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Abstract: A thorough numerical introspection for assessing the particular issues of large flow separa-
tions around a submersible hull by using various turbulence models is described. The generic Defense
Advanced Research Projects Agency (DARPA hereafter) Suboff hull is considered in the present study.
Detailed descriptions of the mathematics behind the hybrid Shear Stress Transport (SST), Detached
Eddy Simulation (DES) and the Improved Delayed Detached Eddy Simulation (IDDES) are given.
The ISIS solver of the FineTM/Marine package is used to solve the flow problems. An adaptive mesh
refinement is employed for resolving the flow inside the areas hosting significant flow gradients.
Two sets of computations are analyzed: one refers to the straight-ahead course, whereas the other is
focused on the static drift motions. Four angles of incident flow and three different incoming flow
velocities are proposed for clarifying the details of the flow separation. Extensive grid convergence
tests are performed for both working regimes and for all the meshes used in the present investigation.
Extended verification and validation (V&V hereafter) of the numerical approach is performed through
extensive comparisons with the experimental data. Global hydrodynamic performance of the hull
as well as the local flow features are discussed in detail. The study is concluded by a series of final
remarks aimed at providing useful information for further similar investigations.

Keywords: numerical simulation; DARPA Suboff; turbulent separated flow; turbulence modeling

1. Introduction

The accurate estimation of forces and moments is crucially important in predicting the
response of a hull that moves in a direction which does not coincide with the flow direction.
Dynamic forces acting on a vehicle can be broken down into inertial (pressure) and viscous
components. At low angles of attack (drift), the flow does not usually separate, and inertial
forces dominate. For such cases, good agreement with experimental data can be achieved by
using either potential flow or Euler codes. However, for the higher angles of drift, the flow
is turbulent and is characterized by large-scale boundary layer separation. Consequently,
the viscous effects are important, and it becomes essential to use a Navier–Stokes code to
correctly model the physics and thus obtain good agreement with experimental data [1].
The state-of-the-art in the prediction of full-scale maneuvering performance utilizes a
combination of experience, heuristics, and empiricism. A complete understanding of
Reynolds number effects is essential for extrapolating the model-based solutions to full scale.
A reliable prediction of the overall hydrodynamic performances should therefore comprise
a good understanding of the scale effects at full-scale Reynolds numbers, as previously
proved for propellers by the author [2]. Nonetheless, the preponderance of experimental
data available for undersea vehicles is limited to model-scale. The unavailability of full-
scale data prevents a thorough validation of the high-Reynolds number capabilities, so the
basic validation can only be achieved using the flat-plate-based boundary layer solutions
and Reynolds number scaling.

Drag due to separation of the boundary layer from a hull surface, and to eddying and
backwash in the separation zone, is a form of pressure resistance, which varies as a power
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of the ship speed [3]. Hydrodynamic knowledge of separation phenomena and the physical
laws which govern them have not progressed to the point where the onset of separation can
be predicted in advance with certainty and where the magnitude of separation resistance
can be calculated. It is known that the pressure in such a zone is less than atmospheric
pressure, so that the water literally sucks backward on the hull. For a surface-piercing hull,
if air can be led to the zone to displace the eddying water, the suction is removed, and
the separation resistance disappears. On the contrary, for fully submerged hulls running
sufficiently below the free surface of the water, this is not possible.

Moore et al. [4] discussed the problems which affect the submerged bodies produced
by large vortices washed away from the hull. The authors mentioned the vortices produced
by the hull whenever it moves with its axis at an angle to the direction of flow as in a
turn in the horizontal plane or in any other direction. The cross flow generates separation
which, added to the forward motion, ends up as a conical vortex. It has been found that
two opposing vortices are formed, one below and one above the hull in a classic horizontal
turn of a hull with double symmetry. The authors have shown how the upper rudder may
interfere with the upper vortex, how the vortices get asymmetrical thus causing pitching
moments.

