

(1)

Lemma 2 ([18]). For any constant Υb1, let Si := {ei ∈ R : |ei| < Υbi} ⊂ R, N := RI × S1 ⊂
RI+1 is open set, consider the following system (2):

η̇ = h(t, η) (2)

where η = [w, e1]
τ ∈ N is state value of the system, h : R+ × N → Rl+1 is piecewise continuous

function about t and satisfies local Lipschitz condition, l is a positive integer. For |ei| → Υb1, the
following inequality (3) holds:

Vi(ei)→ ∞, γ1(‖w‖) ≤ U(w) ≤ γ2(‖w‖) (3)

where γ1 and γ2 are K∞ functions. U : Rl → R+ and Vi : ei → R+, i = 1, · · · , n are continuously
derivable and positive trigonometric functions. Let V(η) = ∑n

i=1 Vi(ei) + U(w) and ei(0) ∈ Si. If
the following inequality holds:

V̇ =
∂V
∂η
≤ −µV + λ (4)

where η ∈ N, µ and λ are positive constants. Then, for ∀t ∈ [0, ∞), ei(t) ∈ Si.

Lemma 3 ([21]). For compact set X ⊂ Ωx ∈ Rn → R, there must be an RBF that makes the
following equation true.

F(X) = ω∗TS(X) + ε (5)
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where F(X) is a continuous nonlinear function. ω∗ = [ω1, ω2, · · ·ωl ]
T is an ideal matrix that

represent the weights of the RBF, S(X) = [S1(x), S2(x) · · · Sl(x)]T is the matrix of activation

function. Si(x) is the Gaussian kernel function, and Si(x) = exp
[
−(x−ci)

T(x−ci)

ω2
i

]
(i = 1, 2 · · · l),

ci =
[
c1, c2 · · · cq

]
∈ Rq is the central vector value of Si(x). ωi ∈ R is the width of Si(x). ε is the

matrix of the approximation error.

Lemma 4 ([22]). For a system
ẋ = f (x), t ≥ 0 (6)

where f (0) = 0. If there is a scalar function V(x) with continuous first derivative, V(0) = 0, and
for all non-zero points x in the state space X the following conditions are satisfied:

(1) V(x) is positive definite;
(2) V̇(x) is negative definite;
(3) when ‖x‖ → ∞, V(x)→ ∞.

Then, the original equilibrium state of the system is asymptotically stable in an extensive range.
In the process of the controller design, the following assumptions are made for the desired value of
the system.

Assumption 1 ([20]). For Yc(t) > 0, there exist Y0, Y0, A0, Y1, · · · , Yn satisfy max
{

Y0, Ȳ0
}
≤

A0 < Υc, make the desired trajectory xd(t) and its derivative satisfy −Y0 ≤ xd(t) ≤ Ȳ0, |ẋd(t)| ≤
Y1, |ẍd(t)| ≤ Y2,

∣∣∣x(n)d (t)
∣∣∣ ≤ Y, ∀t > 0

Assumption 2 ([23]). For Ya(t) and Γa(t), i = 1, . . . , n, there exists constants Υa, Ia, i = 1, . . . , n
the derivatives of Ya(t), ∀t > 0.

Assumption 3. The extremal time-varying disturbance satisfies τwi ≤ τ∗wi(i = u, v, r), where
τ∗xi(i = u, v, r) is the disturbance upper bound, and all of them are normal numbers.

3. Problem Formulation

In general, the three degrees of freedom (3-DOF) underactuated marine surface vessel
motion model can be described as in [24], as shown in Figure 1.

ẋ = u cos(ψ)− v sin(ψ)
ẏ = u sin(ψ)− v cos(ψ)
ψ̇ = r
u̇ = m22

m11
vr− du

m11
v−∑3

i=2
dui
m11
|u|i−1u + τu

m11
+ τwu

m11

v̇ = −m11
m22

ur− dv
m22

v−∑3
i=2

dvi
m22
|v|i−1v + τwv

m22

ṙ = m11−m22
m11

uv− dr
m33

r−∑3
i=2

dri
m33
|r|i−1r + τr

m11
+ τwr

m11

(7)

where x, y, ψ-denotes the vehicles’ position and heading. u, v, r denotes the surge, sway, and
yaw velocities in the body-fixed frame. τu, τr denotes the actual input vector. dX(X = u, v, r),
dXi(i = 2, 3) are hydrodynamic damping. τwX(X = u, v, r) are unknown time-varying dis-
turbance.

