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Abstract: This paper proposes a neural network-based nonsingular terminal sliding mode controller
with prescribed performances for the target tracking problem of underactuated underwater robots.
Firstly, the mathematical formulation of the target tracking problem is presented with an underactu-
ated underwater robot model and the corresponding control objectives. Then, the target tracking
errors from the line-of-sight guidance law are transformed using the prescribed performance tech-
nique to achieve good dynamic performance and steady-state performance that meet the pre-set
conditions. Meanwhile, considering the model’s uncertainties and the external disturbances to the
underwater robots, a target tracking controller is proposed based on the radial basis function (RBF)
neural network and the non-singular terminal sliding mode control. Lyapunov stability analysis and
homogeneity theory prove the tracking errors can converge on a small region that contains the origin
with prescribed performance in finite time. In the simulation comparison, the controller proposed
in this paper had better dynamic performance, steady-state performance and chattering supression.
In particular, the steady-state error of the tracking error was lower, and the convergence time of the
tracking error in the vertical distance was reduced by 19.1%.

Keywords: underwater robot; target tracking; neural network; non-singular terminal sliding mode;
prescribed performance

1. Introduction

In recent years, underwater robots have been widely used in various underwater tasks.
Typical applications include search and rescue, monitoring and surveillance, petroleum
exploration, deep-sea archaeological research, ship hull maintenance industry [1–3] and so
on. In the underwater applications mentioned above, underwater robots are often required
to track the targets in a fast and accurate manner. As underwater robots generally have the
characteristics of many uncertainties, high nonlinearity and strong coupling dynamics, and
work in an environment with unknown external disturbances, it is typically difficult for
traditional linear controllers to achieve good tracking control performance.

Many advanced control methods have been used in the control of underwater robots,
such as backstepping control [4–6], model predictive control [7,8], neural network con-
trol [9–13], active disturbance rejection control [14–16], sliding mode control [17–23], adap-
tive and distributed control [24–26] and reinforcement learning [27–30]. In the above
methods, sliding mode control has been widely studied or used because of its strong robust-
ness to the external time-varying disturbance and unmodeled characteristics, fast responses
and easy implementation. Yingkai Xia et al. designed of an improved line-of-sight-based
adaptive sliding mode tracking controller for highly coupled dynamics, ocean current
disturbances and input saturation of underactuated autonomous underwater vehicles
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(AUVs) [21]. For the problems of the remote operated vehicle (ROV) movement instabil-
ity and large tracking error caused by unknown disturbances, an adaptive sliding mode
motion controller was developed by Zongsheng Wang et al. [20]. However, the standard
sliding mode control can only realize the asymptotic stability of the system, and cannot
guarantee the convergence time. As an effective method to speed up the convergence of
tracking errors, terminal sliding mode control achieves finite-time stability by introduc-
ing fractional order terms when constructing a sliding hyperplane. For underactuated
underwater vehicles, Taha Elmokadem et al. designed a target tracking controller based on
terminal sliding mode control, and proved that the tracking errors can converge to zero
within a specified finite time [18]. However, the negative fractional power terms contained
in the controller may lead to a singularity when the errors converge. Cao Jian et al. designed
a non-singular terminal sliding mode controller that evades the issue of a singularity in
the target tracking problem of underwater robots [31]. Nevertheless, it is necessary to
obtain the upper bound of uncertainty in advance. Strong robustness can be obtained by
setting a larger switching gain. However, this will lead to a serious chattering problem,
affect the control accuracy and increase the energy consumption, which are harmful to the
tracking control of underwater robots. B.M. Patre et al. added a state observer to the sliding
mode controller to reduce the switching gains [19], thereby attenuating the chattering. The
precondition of applying this method is that the uncertainty changes slowly and the first
derivative is almost zero, which is inconsistent with the actual working environment of
underwater robots. In practice, underwater robots are always subject to various uncertain-
ties, such as unknown parameters, unmodeled time-varying dynamics and measurement
noise. A neural network can approximate nonlinear time-varying functions and has been
becoming one of the most effective ways to observe uncertainties [9,12,13]. It is worth
noting that a neural network can reduce the switching gain of a sliding mode controller
by approximating unmodeled uncertainties. Therefore, a terminal sliding mode controller
combined with RBF neural network technology improves the tracking control performance
while attenuating chattering.

As underwater tasks are becoming more complex, it is important to ensure good target
tracking of underwater robots. While improving the robustness to external disturbances
and modeling uncertainties, the controller should also pay attention to the dynamic per-
formance and steady-state performance of the tracking errors. The performance control
parameters proposed by Charalampos P. Bechlioulis et al. include constraints to limit errors,
which not only ensures that the steady-state errors are always less than a pre-set boundary,
but also limits the dynamic performance of the system state errors, including convergence
rate and overshoot, to meet the pre-set conditions [32]. Charalampos P. Bechlioulis et al.
developed an approximation-free trajectory tracking controller for underactuated AUVs
with prescribed performances [33]. Nevertheless, this controller ignored the existence of
external disturbances and modeling uncertainties. Omid Elhaki et al. created a neural
network-based target tracking controller for an underactuated AUV with a prescribed
performance to overcome unmodeled dynamics and external disturbances [10]. The pre-
scribed performance technique is applied to trajectory tracking to prevent collisions and
improve control performance [34,35]. Furthermore, a finite-time performance function [36]
and a nonlogarithmic piecewise error mapping function [37] have also been introduced to
accelerate convergence. However, the finite-time convergence of the controllers has not
been investigated in detail.

Differently from previous research, in order to achieve robustness to uncertainties
and external disturbances, realize finite-time convergence, attenuate chattering and obtain
the tracking error’s prescribed performance simultaneously, this paper proposes a neural
network nonsingular terminal sliding mode controller with prescribed performance for the
target tracking problem of underactuated underwater robots. Compared with the nonsin-
gular terminal sliding mode controller, the proposed controller has obvious advantages in
dynamic performance and steady-state performance. Additionally, its chattering is weaker
than that of a nonsingular terminal sliding mode controller with prescribed performances.
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Firstly, the mathematical formulation of the target tracking problem is proposed for the
underactuated underwater robot model and the corresponding control objectives. The
target tracking guidance law is designed based on the line-of-sight. The range and bearing
angles of the robot relative to the target are obtained as tracking errors. Then, the range
and bearing angles are transformed into corresponding transformation errors with pre-
scribed performances. The tracking errors converge to arbitrarily small limit bounds, and
the dynamic performance is optimized with a prespecified maximum overshoot and the
convergence speed. The non-singular terminal sliding mode controller was developed
to ensure that the underwater robot is robust to external disturbances and modeling un-
certainties, and guarantee finite-time convergence of the tracking errors. For improving
the accuracy of tracking control and attenuating the chattering of sliding mode control,
an RBF neural network estimator is integrated to approximate modeling uncertainties.
Finally, a Lyapunov stability synthesis and homogeneity theory show that the tracking
errors converge in finite time on a small region that contains zero with the prescribed
performance. In the simulation comparison, the controller proposed in this paper had
better dynamic performance, steady-state performance and chattering suppression.