Tip vortices originate from all lifting surfaces, such as the sail and control surfaces
that are inclined at an angle relative to the flow. Aside from them, the so-called turtle-back
vortices produced at the trailing edge of an improperly shaped casing may ultimately
lead to large changes in the axial components of the flow into the propeller plane. This
in turn can produce significant unsteady forces. Moore et al. [4] have shown how the
necklace vortex released by the junction of the sail with the fuselage may become unstable
and interfere with the otherwise smooth flow-field around the hull, then being eventually
washed in the stream. It has been found that the intensity of the resulting vortices directly
depends on the submarine speed and the value of the drift angle. Owing to the fluctuating
side forces resulting from the asymmetrical flow patterns, large vibrations can result in an
individual vortex before it is shed from the rear of the fuselage to be replaced by a vortex
growing from the opposite side. The physical description of flows at higher Reynolds
numbers backed by separation associated with a turbulent boundary layer has failed so far,
therefore more detailed studies are needed. It has been found that the size of the separated
wake is less, and the drag coefficient is about half that with laminar separation. Vortices
contained in cavities are extremely loud and far-reaching and may lead to resonance.
Experiments have proven that the sound levels may be 20 dB above the normal ambient
ocean noise, a fact that must be avoided by any means. Summing up, since these vortices
represent lost energy and often loud sounds, they need to be understood and minimized
whenever possible by designing a proper configuration of surfaces and appendages.

Obviously, flow unsteadiness represents a major practical problem for all maritime
hulls, regardless of their type. This is due to the vibrations induced by their propellers,
which originate in the sudden changes in the effective angle of incidence of the propeller
blades, as they rotate through the unsteady flow. Besides, released vortices in themselves
create excessive hydro-acoustic noise. In the specific case of a submarine, the acoustic
signature is crucially important, therefore, it is of great importance to minimize and prefer-
ably eliminate any flow separation to diminish the hydro-acoustic noise from the overall
acoustic signature.

Historically, analytical and semi-empirical methods were used at first to predict the
maneuvering performances of various submerged or free-surface piercing hulls. Most of
them were directly concerned with the accurate estimation of parameters such as added
mass and inertia coefficients as well as with the linear and nonlinear damping coefficients.
Looking back in time, the pioneering work of Peterson [5] may be considered as one of
the most comprehensive in providing a description and a multi-criteria comparison of
seven widely semi-empirical methods used for predicting relevant linear hydrodynamic
coefficients for conventional marine vehicles. The analyzed methods were compared for
torpedoes and submersibles for which experimental data were available at that time.



J. Mar. Sci. Eng. 2022, 10, 198 3 of 36

More than a decade later, Chellabi et al. [6] proposed a procedure for determining
the underwater vehicle hydrodynamic derivatives using the USAF Datcom method. Then,
Holmes [7] illustrated the application of the Datcom method to predict the hydrodynamics
coefficients utilizing geometric considerations. The hull shape considered was a body of
revolution having a basic submarine shape. A parametric study of a body of revolution
was conducted by using semi-empirical methods for the calculation of hydrodynamic
coefficients. The geometry of the body was analyzed in non-dimensional length and volume
parameters. The effects of varying the nose, mid-body, and base fractions of the body on the
hydrodynamic coefficients were investigated. Equations for the hydrodynamic coefficients
were determined from the non-dimensional parameters as well. More than another decade
later, de Barros et al. [8] reviewed the use of analytical and semi-empirical methods (ASE)
to predict the hydrodynamic derivatives of autonomous underwater vehicles and later
compared, in de Barros et al. [9], the results with those of numerical methods. The authors
concluded that despite of the fast estimate the analytic semi-empirical methods may provide
in sizing hydrodynamic coefficients, they were not accurate enough since the non-linear
and viscous effects were simply disregarded. Based on that final remark, one may consider
the two works of Barros as marking the end of the ASE methods.

Based on the rapid development of hardware resources, mostly computational fluid
dynamics (CFD hereafter) techniques have been applied in the past two decades to describe
the flow field and calculate the hydrodynamic loads acting upon marine vehicles under
several working scenario assumptions. The emergence of parallel computation together
with the increase in the computer speed have not reduced typical runtimes for complex
or advanced simulations, primarily because decreases in computer memory costs have
increased the memory available, which in turn has made it possible to obtain numerical
solutions to larger and far more complicated problems.

In terms of the techniques proposed for solving the problem, the unsteady three-
dimensional computations employing sliding or/and overset grids are now being per-
formed somewhat routinely. In most cases these computations are being carried out for
either isolated components of complicated configurations or for steady state flows, and
usually for both. Parallelization is now making it possible to obtain reasonable measure of
turnaround time for complete configurations in which all components are accounted for in
their true interaction mode. The complexity of flow configurations that are feasible will
continue to increase, and along with this will come the need to address widely varying time
and length scales in the same physical problem. This in turn, will eventually determine
further advances in solution methodology and computational software [10,11].