To solve the underactuated problem of the marine surface vessel model, the following
differential homeomorphism transformation is introduced [25]:

h = JT(ψ)η (8)

where h = [h1, h2, h3]
T, η = [x, y, ψ]T, J(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

.
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Figure 1. Simplified vessel motion coordinate system.

Taking the time derivative of Equation (8), one can get

ḣ1 = J̇T(ψ)η + JT(ψ)η̇ (9)

J(ψ) satisfies the following properties:

J̇T(ψ) = J(ψ)S(r) (10)

where S(r) =

 0 −r 0
r 0 0
0 0 0

.

Furthermore, the mathematical model of underactuated marine surface vessel after
differential homeomorphism transformation can be obtained as

ḣ1 = u + h2r
ḣ2 = v− h1r
ḣ3 = r
u̇ = m22

m11
vr− d11

m11
u + τu

m11
− ∆ fu

m11
+ τwu

m11

v̇ = −m11
m22

ur− d22
m22

v− ∆ fv
m22

+ τwv
m22

ṙ = m11−m22
m33

uv− d33
m33

r + τr
m33
− ∆ fr

m33
+ τwr

m33

(11)

where ∑3
i=2

dui
m11
|u|i−1u = ∆ fu

m11
, ∑3

i=2
dvi
m22
|v|i−1v = ∆ fv

m22
, ∑3

i=2
dri

m33
|r|i−1r = ∆ fr

m33
are unmodeled

dynamics.
Let τ1 = u̇, τ3 = ṙ, m22

m11
= 1

A , d22
m22

= B, then Equation (11) can be written as

ḣ1 = u + h2r
ḣ2 = v− h1r
ḣ3 = r
u̇ = τ1

v̇ = −Aur− Bv− ∆ fv
m22

+ τwv
m22

ṙ = τ3

(12)

Further, convert system Equation (12) into a chain structure system by introducing the
following variable substitution and feedback transformation [26]:

H2 = h2 +
v
B

(13)

Next, Ḣ2 = −
(

h1 +
1
B Au

)
r− ∆ fv

d22
+ τwv

d22
, let µ = −

(
h1 +

1
B Au

)
, we have
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ḣ1 = − B
A (µ + h1) + H2r− v

B r
Ḣ2 = µr− ∆ fv

d22
+ τwv

d22
ḣ3 = r
v̇ = B(µ + h1)r− Bv− ∆ fv

m22
+ τwv

m22
µ̇ = τµ

ṙ = τ3

(14)

Let z1 = h1, z2 = H2, z3 = h3, z4 = v, z5 = µ, z6 = r, u1 = τµ, u2 = ṙ = τ3, the system
Equation (14) can be described as

ż1 = − B
A (z1 + z5) + z2z6 − 1

B z4z6
ż2 = z5z6 +

1
d22

(τvv − ∆ fv)

ż3 = z6
ż4 = B(z1 + z5)z6 − Bz4 +

1
m22

(τwv − ∆ fv)

ż5 = u1
ż6 = u2

(15)

As Equation (15) is converted from Equation (11), so if the stability of the system
Equation (15) and system Equation (11) are same. In other words, when t → ∞, if
limt→∞ zi = 0(1 ≤ i ≤ 6), (x, y, ψ, u, v, r), will gradually stable at the origin.

Theorem 1 ([27]). For Equation (15), when t→ ∞, if zi(i = 2, 5, 6), converges to zero, we have
limt→∞ zi = 0(i = 1, 4) Then, Equation (14) can be simplified as

ż2 = z5z6 +
1

d22
(τwv − ∆ fv)

ż3 = z6
ż5 = u1
ż6 = u2

(16)

Let x1 = z3, x2 = z6, x3 = z2, x4 = z5, we have
ẋ1 = x2
ẋ2 = u2
ẋ3 = x4x2 +

1
d22

(τwv − ∆ fv)

ẋ4 = u1

(17)

According to Theorem 1, if system Equation (17) gradually stabilizes, the system
Equation (15) will gradually stabilizes as well. Therefore, the remain work is make system
Equation (17) stable.

4. Controller Design and Stability Analysis

The control design will be divided into two subsystems: subsystem 1 and subsystem 2.
Subsystem 1: {

ẋ1 = x2
ẋ2 = u2

(18)

Subsystem 2: {
ẋ3 = x4x2 +

1
d22

(τwv − ∆ fv)

ẋ4 = u1
(19)

4.1. Controller Design
4.1.1. Control Scheme Design of Subsystem 1

Definition of error variable

e1 = x1 − x1exp, x1exp = 0 (20)
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e2 = x2 − αop (21)

where αop is the virtual filtering function DSC is introduced to the control design to
eliminate the differential explosion.