The remainder of this paper is ordered as follows. In Section 2, the formulation of
the target tracking problem for underwater robots is stated. In Section 3, the design of the
neural network nonsingular terminal sliding mode controller with prescribed performance
and its stability analysis are presented. Section 4 reports simulation experiments and
performance comparisons. Finally, Section 5 draws the conclusions and proposes future
research.

2. Problem
2.1. Underwater Robot Model

As shown in Figure 1, the motion of underwater robots is commonly described with
the use of two coordinate systems. The first is the geotectonic inertial reference coordinate
system {I}: the axes of the coordinate system are fixed to the earth and the origin is selected
somewhere on the ground. The other is the body reference coordinate system {B}, whose
origin coincides with the buoyancy center of the underwater robot. The robot is self-stable
under roll, so the motion model does not need to consider this degree of freedom. The
kinematic model of the underwater robot is described by the following equation:

.
ξ
.
η
.
ζ
.
θ
.
ψ

 =


cos ψ cos θ − sin ψ sin θ cos ψ 0 0
sin ψ cos θ cos ψ sin θ sin ψ 0 0
− sin θ 0 cos θ 0 0
0 0 0 1 0
0 0 0 0 1

cos θ




u
v
w
q
r

 (1)

where ξ, η and ζ indicate the position in {I}; θ represents the pitch angle in {I}; and ψ
represents the yaw angle in {I}. u, v, w, q and r indicate the surge, sway, heave, pitch and
yaw velocities in {B}.

By applying the Newton–Euler formulation, the dynamics of the underwater robot in
{B} can be described as [38]:

M
.
v + C(v)v + D(v)v + G(η) = τex + τv (2)

where M ∈ R5×5 is the inertia matrix that includes body mass and added mass; C ∈ R5×5 is
a matrix describing centripetal and Coriolis forces produced due to added inertia; D ∈ R5×5

represents the hydrodynamic damping matrix; G(η) ∈ R5 represents the combined gravita-
tional and buoyancy forces vector; τex ∈ R5 is the unknown time-varying vector of external
disturbance forces such as waves and ocean current; and τv ∈ R5 is s the vector of control
moments and forces.



J. Mar. Sci. Eng. 2022, 10, 252 4 of 19J. Mar. Sci. Eng. 2022, 10, 252 4 of 22 
 

 

 
Figure 1. Inertial reference coordinate system {I} and body reference coordinate system {B}. 
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Figure 1. Inertial reference coordinate system {I} and body reference coordinate system {B}.

Due to the complexity and variability of the actual marine environment, it is difficult
to ensure the accuracy of the hydrodynamic parameters obtained from an experiment, so
the parameters are still uncertain. Therefore, M, C(v) and D(v) can be divided into two
parts: the nominal dynamics M0, C0(v) and D0(v); and dynamic uncertainties ∆M, ∆C
and ∆D:

M = M0 + ∆M
C(v) = C0(v) + ∆C(v)
D(v) = D0(v) + ∆D(v)

(3)

Then, the dynamic equation can be rewritten as the following form:

M0
.
v + C0(v)v + D0(v)v + G(η) + ∆ = τex + τv (4)

where ∆ = ∆M + ∆C + ∆D =
[
∆u, ∆v, ∆w, ∆q, ∆r

]T is the total uncertainty of the
dynamics.

Finally, for convenience of controller design, the kinematics model and dynamics
model of an underwater robot are presented in the standard form of a nonlinear system in
Equation (5): { .

x1 = Ax2.
x2 = f (x, t) + g(t)u(t) + ∆′(x, t) + d(t)

(5)

where x = [x1, x2]
T is the state variable of the system, and its expression is:

x1 = [ξ, η, ζ, θ, ψ]T

x2 = [u, v, w, q, r]T
(6)

The controller input u(t) is expressed as:

u(t) = τv =
[
Tu, Tv, Tw, Tq, Tr

]T (7)

The limits of control moments and forces are −6000 to 6000 N(Nm). Since there is no
thruster actuator in the Y direction, Tv ≡ 0. f (x, t) is a smooth nonlinear term, and it can be
expressed according to Equation (2):

f (x, t) = −M−1
0 [C0(x2)x2 + D0(x2)x2 + G(x1)] =

[
fu, fv, fw, fq, fr

]T (8)
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The invertible matrix g(t) is the control gain function. ∆′(x, t) is the model uncertainty
function; d(t) is the external bounded disturbance function:

g(t) = M−1
0 = diag

{
gu, gv, gw, gq, gr

}
∆′(x, t) = −M−1

0 ∆ =
[
−gu∆u,−gv∆v,−gw∆w,−gq∆q,−gr∆r

]T

d(t) = M−1
0 τex = [τ′ex1, τ′ex2, τ′ex3, τ′ex4, τ′ex5]

T
(9)

2.2. Control Objectives

The position error between the underwater robot and the tracking target can be
formulated as follows: xe

ye
ze

 =

 cos ψ cos θ sin ψ cos θ − sin θ
− sin ψ cos ψ 0
sin θ cos ψ sin θ sin ψ cos θ

 ξd − ξB
ηd − ηB
ζd − ζB

 (10)

In Equation (10), (ξB, ηB, ζB) and (ξd, ηd, ζd) are the coordinates of the underwater
robot and the tracking target in {I} respectively. The transformation relationship between
the range and bearing angles (δ, β, α, Ze) and (xe, ye, ze) is as follows:

δ =
√

xe2 + ye2

β = −arctan(ze/
√

xe2 + ye2)
α = arctan(ye/xe)
Ze = ze

(11)

and 
xe = δ cos α
ye = δ sin α
ze = Ze

(12)

The range and bearing angles (δ, β, α, Ze) are considered to be four tracking errors.
Figure 2a is the horizontal projection of the underwater robot and the target from the top
view perspective in {B}. Figure 2b is the vertical plane projection of the underwater robot
with the z axis coplanar with the target in {B}. It can be seen that δ is the distance from the
projection of the target on the xOBy plane to the OB point; α is the angle between the line
projected by the target and the underwater robot on the xOBy plane and the x axis; Ze is
the distance from the xOBy plane to the target in {B}; and β is the angle between the line of
the underwater robot to the target and the xOBy plane, as shown in Figure 2.
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Derivation of Equation (12) yields Equation (13):
.
xe = −u− qze + rye + χ1d.
ye = −v− r(xe + ze tan θ) + χ2d.
ze = −w + qxe + rye tan θ + χ3d