The Reynolds averaged Navier–Stokes (RANS hereafter) method has been commonly
used for predicting the resistance [12,13], self-propulsion [14–17], maneuvering [18], and
near-surface performance [19–21]. Aside from that, DES, DDES, large eddy simulation
(LES), and direct numerical simulation (DNS) methods have also been used in the studies of
hydrodynamic performances [14,22,23], boundary layer [24], and vortex structures [25,26],
respectively. As far as the stated scope of the investigations is concerned, the accurate
determination of forces and moments [27], the influence exerted by the different turbulence
closure models [28,29], and the verification and validation of the results [30,31] should be
mentioned. Both model-scale [32] and full-scale computations [33] have been performed
and some significant progress has been reported so far. Aside of all those mentioned above,
the maneuvering performance and signatures of a submarine were of a major interest
since they have been found to be significantly influenced by the flow unsteadiness, thus
requiring a better numerical treatment.

Most of the studies on the DARPA Suboff model are only based on the axisymmetric
hulls appended with pairs of rudders and stabilizer fins that are small compared to the
length of the hull, [14,34–36]. Captive model tests provide information on flow physics
but have certain limitations imposed by the equipment that constrain its usefulness. The
model supports the influence of the measurements and needs to account for the spatial
resolution of instrumentation that limits access to the regions around the model where
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access is not usually possible. Under these circumstances, in spite of the proven importance
of experiments, only a few numeric-based studies have described the flow details about
conventional submarine hulls so far. As an example, Fureby et al. [37] reported a thorough
investigation based on both RANS and LES methods on the flow around the fully appended
Defence Science and Technology Organisation (DSTO) generic hull model at straight ahead
and during 10◦ side-slip conditions. It was found that despite the fact that the mechanisms
of flow separation were thought for years to be completely understood, they are still subject
to deeper investigation. With all these at hand, this is the main reason that motivates the
present study.

The main purpose of the present paper is the prediction of the local flow features
around a submerged body when massively separated flows occur. The performance
of several models for modeling the turbulence is assessed and compared. The choice
of the Suboff model is motivated by the large amount of experimental data needed for
validations of the theoretical approach. The paper therefore proposes a comparative
study of the classical averaging k−ω SST model, the hybrid DES-SST, and the innovative
improved IDDES approaches, for which the complete mathematical models are provided
and described in detail. Extensive V&V computations are performed to emphasize the
accuracy of each method proposed to fit the purpose. Three streamwise velocities between
3 and 6 knots and four different drift angles between 10◦ and 22◦ are considered.

2. Hull Geometry

The DARPA Suboff hull form converted to a Cartesian coordinate system, whose
origin is located at the aft most point of the stern is considered further in the present study.
The longitudinal x-coordinate, which coincides with the symmetry axis is oriented towards
the bow, whereas the positive lateral y-coordinate is pointing to the starboard side. The
vertical z-axis is oriented upwards. The geometry of the hull and appendages shown in
Figure 1 was provided by Groves et al. [38] through equations which gave either the axial
and radial coordinates for the axisymmetric fuselage, or by Cartesian coordinates for the
five non-axisymmetric appendages. The length of the hull model is L = 4.356 m, while the
maximum diameter is D = 0.508 m.

Figure 1. Suboff geometry.

The cylindrical part of the fuselage extends from x = 1.016 m to x = 3.245 m. The
bridge fairwater (sail) is placed at top dead center of the hull with the leading edge
positioned at x = 0.924 m behind the bow, and measures 0.368 m in length and 0.46 m
in height. The stern appendages consist of four identical foils, i.e., two rudders and two
stabilizers, equally spaced on the circumference. They all have the trailing edges positioned
at x = 4.007 m measured from the bow. The span length at the trailing edge is 0.161 m,
whereas the chord length at the tip is 0.154 m. The wetted area of the appended hull
Sw measures 6.339 m2, as tabulated in Table 1, which contains the main particulars and
mechanic characteristics of the considered hull.
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Table 1. Main particulars of the DARPA Suboff hull.