T1α̇op + αop = α1, ρ1(0) = α1(0) (22)

where α1 and αop are the input and output of the filter, respectively.
The filtering error is defined as

ε1 = αop − α1 (23)

Taking the derivative of both sides of Equation (23), one can get

ε̇1 = − ε̇1

T1
+ Γ1

(
x1, x1exp, ẋ1exp, ẍ1exp

)
(24)

where Γ1(x1, x1d, ẋ1d, ẍ1d) = −α̇1 is continuous, bounded, which will be abbreviated as Γ1
in subsequent articles and |Γ1| ≤ L1.

Define the Lyapunov equation as

V1 =
1
2

ln
Υ2

b1
Υ2

b1 − e2
1
+

1
2

ε2
1 (25)

where Υb1 is positive scalar, Υb1 = Υc1 − A0, A0, is constrained boundary,
∣∣x1 exp

∣∣ ≤ A0.
Taking the derivative of both sides of Equation (25), one can obtain

V̇1 =
e1

Υ2
b1 − e2

1

(
e2 + α1 + ε1 − ẋ1exp

)
−

ε2
1

T1
+ ε1Γ1 (26)

Design the virtual control scheme as α1 = −k1e1 + ẋ1exp.
Define the second Lyapunov equation as

V2 = V1 +
1
2

ln
Υ2

b2
Υ2

b2 − e2
2

(27)

Then,

V̇2 = −k1
e2

1
Υ2

b1 − e2
1
+

e1e2

Υ2
b1 − e2

1
+

e1ε1

Υ2
b1 − e2

1
−

ε2
1

T1
+ ε1Γ1 +

e2
2

Υ2
b2 − e2

2

(
u2 − α̇op

)
(28)

According to Lemma 3, using RBF to estimate unknown nonlinear functions − ∆ fr
m33

as follows:
− ∆ fr

m33
= ω∗Tr Sr(v) + εr (29)

where ω∗Tr is the ideal weight matrix, Sr(v) is the activation function of RBF, then

V̇2 = −k1
e2

1
Υ2

b1 − e2
1
+

e1e2

Υ2
b1 − e2

1
+

e1ε1

Υ2
b1 − e2

1
−

ε2
1

T1
+ ε1Γ1

+
e2

2
Υ2

b2 − e2
2

(
g +

τr

m33
+ ω∗Tr Sr(v) + εr +

τwr

m33
− α̇op

) (30)

The control scheme of subsystem 1 is designed as{
τr = m33

(
−g + α̇op − c1e2δ̂rξϑ2

r (v)−
µ1
µ2

e1

)
˙̂θ = µ2c1ϑ2

r (v)e2
2 − βr δ̂r

(31)
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4.1.2. Control Scheme Design of Subsystem 2

Definition of error variable

e3 = x3 − x3exp, x3exp = 0 (32)

e4 = x4 − α2op (33)

where α2op is the virtual filtering function Here, we introduce DSC to the control design to
eliminate the differential explosion.

T2α̇2op + α2op = α2, α2op(0) = α2(0) (34)

where α2 and α2op is the input and output of the filter, respectively. The filtering error is
defined as

ε2 = α2op − α2 (35)

Take the derivative both side of of Equation (35), one can get

ε̇2 = − ε̇2

T2
+ Γ2

(
x3, x3exp, ẋ3exp, ẍ3exp

)
(36)

where Γ2
(

x3, x3exp, ẋ3exp, ẍ3exp
)
= −α̇2 is continuous, bounded, which will be abbreviated

as Γ2 in subsequent articles, |Γ2| ≤ L2.
Define the third Lyapunov equation as

V3 =
1
2

e2
3 +

1
2

ε2
2 (37)

Then, take the derivative both side of Equation (37), one can obtain

V̇3 = e3
[
(e4 + ε2 + α2)x2 − ẋ3exp

]
+ e3

(
τwv

d22
− ∆ fv

d22

)
−

ε2
2

T2
+ Γ2ε2 (38)

Design the virtual control scheme α2 = −k3e3x2 +
ẋ3exp

x2
then

V̇3 = −k3e2
3x2

2 + e3e4x2 + e3x2ε2 + e3

(
τwv

d22
− ∆ fv

d22

)
−

ε2
2

T2
+ Γ2ε2 (39)

Define the forth Lyapunov equation as

V4 = V3 +
1
2

e2
4 (40)