(13)

where 
χ1d =

.
ξd cos θ cos ψ +

.
ηd cos θ sin ψ−

.
ζd sin θ

χ2d = −
.
ξd sin ψ +

.
ηd cos ψ

χ3d =
.
ξd sin θ cos ψ +

.
ηd sin θ sin ψ +

.
ζd cos θ

(14)

By combining Equations (11)–(13), the dynamic error equation related to the (δ, β, α, Ze)
can be obtained as follows:

.
δ = −u cos α− v sin α− qZe cos α− rZe tan θ sin α + χ1d cos α + χ2d sin α
.
β = −

[
xeδ/

(
δ2 + Ze

2)]q + Ze
.
δ/
(
δ2 + Ze

2)− [(−w + rye tan θ + χ3d)/
(
δ2 + Ze

2)]δ
.
α = −[(Ze tan θ cos α + δ)/δ]r + (u sin α− v cos α + qZe sin α− χ1d sin α + χ2d cos α)/δ
.
Ze = −w + qxe + rye tan θ + χ3d

(15)

The control objectives of this paper include the following. By designing the controller
input u(t), the target tracking errors (δ, β, α, Ze) stabilize near the origin in finite time with
the pre-set dynamic responses and meet the steady-state error limit. To avoid collisions,
a small positive threshold δ̃ is introduced as the safe distance between the underwater
robot and the target. Therefore, δ should converge to δ̃, and the others should converge to
zero. Moreover, the proposed controller is expected to be robust to the uncertainties of the
dynamic model and unknown external disturbances, and can attenuate the chattering.

3. Controller Design
3.1. Prescribed Performance and Error Transformation

The prescribed performance is defined when the error can converge to a pre-assigned
residual set; and the maximum overshoot, convergence rate and steady-state error in the
convergent response strictly satisfy a bounded decreasing time function defined as the
performance function [39]. The following formula is the mathematical expression of the
prescribed performance.

L1η1 < δ < H1η1 (16)

− L2η2 < β < H2η2 (17)

− L3η3 < α < H3η3 (18)

− L4η4 < Ze < H4η4 (19)

where, H1, L1, H2, L2, H3, L3, H4 and L4 are positive real numbers, and H1 > L1 should be guar-
anteed. ηi, i = 1, 2, 3, 4 is called the performance function, which could govern the dynamic and
steady state performances of the errors. It is defined as ηi = (ηi0 − ηi∞)e−ait + ηi∞, i = 1, 2, 3, 4
and ηi0 > ηi∞ > 0, ai > 0, where ηi∞ should be sufficiently small positive real numbers.
ηi∞ determines the final boundaries of the tracking error. ai determines the convergence rate
of the tracking errors, which is mainly related to the dynamic performance of the system.
The prescribed performance and error transformation function are shown in Figure 3.

It can be seen in Equation (11) that when δ = 0, β = ±π/2, a singularity will
occur in the system. If α = ±π/2, since there is no actuator for the lateral direction
of the underwater robot, the system will lose control in this direction. Therefore, the
above situations should be avoided. Since β, α and Ze represent the vertical tracking
error, horizontal orientation tracking error and vertical distance between the underwater
robot and the target, respectively, they shall converge to zero as t→ ∞ . If β, α, Ze satisfy
the constraints of Equations (17)–(19), the possible singularity can be avoided and the
system can always be under control. Further, when the bound of Equation (16) is strictly
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satisfied, the horizontal distance error δ converges to the minimum safe distance such that
δ(∞) = δ̃ 6= 0 as t→ ∞ . This definition can not only eliminate the potential singularity
of the system, but also maintain a safe distance between the robot and the tracking target.

J. Mar. Sci. Eng. 2022, 10, 252 7 of 22 
 

 

3. Controller Design 
3.1. Prescribed Performance and Error Transformation 

The prescribed performance is defined when the error can converge to a pre-assigned 
residual set; and the maximum overshoot, convergence rate and steady-state error in the 
convergent response strictly satisfy a bounded decreasing time function defined as the 
performance function [39]. The following formula is the mathematical expression of the 
prescribed performance. 

1 1 1 1L Hη δ η< <  (16) 

2 2 2 2L Hη β η− < <  (17) 

3 3 3 3L Hη α η− < <  (18) 

4 4 4 4eL Z Hη η− < <  (19) 

where, 1 1 2 2 3 3 4, , , , , ,H L H L H L H  and 4L  are positive real numbers, and 1 1H L>  should 
be guaranteed. , 1,2,3,4i iη =  is called the performance function, which could govern the 
dynamic and steady state performances of the errors. It is defined as 

( )0 , 1,2,3,4ia t
i i i ie iη η η η−

∞ ∞= − + =  and 0 0,  0i i iaη η ∞> > > , where iη ∞  should be suffi-
ciently small positive real numbers. iη ∞  determines the final boundaries of the tracking 
error. ia  determines the convergence rate of the tracking errors, which is mainly related 
to the dynamic performance of the system. The prescribed performance and error trans-
formation function are shown in Figure 3. 

  
(a) (b) 

Figure 3. The prescribed performance and error transformation function: (a) a graphical illustration 

for the prescribed performance; (b) error transformation function if . 

It can be seen in Equation (11) that when 0, / 2δ β π= = ± , a singularity will occur in 
the system. If / 2α π= ± , since there is no actuator for the lateral direction of the under-
water robot, the system will lose control in this direction. Therefore, the above situations 
should be avoided. Since ߚ, and eZ ߙ  represent the vertical tracking error, horizontal 
orientation tracking error and vertical distance between the underwater robot and the tar-
get, respectively, they shall converge to zero as t → ∞ . If , ,Zeβ α  satisfy the constraints 
of Equations (17)–(19), the possible singularity can be avoided and the system can always 
be under control. Further, when the bound of Equation (16) is strictly satisfied, the hori-
zontal distance errorδ converges to the minimum safe distance such that ( ) 0δ δ∞ = ≠  

Figure 3. The prescribed performance and error transformation function: (a) a graphical illustration
for the prescribed performance; (b) error transformation function fi.