Main Particulars Symbol Units

Length L m 4.356
Diameter D m 0.508
Wetted surface Sw m2 6.339
Displacement ∇ m3 0.706
Center of mass (xG, yG, zG) m (2.345, 0.000, 0.002)

3. Mathematical Model: Turbulence Modeling
3.1. RANS Formulation

The simulations reported here were performed with the two-equation k − ω SST
RANS model and two hybrid LES-SST models, namely the DES and IDDES. The governing
equations are the continuity equation and the incompressible Navier–Stokes equations,
which read in a tensor form as follows:

∂ui
∂xi

= 0
∂ρui

∂t +
∂ρuiuj

∂xj
= − ∂p

∂xi
+ u ∂2ui

∂xj∂xj

(1)

Here ρ and u are the water density and molecular viscosity, respectively. Turbulence
simulation typically assumes decomposition of the instantaneous velocity into the resolved
component and model component using a suitable strategy. In the Reynolds-averaged
Navier–Stokes (RANS) turbulence models the decomposition is defined by:

ui = ûi + u′i (2)

Here ûi is the mean part of velocity, whereas u′i is the fluctuating velocity component.
The mean velocity is defined as:

ûi =
1

∆t

t+∆t∫
t

uidt (3)

Introducing (2) in (1) yields to:

∂ûi
∂xi

= 0
∂ρûi

∂t +
∂ρûi ûj

∂xj
= − ∂ p̂

∂xi
+ u ∂2ûi

∂xj∂xj
− ∂τij

∂xj

(4)

Equation set (4) is basically identical to (1), except for the additional turbulence stress
tensor τij in the momentum transport equation, which is defined as:

τij = ρûiuj (5)

Closure of the above equation set is achieved through one or two more additional
equations which are needed to model the turbulence stress tensor. In the RANS formulation,
the turbulence stress tensor is modeled using the Boussinesq approximation according to
which:

τij =
2
3

ρkδij − ut

(
∂ui
∂xj

+
∂uj

∂xi

)
(6)

The k−ω SST RANS model solves the transport equations for the turbulent kinetic
energy k and the specific dissipation rate ω. Since the mathematical formulation is widely
known, it will be skipped in the following and only some discussion on its capabilities and
performance will be provided.

The classic k − ω model has proven to be successful for flows with moderate ad-
verse pressure gradients but fails for flows with pressure-induced separation. The hyper-



J. Mar. Sci. Eng. 2022, 10, 198 6 of 36

sensitivity of the ω equation to its values in the freestream outside the boundary layer
prevented the ω equation from being the standard scale equation in turbulence modelling,
despite its superior performance in the near wall region. As a consequence, the zonal SST
model has been proposed to surmount this drawback in which the zonal formulation is
based on blending functions, which ensure an automatic selection of the k− ω or k− ε
zones without any need for the user to interact. The additional complexity in the model
formulation compared to standard models resides in the necessity to compute the distance
from the wall, which is required in the blending functions calculation. This is achieved by
the solution of a Poisson equation, a procedure which is performed within the solver.

The two major features of the SST k − ω model of Menter [39,40] are therefore the
zonal blending of model coefficients as well as the limitation on the growth of the eddy
viscosity in rapidly strained flows. The zonal modeling employs the k−ω model of Wilcox
in the proximity of solid walls and the classic k− ε model in the vicinity of boundary layer
edges and in free-shear layers. This switching is achieved with a blending function of
the model coefficients. The shear stress transport model modifies the eddy viscosity by
requiring the turbulent shear stress to be bounded by a constant times the turbulent kinetic
energy inside boundary layers.

Blending the k − ω and k − ε models implies for the latter to be transformed into
an equivalent k − ω formulation. Practically, the original k − ω model is multiplied by
a function F1, whereas the k − ε model is transformed by the function 1 − F1, and the
corresponding equations of each model are therefore considered together. F1 is enforced as
a value of one in the half inner part of the boundary layer (where the model behaves like
the original model) and decreases to vanish far from the wall.

Concluding, the SST K−ω model used herein modifies the turbulent eddy viscosity
function to improve the prediction of separated flows and to avoid the overestimated
Reynolds stresses with the k− ω and k− ε models in adverse pressure gradients. Two-
equation models generally underpredict the retardation and separation of the boundary
layer due to adverse pressure gradients. This is a serious deficiency leading to an underes-
timation of the effects of viscous–inviscid interaction. The model uses a modification in the
formulation of the eddy viscosity through a blending function F2 in boundary layer flows,
which regards the transport of the shear stress as being proportional to that of the turbulent
kinetic energy.