Take the derivative both side of Equation (40), one can get

V̇4 = k3e2
3x2

2 + e3

(
τwv

d22
− ∆ fv

d22

)
−

ε2
2

T2
+ Γ2ε2 + e3x2ε2

+ e4

[(
d11

d22
− 1
)

u−
(

τu

d22
− ∆ fu

d22
+

τwu

d22

)
− α̇2op

] (41)

Let Θ =
(

d11
d22
− 1
)

u− α̇2op, then

V̇4 = k3e2
3x2

2 + e3

(
τwv

d22
− ∆ fv

d22

)
−

ε2
2

T2
+ Γ2ε2 + e3x2ε2 + e4

[
Θ− τu

d22
+

∆ fu

d22
− τwu

d22

]
(42)

According to the principle of RBF, −∆ fv
d22

and ∆ fu
d22

can be written as

− ∆ fv

d22
= ω∗Tv Sv(v) + εv (43)
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∆ fu

d22
= ω∗Tu Su(v) + εu (44)

Substituting Equations (43) and (44) into Equation (42), one can get

V̇4 = k3e2
3x2

2 + e3

(
τwv

d22
+ ω∗Tv Sv(v) + εv

)
−

ε2
2

T2
+ Γ2ε2

+ e3x2ε2 + e4

[
Θ− τu

d22
+ ω∗Tu Su(v) + εu −

τwu

d22

] (45)

The control scheme of subsystem 2 is designed as

τu = d22 f + d22k4e4 + d22c3δ̂uϑ2
u(v)e4 (46)

˙̂δv = c2ϑv(v)e2
3 + βv δ̂v (47)

˙̂δu = c3ϑu(v)e2
4 + βu δ̂u (48)

Overall, the following underactuated marine surface vessel automatic berthing control
scheme is designed as{

τu = d22 f + d22k4e4 + d22c3δ̂uϑ2
u(v)e4

τr = m33

(
−g + α̇op − c1e2δ̂rϑ2

r (v)−
µ1
µ2

e1

) (49)

4.2. Stability Analysis

For the underactuated vessels steering motion model Equation (7), under Assumptions 1–3,
by design the control scheme, and choose the design parameters, the vessel can finish
berthing task and the proposed control protocol can sure that

1. all signals of the closed-loop system are bounded,
2. the constrained state variables do not exceed the constraint bounds, and
3. the tracking error signal can converge to an arbitrarily small neighborhood of the

origin when appropriate design parameters are chosen.

Proof. The Lyapunov function for the subsystem is designed as below:

V∗ =
1
2

ln

(
Υ2

b1
Υ2

b1 − e2
1

)
+

1
2

ln

(
Υ2

b2
Υ2

b2 − e2
1

)
+

1
2

ε2
1 +

1
2

δ̃2
r

+
1
2

e2
3 +

1
2

e2
4 +

1
2

δ̃2
u +

1
2

δ̃2
v +

1
2

ε2
2

(50)

Taking the derivative of both sides of Equation (50), one can get

V̇∗ =
e2

Υ2
b2 − e2

2

(
g +

τr

m33
− ∆ fr

m33
+

τwr

m33
− α̇op

)
− k3e2

3x2
2

+
−k1e2

1 + e1e2 + e1ε1

Υ2
b1 − e2

1
−

ε2
1

T1
+ ε1Γ1 + e3

(
τwv

d22
− ∆ fv

m33
+ εv

)
+ e4

(
Θ− τu

d22
+

∆ fu

m33
+ εv −

τwu

d22

)
−

ε2
2

T2
+ ε2Γ2 − δ̃r

˙̂δr − δ̃u
˙̂δu − δ̃v

˙̂δv

(51)
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Let µ1 = 1
Υ2

b1−e2
1

and µ2 = 1
Υ2

b2−e2
2

yield

V̇∗ =
e2

Υ2
b2 − e2

2

(
g +

τr

m33
+ ω∗Tr Sr(v) + εr +

τwr

m33
− α̇op

)
+
−k1e2

1 + e1e2 + e1ε1

Υ2
b1 − e2

1
−

ε2
1

T1
+ ε1Γ1 − k3e2

3x2
2 + e3

(
τwv

d22
+ ωv

∗TSv(v) + εv

)
+ e4

(
Θ− τu

d22
+ ωv

∗TSv(v) + εv −
τwu

d22

)
−

ε2
2

T2
+ ε2Γ2 − δ̃r

˙̂δr − δ̃u
˙̂δu − δ̃v

˙̂δv

(52)