It is difficult to deal with inequality constraints Equations (16)–(19) directly. There-
fore, inequality constraints are firstly transformed into equality constraints, and four
smooth and strictly increasing functions are defined as error transformation functions
f1(εδ), f2

(
εβ

)
, f3(εα), f4(εZe) with the following properties:

δ(t) = η1 f1(εδ), β(t) = η2 f2
(
εβ

)
, α(t) = η3 f3(εα), Ze(t) = η4 f4(εZe), (20)

L1 < f1(εδ) < H1, −L2 < f2

(
εβ

)
< H2, −L3 < f3(εα) < H3, −L4 < f4(εZe ) < H4, (21)

lim
εδ→+∞

f1(εδ) = H1, lim
εβ→+∞

f2

(
εβ

)
= H2, lim

εα→+∞
f3(εα) = H3, lim

εZe→+∞
f4(εδ) = H4, (22)

lim
εδ→−∞

f1(εδ) = L1, lim
εβ→−∞

f2

(
εβ

)
= −L2, lim

εα→−∞
f3(εα) = −L3, lim

εZe→−∞
f4(εδ) = −L4, (23)

f1(0) = L1 + ε1, f2(0) = 0, f3(0) = 0, f4(0) = 0, (24)

lim
εδ→0

δ = η1(L1 + ε1), lim
εβ→0

β = 0, lim
εα→0

α= 0, lim
εZe→0

Ze= 0, (25)

where εδ, εβ, εα and εZe are defined as the transformation errors corresponding to tracking
errors δ, β, α, Ze respectively. When the transformation errors converge to zero, the tracking
errors converge with prescribed dynamic and steady-state performances. β, α, Ze converge
to zero, and δ converges to the minimum safe distance δ̃ = lim

εδ → 0
t→ ∞

δ = η1∞(L1 + ε1).

According to the above properties, f1(εδ), f2
(
εβ

)
, f3(εα), f4(εZe) is designed as follows:

f1(εδ) = H1e(p1εδ+v1)+L1e−(p1εδ+v1)

e(p1εδ+v1)+e−(p1εδ+v1)

f2
(
εβ

)
= H2e(p2εβ+v2)−L2e−(p2εβ+v2)

e(p2εβ+v2)+e−(p2εβ+v2)

f3(εα) = H3e(p3εα+v3)−L3e−(p3εα+v3)

e(p3εα+v3)+e−(p3εα+v3)

f4(εZe) = H4e(p4εZe+v4)−L4e−(p4εZe+v4)

e(p4εZe+v4)+e−(p4εZe+v4)

(26)
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where v1 = 0.5 ln(ε1/(H1 − L1 − ε1)), v2 = 0.5 ln(H2/L2), v3 = 0.5 ln(H3/L3),
v4 = 0.5 ln(H4/L4) and ε1 > 0, pi > 0, i = 1, 2, 3, 4.

The tracking errors should initially satisfy L1η10 < δ(0) < H1η10, −L2η20 < β(0) <
H2η20,−L3η30 < α(0) < H3η30 and−L4η40 < Ze(0) < H4η40; that is, H1,H2,H3,H4,L2,L3,L4
should be sufficiently large positive numbers, L1 should be a small enough positive number
and εδ, εβ, εα, εZe ∈ L∞. Thus, the tracking errors of the system can be guaranteed to meet
the prescribed performance. All the signals of the closed-loop system are bounded and
non-singular, and the tracking errors converge with the specified dynamic and steady
state performance (i.e., maximum overshoot, convergence rate and final accuracy). Finally,
the tracking errors would be stabilized in the pre-set boundary: L1η1∞ < δ(∞) < H1η1∞,
−L2η2∞ < β(∞) < H2η2∞, −L3η3∞ < α(∞) < H3η3∞ and −L4η4∞ < Ze(∞) < H4η4∞.
The accuracy of the tracking errors can be improved by appropriately selecting parameters.
Since the error transformation functions f1(εδ), f2

(
εβ

)
, f3(εα), f4(εZe) are strictly increas-

ing and the performance function ηi 6= 0, i = 1, 2, 3, 4, the transformation errors can be
obtained through the inverse transformation:



εδ = f−1
1

(
δ(t)/η1

)
= 0.5p1

−1 ln
(
δ/η1 − L1

)
+ 0.5p1

−1 ln
(

H1 − L1 − ε1
)
− 0.5p1

−1 ln
(

H1ε1 −
(
δ/η1

)
ε1
)

εβ = f−1
2

(
β(t)/η2

)
= 0.5p2

−1 ln
((

β/η2
)

H2 + L2 H2
)
− 0.5p2

−1 ln
(

L2 H2 −
(

β/η2
)

L2
)

εα = f−1
3

(
α(t)/η3

)
= 0.5p3

−1 ln
((

α/η3
)

H3 + L3 H3
)
− 0.5p3

−1 ln
(

L3 H3 −
(
α/η3

)
L3
)

εZe = f−1
4

(
Ze (t)/η4

)
= 0.5p4

−1 ln
((

Ze/η4
)

H4 + L4 H4
)
− 0.5p4

−1 ln
(

L4 H4 −
(
Ze/η4

)
L4
)

(27)

By continuing to derive Equation (28),

.
εδ = ζ1

( .
δ− δ

.
η1/η1

)
.
εβ = ζ2

( .
β− β

.
η2/η2

)
.
εα = ζ3

( .
α− α

.
η3/η3

)
.
εZe = ζ4

( .
Ze − Ze

.
η4/η4

) (28)

where


ζ1 = [1/(δ/η1 − L1)− 1/(δ/η1 − H1)]/2p1η1
ζ2 = [1/(β/η2 + L2)− 1/(β/η2 − H2)]/2p2η2
ζ3 = [1/(α/η3 + L3)− 1/(α/η3 − H3)]/2p3η3
ζ4 = [1/(Ze/η4 + L4)− 1/(Ze/η4 − H4)]/2p4η4

.

By substituting Equation (15) into Equation (28), we can get:
.
εδ= −ζ1u cos α + Y1.
εβ = −ζ2

[
xeδ/

(
δ2 + ze

2)]q + Y2.
εα = (−ζ3ze tan θ cos α/δ− ζ3)r + Y3.
εZe = −ζ4w + Y4

(29)

where


Y1 = −ζ1qze cos α + ζ1χ1d cos α− ζ1v sin α− ζ1rze tan θ sin α + ζ1χ2d sin α− ζ1δ

.
η1/η1

Y2 = ζ2ze
.
δ/
(
δ2 + ze

2)− ζ2
[
(−w + rye tan θ + χ3d)/

(
δ2 + ze

2)]δ− ζ2β
.
η2/η2

Y3 = ζ3(−v cos α + u sin α + qze sin α + χ2d cos α− χ1d sin α)/δ− ζ3α
.
η3/η3

Y4 = ζ4(qxe + rye tan θ + χ3d)− ζ4ze
.
η4/η4

.