3.2. DES Formulation

In contrast to the RANS equations, the equations that are solved for LES are obtained
by spatial filtering rather than an averaging process. The instantaneous velocity ui is
decomposed now into a filtered value ũi and a sub-filtered value u′i :

ui = ũi + u′i (7)

where

ũ(x) =
∫
D

G
(
x− x′, ∆

)
u
(

x′
)
dx′ (8)

Here G(x− x′) is the filter function based on the filter width defined as: ∆ =
(
∆x∆y∆z

)1/3.
The spatial filtering removes the smaller eddies associated with higher frequencies, there-
fore it reduces the range of scales that must be resolved. Inserting the decomposed solution
variables into the Navier–Stokes equations results in equations for the filtered quantities.
The filtered mass and momentum transport equations can now be written as:

∂ũi
∂xi

= 0
∂ρũi

∂t +
∂ρũi ũj

∂xj
= − ∂ p̃

∂xi
+ u ∂2ũi

∂xj∂xj
− ∂τij

∂xj

(9)
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The turbulent stress tensor τij = ρũiuj − ρũiũj represents the subgrid-scale stresses.
The interaction between the larger, resolved eddies and the smaller, unresolved eddies is
modeled using the Boussinesq approximation [41–43]. The subgrid-scale turbulent viscosity
ut is defined by a subgrid-scale model that accounts for the effects of small eddies on the
resolved flow [44,45]. A detailed mathematical description of the DES model is provided in
Appendix A.

3.3. IDDES Formulation

The Delayed Detached Eddy Simulation (DDES) approach proposed by Gritskevich
et al. [46] used here is a formulation based on the DES model described above. The DES
function is modified to prevent a premature switch of DES to LES mode within boundary
layers. The Improved Delayed Detached Eddy Simulation (IDDES) approach, which is
employed in the present research is an improvement of the classic DDES model, which is
innovatively combined with another hybrid model, namely the Wall-Modeled LES [45].
The mathematical formulation of the IDDES model is given in Appendix B.

4. Numerical Milestones

Finite volume was employed to integrate the equations that describe the flow reported
here. The ISIS-CFD unsteady viscous flow solver available in the FineTM/Marine package
was used in the present study to fit the purpose. The spatial discretization of the trans-
port equations on unstructured grids is based on a classic finite-volume formulation in
which fluxes were built using the modified AVLSMART version of the SMART (Sharp and
Monotonic Algorithm for Realistic Transport) bounded difference scheme [47]. The scheme
is based on the third order Quadratic Upstream Interpolation for Convective Kinematics
(QUICK hereafter) scheme [48]. Velocity field is obtained from the momentum conserva-
tion equation and the pressure field is extracted from the mass conservation constraint
transformed into a pressure equation. Picard’s procedure is used for the linearization of
the equations. The whole discretization is fully implicit in space and time and is formally
second order accurate.

Generally, RANS models perform well when the boundary layers are attached. Con-
versely, they have proven difficulties when separated flows are encountered, as shown
by Wilcox [49]. A possible alternative to address this issue is the use of the LES approach,
which consists of resolving the largest scales of the turbulence spectrum and of modeling
only the scales smaller than a threshold related to the local grid size, as described by
Pope [50]. While grid refinement does not always extend the resolved part of the energy
cascade in the case of unsteady RANS simulations [51] in the case of LES-based hybrid
simulations it results in a wider range of turbulent scales being resolved, thus weakening
the role of modeling, as shown by Spalart [52]. Based on all those mentioned above, in
the present paper, closure of the turbulence was achieved by using either the k− ω SST
or the hybrid DES SST and IDDES models. An adaptive mesh refinement based on the
flux-component was used wherever the flow gradients are significant.

All the computations were performed in double-precision on 120 cores; therefore, the
computational domain was split into multiple-connected sub-domains having approxi-
mately the same number of unknowns. This was carried out by the METIS multilevel
partitioning algorithm. Communication of faces data between sub-domains was performed
according to the Message Passing Interface (MPI) standard. In any unsteady simulation the
time step is often determined by the flow properties, rather than by the Courant number,
to gain a suitable level of accuracy within a reasonable running time. The time step size
was therefore chosen an order lower to the level recommended by the authors of the solver,
which suggested in [53] that 30 ≤ y+ ≤ 300, a value which can be regarded only as a
maximal threshold suitable when using wall functions, which is not the case here.