Use MLP [28] technology to reconstruct model uncertainties and external disturbances
as follows: ∥∥∥∥ω∗Tr Sr(v) + εr +

τwr

m33

∥∥∥∥ ≤ ∥∥∥ω∗Tr Sr(v)
∥∥∥+ ∥∥∥∥εr +

τwr

m33

∥∥∥∥ ≤ δrϑr(v) (53)

∥∥∥∥ω∗Tv Sv(v) + εv +
τwv

d22

∥∥∥∥ ≤ ∥∥∥ω∗Tv Sv(v)
∥∥∥+ ∥∥∥∥εv +

τwv

d22

∥∥∥∥ ≤ δvϑv(v) (54)∥∥∥∥ω∗Tu Su(v) + εu −
τwu

m33

∥∥∥∥ ≤ ∥∥∥ω∗Tu Su(v)
∥∥∥+ ∥∥∥∥εu −

τwu

m33

∥∥∥∥ ≤ δuϑu(v) (55)

where δr = max
{∥∥ω∗Tr

∥∥+ ∥∥∥εr +
τwr
m33

∥∥∥}, ϑv(v) = ‖Sv(v)‖+ 1, ϑr(v) = ‖Sr(v)‖+ 1, δu =

max
{∥∥ω∗Tu

∥∥+ ∥∥∥εu +
τwu
m33

∥∥∥}, ϑu(v) = ‖Su(v)‖+ 1, δv = max
{∥∥ω∗Tv

∥∥+ ∥∥∥εv +
τwv
m33

∥∥∥}
Substituting Equations (55)–(57) into Equation (54), one can get

V̇∗ ≤ −k1µ1e2
1 + µ1e1e2 + µ1e1ε1 −

ε2
1

T1
+ ε1Γ1 + µ2e2

(
g +

τr

m33
− α̇op

)
− δ̃r

˙̂δr + µ2|e2|δrϑr(v)− k3e2
3x2

2 + e3

(
τwv

d22
+ ωv

∗TSv(v) + εv

)
+ e4

(
Θ− τu

d22
+ ωu

∗TSu(v) + εu −
τwu

d22

)
−

ε2
2

T2
+ ε2Γ2 − δ̃u

˙̂δu − δ̃v
˙̂δv

(56)

According to Young’s inequality, µ1e1ε1 ≤ µ1

(
e2

1 +
1
4 ε2

1

)
, |ε1Γ1| ≤ 1

2λ1
ε2

1Γ2
1 +

λ1
2 ,

µ2δrϑr(v)|e2| ≤ µ2

(
c1δrϑ2

r (v)e2
2 +

δr
4c1

)
, δ̃r δ̂r = δ̂r

(
δr − δ̃r

)
≤ 1

2 δ2 − 1
2 δ̃2

r , e3x2ε2 ≤ x2(
e2

3 +
1
4 ε2

2

)
, |ε2Γ2| ≤ 1

2λ2
ε2

2Γ2
2 +

λ2
2 , δvϑv(v)|e3| ≤ c2δvϑ2

v(v)e2
3 +

δv
4c2

, δuϑu(v)|e4| ≤ c3δuϑ2
u(v)

e2
4 +

δu
4c3

, δ̃u δ̂u = δ̂u
(
δu − δ̃u

)
≤ 1

2 δ2
u − 1

2 δ̃2
u, δ̃v δ̂v = δ̂v

(
δv − δ̃v

)
≤ 1

2 δ2
v − 1

2 δ̃2
v, where λ1, λ2,

c1, c2, and c3 are the parameters to be designed; they are all positive constants. Then
combination of Equations (31), (46), (47) and (56) gives

V∗ ≤ −µ1(k1 − 1)e2
1 − k2µ2e2

2 −
(

1
T1
−

L2
1

2λ1

)
ε2

1 −
1
2

βr δ̃2
r

+
1
2

βrδ2
r +

λ1

2
+ µ2

δr

4c1
−
(

k3x2
2 − x2

)
e2

3 − k4e2 − βu

2
δ̃2

u

− βv

2
δ̃2

v −
(

1
T2
− 1

2λ2
L2

2 −
1
4

)
ε2

2 + c2δ̂vϑ2
v(v)e

2
3 +

λ2

2
+

δv

4c2
+

δu

4c3

(57)

where βu and βr are positive constants parameters to be designed. Let P1 = k1 − 1, P2 = k2,