3.2. Dynamic Controller Design

In this section, a neural network nonsingular terminal sliding mode controller is
proposed under bounded external disturbances and modeling uncertainties as shown in
Figure 4.
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Substituting Equation (5) into Equation (30) yields 
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Figure 4. The block diagram of the proposed controller.

By continuing to take the second derivative of the transformation errors εδ, εβ, εα, εZe

with respect to time, Equation (30) can be obtained:


..
εδ..
εβ..
εα..
εZe

 =



−
.
ζ1u cos α + ζ1u sin α

.
α −

.
ζ2 xe δ

δ2+ze2 − ζ2


( .

xeδ+xe
.
δ
)(

δ2+ze2
)
−xe δ

(
2δ

.
δ+2ze

.
ze
)

(
δ2+ze2

)2


q

−
 ( .

ζ3ze tan θ cos α+ζ3
.
ze tan θ cos α+ζ3ze

.
θ cos α/cos2 θ−ζ3ze tan θ sin α

.
α
)

δ−ζ3ze tan θ cos α
.
δ

δ2

− .
ζ3

r

−
.
ζ4w



+


−ζ1 cos α 0 0 0

0 − ζ2 xe δ

δ2+ze2 0 0

0 0
(
− ζ3ze tan θ cos α

δ
− ζ3

)
0

0 0 0 −ζ4




.
u.
q.
r.
w

+


.
Y1.
Y2.
Y3.
Y4



=


fδ
fβ
fα
fZe

+


gδ 0 0 0
0 gβ 0 0
0 0 gα 0
0 0 0 gZe




.
u.
q.
r.
w

+


.
Y1.
Y2.
Y3.
Y4



(30)

Substituting Equation (5) into Equation (30) yields
..
εδ = gδguTu + gδ fu − gδgu∆u + gδτ′ex1 + fδ +

.
Y1

..
εβ = gβgqTq + gβ fq − gβgq∆q + gβτ′ex4 + fβ +

.
Y2

..
εα = gαgrTr + gα fr − gαgr∆r + gατ′ex5 + fα +

.
Y3

..
εZe = gZe gwTw + gZe fw − gZe gw∆w + gZe τ′ex3 + fZe +

.
Y4

(31)

Choose the following nonsingular terminal sliding mode surface:

S1 = εδ +
1
kδ

.
εδ

pδ
qδ

S2 = εβ +
1
kβ

.
εβ

pβ
qβ

S3 = εα +
1
kα

.
εα

pα
qα

S4 = εZe +
1

kZe

.
εZe

pZe
qZe

(32)

where ki > 0, pi, qi is positive and odd and 1 < pi
qi
< 2, i = δ, β, α, Ze.

The nonsingular terminal sliding mode controller is designed as follows:

Tu = −gδ
−1gu

−1
(

kδqδ
pδ

.
εδ

(2− pδ
qδ
)
+ C1S1 + κ1sgn(S1) + fδ + gδ fu

)
Tq = −gβ

−1gq
−1

(
kβqβ

pβ

.
εq

(2−
pβ
qβ

)
+ C2S2 + κ2sgn(S2) + fβ + gβ fq

)
Tr = −gα

−1gr
−1
(

kαqα
pα

.
εr
(2− pα

qα
)
+ C3S3 + κ3sgn(S3) + fα + gα fr

)
Tw = −gZe

−1gw
−1
(

kZe qZe
pZe

.
εw

(2− pZe
qZe

)
+ C4S4 + κ4sgn(S4) + fZe + gZe fw

)
(33)
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In Equation (33), Ci > 0, i = 1, 2, 3, 4, κ1 > gδτ′ex1 +
.

Y1 − gδgu∆u, κ2 > gβτ′ex4 +
.

Y2 − gβgq∆q, κ3 > gατ′ex5 +
.

Y3 − gαgr∆r and κ4 > gZe τ′ex3 +
.

Y4 − gZe gw∆w.
Consider the following Lyapunov function:

V1 =
1
2

(
S1

2 + S2
2 + S3

2 + S4
2
)

(34)

Take the differential of Equation (34) and substitute Equation (33) into Equation (34)
to obtain

.
V1 = − pδ

.
εδ
(

pδ
qδ
−1)

kδqδ

[
C1S1 + κ1sgn

(
S1
)
− gδτ′ ex1 −

.
Y1 + gδ gu∆u

]
S1 −

pβ
.
εβ

(
pβ
qβ
−1)

kβqβ

[
C2S2 + κ2sgn

(
S2
)
− gβ τ′ ex4 −

.
Y2 + gβ gq∆q

]
S2

− pα
.
εα

(
pα
qα −1)

kαqα

[
C3S3 + κ3sgn

(
S3
)
− gα τ′ ex5 −

.
Y3 + gα gr ∆r

]
S3 −

pZe
.
εZe

(
pZe
qZe
−1)

kZe qZe

[
C4S4 + κ4sgn

(
S4
)
− gZe τ′ ex3 −

.
Y4 + gZe gw∆w

]
S4

= − pδ
.
εδ

pδ
qδ
−1

kδqδ

[
C1
∣∣S1
∣∣+ κ1 −

(
gδτ′ ex1 +

.
Y1 − gδ gu∆u

)
sgn
(
S1
)]∣∣S1

∣∣− pβ
.
εβ

pβ
qβ
−1

kβ qβ

[
C2
∣∣S2
∣∣+ κ2 −

(
gβτ′ ex4 +

.
Y2 − gβ gq∆q

)
sgn
(
S2
)]∣∣S2

∣∣
−pα

.
εα

pα
qα −1

kα qα

[
C3
∣∣S3
∣∣+ κ3 −

(
gα τ′ ex5 +

.
Y3 − gα gr ∆r

)
sgn
(
S3
)]∣∣S3

∣∣− pZe
.
εZe

pZe
qZe
−1

kZe qZe

[
C4
∣∣S4
∣∣+ κ4 −

(
gZe τ′ ex3 +

.
Y4 − gZe gw∆w

)
sgn
(
S4
)]∣∣S4

∣∣
= −Cδ

∣∣S1
∣∣− Cβ

∣∣S2
∣∣− Cα

∣∣S3
∣∣− CZe

∣∣S4
∣∣

(35)

Obviously, Cj > 0, j = δ, β, α, Ze. When Cmin = min
(
Cj
)
, Equation (36) is obtained

as follows: .
V1 ≤ −Cmin(|S1|+ |S2|+ |S3|+ |S4|)

≤ −
√

2CminV
1
2

1

(36)

According to Lyapunov finite time stability proof, the sliding mode variables S1, S2, S3, S4
will converge to zero in finite time. When Si = 0, i = 1, 2, 3, 4, the dynamic equation of

the terminal sliding surface is
.
εj = −k

qj
pj
j ε j

qj
pj = h

(
ε j
)
, j = δ, β, α, Ze. According to the

sufficient and necessary conditions for homogeneous global finite-time stability:

1. ε jh
(
ε j
)
∈ R and ε jh

(
ε j
)
≤ 0, if and only if ε j = 0, ε jh

(
ε j
)
= 0;

2. ε j0 is the initial value at Si = 0, ∀ε j0 ∈ R,
∫ 0

ε j0

dε j

h(ε j)
=

 kj

−qj
pj

1−
qj
pj

ε
1−

qj
pj

j0 < ∞.

Therefore, the transformation error ε j will converge to zero for finite time on the sliding

surface. The tracking errors
(

δ− δ̃
)

, β, α, Ze also converge to zero. By solving differential

equation
.
εj = h

(
ε j
)
, the convergence time of sliding mode is tc =

pj

k

qj
pj
j (pj−qj)

∣∣ε j0
∣∣1− qj

pj .

This paper introduces an RBF neural network as shown in Figure 5 to approximate
the total modeling uncertainties. The RBF neural network has three layers: an input layer,
a hidden layer and an output layer. The neuron activation function of the hidden layer
consists of a radial basis function. It has good generalization ability and simple structure.
Meanwhile, it can avoid unnecessary and lengthy calculations and can approximate any
nonlinear function with arbitrary precision in a compact set [40]. In the RBF neural network,
the uncertainty terms are shown by Equation (37):

∆j = Wi
∗Th(x) + εi(i = 1, 2, 3, 4; j = u, q, r, w) (37)
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In Equation (37), x represents the input to the network, the hidden layer output of

the network is h(x), hj(x) = exp
(
− ‖x−cj‖2

2b2
j

)
is the output of the jth neuron in the hidden

layer, cj is the center point vector of the Gaussian basis function in the hidden layer, bj is
the width of the Gaussian basis function in the hidden layer, Wi

∗ is the ideal weight of
the neural network, εi is the network approximation error and |εi| ≤ εMi. The larger bj is,
the larger the non-zero output region of the radial basis function is, indicating a stronger
mapping ability to the input. The closer the input is to the center cj, the larger its output
value will be, indicating that the radial basis function is more sensitive to the input. The
neural network input vector is set as x = [u, v, w, q, r]T, so the output of the radial basis
network can be written as follows:

∆̂i = Ŵi
Th(x) (38)

where Ŵi is the actual estimate of the ideal weight, which is adaptively updated online
based on the following Lyapunov stability analysis. Then, Equation (33) can be rewritten
as follows:

Tu = −gδ
−1gu

−1
(

kδqδ

pδ

.
εδ

(2− pδ
qδ
)
+ C1S1 + κ1sgn(S1) + fδ + gδ fu − gδgu∆̂u

)
Tq = −gβ

−1gq
−1

(
kβqβ

pβ

.
εq

(2−
pβ
qβ

)
+ C2S2 + κ2sgn(S2) + fβ + gβ fq − gβgq∆̂q

)
Tr = −gα

−1gr
−1
(

kαqα

pα

.
εr
(2− pα

qα
)
+ C3S3 + κ3sgn(S3) + fα + gα fr − gαgr∆̂r

)
Tw = −gZe

−1gw
−1
(

kZe qZe
pZe

.
εw

(2− pZe
qZe

)
+ C4S4 + κ4sgn(S4) + fZe + gZe fw − gZe gw∆̂w

)
(39)

Substituting Equation (39) into the Lyapunov function V1 yields:
.

V1 = − pδ

kδqδ

.
εδ

(pδ/qδ−1)
[
C1S1 + κ1sgn(S1)− gδτ′ex1 −

.
Y1 + gδgu∆̃u

]
S1

− pβ

kβqβ

.
εβ

(pβ/qβ−1)
[
C2S2 + κ2sgn(S2)− gβτ′ex4 −

.
Y2 + gβgq∆̃q

]
S2

− pα

kαqα

.
εα

(pα/qα−1)
[
C3S3 + κ3sgn(S3)− gατ′ex5 −

.
Y3 + gαgr∆̃r

]
S3

− pZe
kZe qZe

.
εZe

(pZe /qZe−1)
[
C4S4 + κ4sgn(S4)− gZe τ

′
ex3 −

.
Y4 + gZe gw∆̃w

]
S4

(40)

where ∆̃i = ∆i − ∆̂i = Wi
∗Th(x) + εi − Ŵi

Th(x) = W̃i
Th(x) + εi, and W̃i = Ŵi

* − Ŵi.
The Lyapunov function can be modified as:

V2 = V1 +
1
2

4

∑
i = 1

γiW̃i
TW̃i (41)

where γi > 0. Differentiating V2 and substituting Equation (39) into Equation (41) yields

.
V2 = − pδ

kδ qδ

.
εδ
(pδ/qδ−1)

[
C1S1

2 + κ1
∣∣S1
∣∣− gδτ′ ex1S1 −

.
Y1S1 − ε1S1

]
− W̃1

T
(

pδ
kδqδ

.
εδ
(pδ/qδ−1)gδ gu S1h(x) + γ1

.
Ŵ1

)
−

pβ
kβqβ

.
εβ

(pβ /qβ−1)[
C2S2

2 + κ2
∣∣S2
∣∣− gβ τ′ ex4S2 −

.
Y2S2 − ε2S2

]
− W̃2

T
(

pβ
kβ qβ

.
εβ

(pβ /qβ−1)
gβ gqS2h(x) + γ2

.
Ŵ2

)
− pα

kα qα

.
εα

(pα/qα−1)
[
C3S3

2 + κ3
∣∣S3
∣∣− gα τ′ ex5S3 −

.
Y3S3 − ε3S3

]
− W̃3

T
(

pα
kα qα

.
εα

(pα /qα−1)gα gr S3h(x) + γ3
.

Ŵ3

)
−

pZe
kZe qZe

.
εZe

(pZe /qZe−1)[C4S4
2 + κ4

∣∣S4
∣∣− gZe τ′ ex3S4 −

.
Y4S4 − ε4S4

]
− W̃4

T
( pZe

kZe qZe

.
εZe

(pZe /qZe−1)gZe gwS4h(x) + γ4
.

Ŵ4

)
(42)
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Consider the following adaptive law:

.
Ŵi = − 1

γi

pj

k jqj

.
εj
(pj/qj−1)gjgkSih(x)(i = 1, 2, 3, 4; j = δ, β, α, Ze; k = u, q, r, w) (43)

Then
.

V2 = − pδ

kδqδ

.
εδ

(pδ/qδ−1)
[
C1S1

2 + κ1|S1| − gδτ′ex1S1 −
.