P3 = 1
T1
− L2

1
2λ1

, σ1 = 1
2 βrδ2

r +
λ1
2 + µ2

δr
4c1

, P4 = k3x2
2 − x2, P5 = k4, P6 = 1

T2
− 1

2λ2
L2

2 −
1
4 ,

σ2 = c2δ̂vϑ2
v(v)e2

3 +
λ2
2 + δv

4c2
+ δu

4c3
yield

V∗ ≤ −µ1P1e2
1 − P2µ2e2

2 − P3ε2
1 −

1
2

βr δ̃2
r − P4e2

1 − P5e2
2 − P6ε2

1 −
βu

2
δ̃2

u −
βv

2
δ̃2

v + σ1 + σ2 (58)
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Let Φ = min{2P1, 2P2, 2P3, βr, 2P4, 2P5, 2P6, δu, δv}, σ = σ1 + σ2, then one can obtain

V̇∗ ≤ −ΦV∗ + σ (59)

Multiply both sides of Equation (59) by eΦt, one can get

d
(
eΦtV∗

)
dt

≤ σeΦt (60)

Integrate both sides of Equation (60), one can obtain

0 ≤ V∗(t) ≤ σ

Φ
+
(

V∗(0)− σ

Φ

)
e−Φt (61)

It can be seen from Equation (61), we know that V∗(t) is uniformly bounded, so the
whole system is stable.

5. Simulation

In the simulation studies, model vessel named “Cyber ship I” is used to verify the
effectiveness of the proposed control scheme. The parameters of “Cyber ship I” can be
found in [29]: m = 17.6 kg, ship length (L) = 1.19 m, m11 = 200 kg, m22 = 250 kg,
m33 = 80 kg ·m2, d11 = 70 kg/s, d22 = 100 kg/s, d33 = 50 kg ·m2/s. In the simulation,
The design parameters are k1 = 0.13, k2 = 0.2, k3 = 1, k4 = 0.66, c1 = 0.35, c3 = 0.0001,
Υb1 = 60◦, Υb2 = 0.15 rad/s, T1 = 0.01, T2 = 0.01, βu = 0.0001, βr = 0.5. The initial states of
the vessel is designed as x(0) = −10 L, y(0) = −10 L, ψ(0) = π

3 , u(0) = 0.2 m/s, v(0) = 0,
r(0) = 0.

In addition, to verify the effectiveness of the control scheme designed in this paper,
a comparison is made between the adaptive control considering BLF and the adaptive
control without BLF. The adaptive control scheme without BLF is listed in Equation (62).
The initial states of the vessel model system setting are taken to be the same as the control
scheme designed in this paper, and the parameters are k1 = 2.8, k2 = 0.08, k3 = 7.5,
k4 = 1.5, c1 = 0.018, c3 = 0.001. The result of the simulation is shown in Figures 2 and 3.

τu = d22

[(
d11
d22
− 1
)

u−+k4e4 + c3δ̂uϑ2
u(v)e4

]
τr = m33

(
−k2e2 − k1x2 − m11−m33

m33
uv + d33

m33
r− e1 − c1δ̂rϑ2

r (v)e2
˙̂δu = c3ϑ2

u(v)e2
4 − βu δ̂u

˙̂δr = c1ϑ2
r (v)e2

2 − βr δ̂r

(62)

Figure 2 shows the trajectory comparison of the vessel with control scheme Equation (49)
and control scheme Equation (62). It can be seen from this graph that both schemes helped
the vessel realize berthing successfully.

Figure 3a shows curves of vessel position and heading angle. The vessel under the
control scheme (49) reaches the desired lateral position x = 0 at 17.27 s, and the longitudinal
position reaches the desired position y = 0 at 19.49 s, while the vessel under the control
scheme Equation (62) reaches desired position of lateral and longitudinal at 14.28 s and
16.09 s, respectively. In terms of heading, the vessel under control scheme Equation (62)
sharply decreases to 3.9° in 5.7 s, then gradually decreases and stabilizes at 0°. In contrast,
the value of the vessel heading under control scheme Equation (49) has been used for
43.59 s from 60° to 0°. It can be seen that the curve changes more smoothly.