Y1S1 − ε1S1

]
− pβ

kβqβ

.
εβ

(pβ/qβ−1)
[
C2S2

2 + κ2|S2| − gβτ′ex4S2 −
.

Y2S2 − ε2S2

]
− pα

kαqα

.
εα

(pα/qα−1)
[
C3S3

2 + κ3|S3| − gατ′ex5S3 −
.

Y3S3 − ε3S3

]
− pZe

kZe qZe

.
εZe

(pZe /qZe−1)
[
C4S4

2 + κ4|S4| − gZe τ
′
ex3S4 −

.
Y4S4 − ε4S4

] (44)

Since εi can be limited to a small size and τ′exi is bounded, when κ1 > gδτ′ex1 +
.

Y1 +

ε1, κ2 > gβτ′ex4 +
.

Y2 + ε2, κ3 > gατ′ex5 +
.

Y3 + ε3, κ4 > gZe τ′ex3 +
.

Y4 + ε4, then
.

V2 < 0.
Thus, the adaptive update rate of Ŵi is also given completely.

The above stability analysis proves that the tracking errors
(

δ− δ̃
)

, β, α, Ze can con-
verge to the neighborhood of the zero without any singularity in finite time with the
prescribed performance, and the proposed controller can solve the problem of underwater
robot target tracking with the external disturbances and modeling uncertainties.

4. Numerical Simulation Example

To verify the effectiveness and robustness of the target tracking controller proposed in
this paper, a numerical simulation has been performed on the “Qilin” underwater robot
using MATLAB/Simulink®. The “Qilin” underwater robot is a new prototype deep-sea
work platform that can cruise in the deep sea and crawl on the bottom of the sea. The
thruster layout and physical prototype of the robot are shown in Figure 6. Among them,
L1 = L2 = 1 m; the thrust output of the four thrusters is −3000 to 3000 N. Thus, the limit of
control moments and forces was −6000 to 6000 N(Nm) in simulation.
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Figure 6. The underwater robot: (a) the thruster layout; (b) the physical prototype.

For this simulation, the control parameters are given in Table 1. The initial position
and orientation of the underwater robot were (ξ0, η0, ζ0) = (1.25 m, 1.25 m, 100.1 m) and
(ψ0, θ0) =

(
π
2 rad, 0rad

)
; the initial velocity of the underwater robot was (u0, v0, w0) = (0 m/s, 0 m/s, 0 m/s).

The initial position of the target was (ξd0, ηd0, ζd0) = (2 m, 2 m, 100 m), and the desired tra-
jectory was generated by following typical timing laws:

ξd = 5 cos(πt/10)− 3
ηd = 5 sin(πt/10) + 2
ζd = −0.05t + 100

(45)
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Table 1. The control parameters.

Controller Function Control Parameters

Non-singular terminal sliding mode function

kδ = 0.01, kβ = 0.1, kα = 0.01, kZe = 0.1,
pδ = 5, pβ = 5, pα = 5, pZe = 5,
qδ = 3, qβ = 3, qα = 3, qZe = 3,

C1 = 1, C2 = 10, C3 = 10, C4 = 10,
κ1 = 0.5, κ2 = 0.5, κ3 = 0.005, κ4 = 0.001.

Prescribed performance function
η10 = 1, η1∞ = 0.2, η20 = 1, η2∞ = 0.1,
η30 = 1, η3∞ = 0.1, η40 = 1, η4∞ = 0.1,

a1 = 0.2, a2 = 0.2, a3 = 0.2, a4 = 0.2.

Error transformation function
H1 = 2, L1 = 0.01, H2 = 0.4, L2 = 4,

H3 = 1.2, L3 = 1.2, H4 = 0.2, L4 = 0.2,
p1 = 1, p2 = 1, p3 = 1, p4 = 1, ε1 = 0.5.

RBF neural network function

c1 = linspace(0, 1.8, 100), c2 = linspace(−0.5, 0.7, 100),
c3 = linspace(−0.1, 0.7, 100), c4 = linspace(−0.5, 1.6, 100),

b1 = 0.5, b2 = 1.5, b3 = 0.4, b4 = 1,
γ1 = 0.7, γ2 = 0.01, γ3 = 0.8, γ4 = 0.08.

Equation (46) was introduced to simulate the bounded external disturbances.
τex1 = 0.25sign(u) + 0.5 sin(0.1t)
τex2 = 0.25sign(v) + 0.5 sin(0.1t)
τex3 = 0.25sign(w) + 0.5 sin(0.1t)
τex4 = 0.25sign(q) + 0.5 sin(0.1t)
τex5 = 0.25sign(r) + 0.5 sin(0.1t)

(46)

The uncertainties of robot were as follows in the simulation:

∆i = 5i + 2.5|i|i + 1.5i3, i = u, v, w, q, r (47)

Equation (46) and Equation (47) refer to [10].
To better verify the performance of the proposed controller, the proposed controller

(PNTSMC) is compared with the nonsingular terminal sliding mode controller (TSMC) and
the nonsingular terminal sliding mode controller with prescribed performance (PTSMC).
The initial conditions for these controllers were the same.

Simulation results are illustrated in Figures 7–11.
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J. Mar. Sci. Eng. 2022, 10, 252 14 of 19
J. Mar. Sci. Eng. 2022, 10, 252 17 of 22 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 8. The tracking errors with their performance bounds: (a) ( )tδ ; (b) ( )tβ ; (c) ( )tα ; (d) ( )e tZ . 

 
Figure 9. The positional errors between the robot and the tracking target: ex , ey  and ez . 

   
(a) (b) (c) 

Figure 8. The tracking errors with their performance bounds: (a) δ(t); (b) β(t); (c) α(t); (d) Ze(t).
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Figure 9. The positional errors between the robot and the tracking target: xe, ye and ze.
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Figure 10. The control moments and forces uT , qT , rT  and wT . (a) uT  of PNTSMC; (b) uT  of 
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Figure 11. The total model uncertainty estimation: (a) the total uncertainties term iΔ ; the estimates 

of the total uncertainties term ˆ
iΔ ; (b) the errors of the above term iΔ . 

Figure 7 shows the trajectories of the underwater robot and the target. After cruising 
for a short distance, the trajectory of the underwater robot overlaps with that of the target. 
The results show that the three controllers can achieve accurate trajectory tracking in the 
presence of external disturbances and modeling uncertainties. In Figure 8, the tracking 
errors of PNTSMC and PTSMC could converge to zero with the prescribed performance 

Figure 10. The control moments and forces Tu, Tq, Tr and Tw. (a) Tu of PNTSMC; (b) Tu of PTSMC;
(c) Tu of TSMC; (d) Tq of PNTSMC; (e) Tq of PTSMC; (f) Tq of TSMC; (g) Tr of PNTSMC; (h) Tr of
PTSMC; (i) Tr of TSMC; (j) Tw of PNTSMC; (k) Tw of PTSMC; (l) Tw of TSMC.
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Figure 11. The total model uncertainty estimation: (a) the total uncertainties term ∆i; the estimates of
the total uncertainties term ∆̂i; (b) the errors of the above term ∆̃i.

Figure 7 shows the trajectories of the underwater robot and the target. After cruising
for a short distance, the trajectory of the underwater robot overlaps with that of the target.
The results show that the three controllers can achieve accurate trajectory tracking in the
presence of external disturbances and modeling uncertainties. In Figure 8, the tracking
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errors of PNTSMC and PTSMC could converge to zero with the prescribed performance and
converge faster with less overshooting than those of TSMC. It can be observed in Figure 8
that the convergence process of PNTSMC is smoother than that of PTSMC. Figure 9 shows
the posture errors. As ye and ze approach 0 m, xe approaches the safe distance δ̃ = 0.102
m. It not only achieved convergence in the underactuated direction, but also avoided a
collision, which shows the good performance of the tracking error and the success of the
tracking guidance law. Figure 10 shows the control moments and forces generated by the
three controllers. TSMC had the most dramatic chattering. Since the RBF neural network
can approximate the unmodeled uncertainties, the gain of the sliding mode controller can
be reduced to attenuate chattering. Simulation results show that chattering phenomenon of
PNTSMC is weaker than that of PTSMC. From Figure 11, we can see that the RBF neural
network effectively approximates the uncertainties of the underwater robot.

Remark 1. If the chattering in Figure 10 cannot be tolerated by the thrusters, continuous saturation
functions or hyperbolic tangent functions can be used to replace the sign functions to further
attenuate chattering. However, this approach comes at the cost of losing control accuracy and
reducing robustness.

In order to better understand the performance of different controllers, typical criteria
such as steady-state error, convergence time and root mean square error are used for a
quantitative comparison in Table 2. The steady-state error reflects the control accuracy and
anti-disturbance ability of the system. The convergence time reflects the dynamic time
of the system. In addition, root mean square error is reported to describe the controller’s
control performance during the whole tracking process. Firstly, the results of the simulation
for PNTSMC and TSMC are compared. It can be seen that PNTSMC has advantages over
TSMC in steady-state error, which shows that PNTSMC can achieve more accurate tracking.
As for the convergence time, the convergence times of tracking errors δ(t), α(t) and Ze(t)
were shortened by 30.74, 0.152 and 0.621 s, respectively—reduced by 74.4%, 3.2% and
19.1%. The convergence time of tracking error β(t) increased by 1.171 s, that is, 36.8%. In
general, PNTSMC accelerated the convergence process. The root-mean-square errors of
the tracking errors of the PNTSMC are all smaller, corresponding to δ(t), β(t), α(t) and Ze(t),
which were reduced by 0.4238, 0.1279, 3.1862 and 0.0012 m, respectively—70.5%, 25.2%,
50.1% and 11.0%. Secondly, for the comparison between PNTSMC and PTSMC, the gap
between the two is very small by most criteria. The performance of PNTSMC was slightly
better. In conclusion, we demonstrated the advantages of PNTSMC in rapid acquisition of
stability and accurate trajectory tracking due to the prescribed performance technique.

Table 2. Comparison of the performances of different controllers.

Quantitative Comparison Control Scheme δ(t) β(t) α(t) Ze(t)

Steady-state error
PNTSMC 0.0001 m −1.6155 × 10−5◦ 7.4915 × 10−5◦ −1.8646 × 10−5 m
PTSMC 0.0001 m 7.2886 × 10−5◦ 0.0012◦ −7.355 × 10−6 m
TSMC 0.0030 m 1.848 × 10−4◦ 0.0019◦ 1.6467 × 10−6 m

Convergence Time
PNTSMC 10.59 s 4.351 s 4.639 s 2.625 s
PTSMC 10.7 s 4.146 s 4.121 s 3.951 s
TSMC 41.33 s 3.18 s 4.797 s 3.246 s

Root-mean-square error
PNTSMC 0.1870 m 0.3791◦ 3.1786◦ 0.0097 m
PTSMC 0.1942 m 0.4598◦ 6.1865◦ 0.0104 m
TSMC 0.6008 m 0.5070◦ 6.3648◦ 0.0109 m

According to the above results, the proposed controller can force an underwater
robot to accurately track the desired target with prescribed steady-state and dynamic
performances in the presence of modeling uncertainties and external disturbances. Over-
all, PNTSMC provides better dynamic performance, steady performance and chattering
repression than the other two controllers.
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5. Conclusions

To achieve good target tracking motion control performance in an environment with
uncertainties and external disturbances, we designed a neural network non-singular ter-
minal sliding mode controller for underactuated underwater robots with prescribed per-
formances. By using non-singular terminal sliding mode and the RBF neural network,
the controller achieves strong robustness against the modeling uncertainties and external
disturbances. The prescribed performance technique ensures that the underwater robot
has excellent target tracking control performance. Numerical simulations showed that the
proposed controller has better dynamic performance, steady-state performance and chatter-
ing suppression, and can accomplish the target tracking task accurately and reliably in the
presence of modeling uncertainties and external disturbances. The controller proposed in
this paper is unique in its ability to achieve robustness against modeling uncertainties and
the external disturbances, finite-time convergence, attenuating chattering and prescribed
performances, simultaneously. It provides a new research topic for the target tracking
control of underwater robots.

There are still some open problems to improve the target tracking control of underwa-
ter robots which are for future work:

1. A hardware implementation of the proposed controller will be realized in a practical
robot control system, and the possible concentration degree in the actual deployment
would be discussed. Non-singular terminal sliding mode control and RBF neural
networks have been used on a variety of platforms, and the prescribed performance
technique only adds some logarithmic operations. In mainstream embedded comput-
ers, the computational load of the controller proposed in this paper is affordable. We
will put this controller to the test in a computer with Intel® Atom™ N455 as the core.

2. When there is a large deviation in the tracking error, or when the underwater robot
encounters a large disturbance, the prescribed performance technique may produce
singular values. It is necessary to adaptively adjust the relevant parameters according
to the real environment. At the same time, a finite-time performance function will be
considered to improve the control performance.

3. After comparing with PTSMC and TSMC, the method proposed in this paper should
also be compared with other state-of-the-art positioning error and tracking error
methods. This is one of the directions for further extending and improving the
proposed controller.
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