Figure 3b displays curves change of surge velocity (u), sway velocity (v), and yaw rate
(r). For the vessel with a control scheme (62), the acceleration phase of u is from 0 to 0.6 s,
and the maximum speed is 3.48 m/s, then it is reduced to 0 m/s in about 15 s, while the
vessel under control scheme Equation (49) reaches the maximum velocity of 2.15 m/s at
approximately 2.15 s. Compared to u, v does not need to be too big in the process of vessel
berthing for the vessel with control scheme Equation (62), sway speed v reaches the peak
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value of 0.94 m/s at around 2.4 s, decreases to 0 m/s, and stays stable at 18.87 s, while the
sway speed v of the vessel is under control scheme Equation (49) reaches the maximum
velocity of 0.29 m/s and stays stable at around 3.19 s. Through the comparison of the
yaw rate (r), it can be seen that the vessel controlled by the control scheme (49) reaches a
stable position in 26 s, and the value of r is within (−0.15 rad/s − 0.15 rad/s) during the
whole process, while the yaw rate of vessel controlled by the control scheme Equation (62)
exceeds 0.15 rad/s at around 0.16 s and reaches its peak value of 0.35 rad/s at around
0.6 s. Obviously, from the comparison result of the yaw rate, it can be seen that the control
scheme with BLF can better limit the yaw rate within a certain range which verifies the
effectiveness of our proposed control scheme.

Figure 3c illustrates the curves change of force and control force moment. It can be seen
from the simulation image that the surge control force with control scheme Equation (49)
changes sharply increase from −959.8 N to 869.2 N and then gradually stabilize at 0 N
in 10.9 s. The yaw control force moment changes from −1089 Nm to 22.97 Nm within
approximately 2.4 s and gradually decreases to 0 Nm at 11.83 s. In contrast, the simulation
image that the surge control force with control scheme Equation (62) changes from 4653 N
to −10 N in 6.5 s and gradually stabilizes at 0 N. The yaw control force moment reaches a
peak value of 127 Nm at around 1.78 s and gradually decreases to 0 Nm at 9.7 s. The change
of control force and torque is reasonable and bounded, which shows the effectiveness of the
control rate designed in this paper. Figure 3d shows the change of the adaptive parameters.
It can be seen from the figure that the adaptive parameters are bounded and stable.

-12 -10 -8 -6 -4 -2 0 2

y/L

-12

-10

-8

-6

-4

-2

0

2

x
/L

Control Scheme(49)

Control Scheme(62)

Figure 2. Berthing path comparison of between control scheme Equation (49) and control scheme
Equation (62).

In short, it can be seen from Figures 2 and 3 that the control scheme designed in this pa-
per can effectively limit the yaw rate in a particular range, which meets the project’s needs.

In order to further verify the robustness of the control scheme, under the condition that
the initial state of the ship and the design parameters of the control scheme remain unchanged,
the bounded disturbance is selected for simulation test, and the disturbance vector is selected
as 0.05 ∗ [sin(1.5 ∗ π ∗ t + π/6); cos(0.2 ∗ π ∗ t − π/4); sin(0.3 ∗ π ∗ t + π/3)]. Figures 4
and 5 present the simulation results, which are used to analyze the control performance and
system robustness.
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Figure 3. Comparisons of between control scheme Equation (49) and control scheme Equation (62).
(a) Comparisons of x, y and ψ. (b) Comparisons of u, v, and r. (c) Comparisons of τu and τr.
(d) Comparisons of δ̂u and δ̂r.
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Figure 4. Berthing path comparisons of control scheme Equation (49) under interference and no interference.
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Figure 5. Comparisons of control scheme Equation (49) under interference and no interference.
(a) Comparisons of x, y, and ψ. (b) Comparisons of u, v, and r. (c) Comparisons of τu and τr.
(d) Comparisons of δ̂u and δ̂r.

Figure 4 compares the results of trajectory with control scheme Equation (49) under
disturbance (indicated by a blue line) and without disturbance (indicated by a red line). It
can be found that both berthing tasks are well finished. Figure 5a shows curves of vessel
position and heading angle. There is no overshoot in the two curves in the figure. Compared
to the red line, the vessel’s position showed a slight deviation, and the curve of heading
angle appeared fluctuations within a small bounded range between 0.13 rad/s to 0.02 rad/s
after approximately 40 s.

Figure 5b demonstrates the comparison of the curves of surge velocity (u), sway
velocity (v), and yaw rate (r) of the vessel controlled by control scheme Equation (49) and
control scheme Equation (49) with disturbance. For control scheme Equation (49) with
disturbance, the acceleration phase of u is from 0 to 1.4 s, the maximum speed is 2.14 m/s
at 1.41 s, then reduced to a stable scale between −0.00013 m/s to 0.00013 m/s in 26 s, while
the sway velocity (v) stabilized in a small bounded range between from −0.00025 m/s
to 0.00025 m/s after approximately 26 s. By comparing the yaw rate (r), the value of the
yaw rate is within [−0.15 rad/s −0.15 rad/s] during the whole process, even under the
influence of disturbance. It can be seen that in the case of interference, the berthing speed



J. Mar. Sci. Eng. 2022, 10, 279 15 of 18

curve can still be stabilized within a small range. It is very close to the curve without
interference, indicating that the system has certain robustness.

Figure 5c illustrates the curves change of force and control force moment of the
vessel controlled by control scheme Equation (49) without disturbance and control scheme
Equation (49) with disturbance. It can be seen from the image that the surge control
force, which is indicated by a blue line, sharply increases from −2789 N to 876.7 N and
then gradually stabilizes in a small bounded range between −0.01 N to 0.01 N after
approximately 12 s. The yaw control force moment changes from −1089 Nm to 22.73 Nm
within around 2.94 s and gradually decreases the small bounded range between−0.014 Nm
to 0.014 Nm. Figure 5d shows the change of the adaptive parameters. It can be seen that
the (with disturbance indicated by a blue line) reaches 0.367 and keep it steady after 9.93 s,
which is a little higher as compared to that without disturbance. Under the influence
of disturbance, it begins to fluctuate and stabilizes in a small bounded range between
1.58 × 10−5 to 4.29 × 10−6. In short, it can be seen from Figures 4 and 5 that under the
disturbance, The control scheme still shows good performance when vessel berthing.

Furthermore, simulation is done between different original statuses with the same con-
trol parameters. In this study, different initial conditions of ship position and heading angle.
In simulation, the initial states are taken as x(0) = −8 L, y(0) = −5.78 L, ψ(0) = π/4,
u(0) = 0.2 m/s, v(0) = 0, r(0) = 0. Figures 5 and 6 show the simulation results. It can be
seen that the berthing task is successful with the new initial position.

Figure 7a shows that the lateral position reaches the desired position x = 0 at 15.58 s,
and the longitudinal position reaches the desired position y = 0 at 14.59 s. Figure 7b
illustrations that the yaw rate does not exceed the limitation. Figure 7c shows the curves
change of control force and control force moment of the vessel with new initial states. It can
be seen from the portrait that the surge control force with new initial states increases from
−1.731 N to 609.3 N and then gradually stabilizes at 0 N in 10.1 s. The yaw control force
moment changes from−816.8 Nm to 9.614 Nm within around 2.7 s and gradually decreases
to 0 Nm at 9.4 s. Figure 7d shows that the adaptive control schemes are all bounded and
stable, which proves the effectiveness and practicability of the control scheme designed in
this paper.
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Figure 6. Berthing path of control scheme Equation (49) with different initial position.
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Figure 7. Comparisons of control scheme Equation (49) with different initial position. (a) Comparisons
of x, y, and ψ. (b) Comparisons of u, v, and r. (c) Comparisons of τu and τr. (d) Comparisons of δ̂u

and δ̂r.

We clearly illustrate the effectiveness of the proposed control rate in Table 1.

Table 1. Control scheme performance comparison.

Index Simulation Description Result (Exceed the Limitation or Not)

Control scheme Equation (49) No disturbance No
Control scheme Equation (49) Disturbed No
Control scheme Equation (49) Different initial position No
Control scheme Equation (62) Without RBF and No disturbance Yes

6. Conclusions

The BLF-based auto-berthing control scheme has been proposed for an underactuated
vessel system with 3-DOF considering model uncertain dynamics and yaw rate limitation.
The control design applies a differential homeomorphism transformation approach to
convert the vessel to a cascade form to solve the underactuated problem. An auto-berthing
control scheme is derived based on the backstepping framework, combining BLF, RBF,
MLP, and DSC methods. By applying RBF, the uncertain factors affected by the low speed,
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shallow water, and quay–wall effects are efficiently approximated. Furthermore, a DSC
filter is constructed to avoid the differential explosion, and MLP is adopted to improve
calculation efficiency. Compared with the auto-berthing control scheme without considering
BLF, this method successfully stints the yaw rate in a relatively small range. The Lyapunov-
based theoretical analysis indicates that all signals under the proposed auto berthing control
scheme are bounded.

However, the proposed method does not solve the problem of the general applicability
of the port, and it can only realize automatic berthing from a specific location. In addition,
this study does not consider input nonlinearities that may lead to input saturation, hys-
teresis, dead zones, the effect of communication loads on the system, sway-yaw coupling
of vessel model, and tests on actual vessels. The above aspects will be considered in the
automatic berthing control design in the future.
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