Several sets of numerical unsteady simulations were performed for the DARPA Suboff
hull fully appended with sail, rudders and stabilizing fins, without a propeller, and towed
at a speed range between 3 and 6 knots for V&V purposes. The speed interval corresponded
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to a range of Reynolds numbers between 5.9·106 and 1.8·107, where Re is based on the
hull length, the oncoming flow velocity and the dynamic viscosity of the fresh water at
15 ◦C. The numerical solutions computed by using the k − ω SST and hybrid DES SST
were previously compared by the author in [12] with the experimental data reported by
Crook [54] and Liu et al. [55] who measured the resistance in a deep water towing tank for
running speeds between 4.5 and 18 knots.

The first set of computations regarded the resistance in a straight run, intended
as validation of the numerical methods used in the present study. Computations were
performed in two successive stages. The first stage was based on the RANS solutions. After
a period of five seconds of flow acceleration from the rest to the nominal velocity on a
half-sinusoidal ramp, the hull was numerically towed at a constant nominal speed, on a
straight course with no yaw or trim angles at a neutral rudder position for 20 more seconds.
The turbulence model was in this case the standard k−ω SST of Menter [41].

For testing the performance of the turbulence hybrid models, computations were
restarted for five more seconds, and the turbulence models were switched either to DES
SST or to IDDES. Special attention was paid to the time step size such that the resulting
Courant number was around 0.3, a value that is commonly viewed as appropriate for such
unsteady flow simulations. All the RANS computations for the resistance estimation were
performed for a time step (∆t)RANS = 5·10−5 s.

On the contrary, when the DES or IDDES computations were carried out, the time step
was decreased to a value of (∆t)DDES = 10−6 s. For purposes related to the investigation of
the time step convergence of the numerical solutions, three additional time steps were also
considered, i.e., 1.25·(∆t)DDES, 1.5·(∆t)DDES, and 2.5·(∆t)DDES. The maximum number of
non-linear iterations per time step was limited for all the simulations at a value of 10 for
the RANS computations. The convergence criterion, which corresponds to the maximum
number of orders of magnitude the infinite norm of the residuals had to decrease during
each time step was two orders. The maximum number of non-linear iterations per time
step was increased by a value of 20 for the LES and IDDES computations, whereas the
infinite norm of the residuals was set at three orders.

The second set of computations was devoted to the static drift simulations and was
performed over a period of 30 s. Drift angles varying from β = 10◦ to β = 22◦, increasing
in equal steps of 4◦, were considered as computational cases that will be discussed in the
following sections. The flow was again accelerated from rest to the nominal speed on a
half-sinusoidal ramp over five seconds and all the other numerical settings were similar to
those for the straight-run simulations described above. During the first stage of 25 s that
corresponded to the RANS simulations, the turbulence model was the k−ω SST. Then the
computation was restarted, and the turbulence model was switched either to the DES or to
the IDDES for five more seconds, sufficient for the flow to stabilize. Three income velocities
corresponding to the same Reynolds numbers as above were again considered. The time
step size was kept at the same value as for the straight-course computations as were all the
other settings.

4.1. Boundary Conditions

The boundary conditions imposed on the solid walls and used in all the simulations
reported herein were of a no-slip type for the hull and appendages, regardless of the
chosen turbulence model. The incoming velocity was imposed at the inlet, zero normal
second derivative for the exit, and far field conditions for the tank. On the top and bot-
tom boundaries, a Dirichlet-type boundary condition was imposed as a frozen pressure,
which kept the pressure constant and equal to zero during the computation. The bound-
ary conditions for the k − ω SST turbulence model were: ω∞ = λU0/L, ut∞ = 10−3ut,
k∞ ≡ ut∞ω∞/ρ, where λ, L, U0 and ρ are the proportionality factor, the Suboff maximum
length, the oncoming flow velocity, and the water density, respectively. The proportionality
factor of Menter was set as λ = 1, which is recommended for boundary layer flows [40]. On
the solid surfaces, the boundary conditions read as follows: k = 0, ω = 10(6u)/βρ(∆y)2.
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Here β = 0.09 is a constant of the model, whereas (∆y) is the distance of the first point
away from the wall, chosen so that y+ < 1. Exactly the same conditions were imposed for
the DES/IDDES-based computations, unless otherwise indicated.

4.2. Computational Domain and Meshes

Several trial computations proved that the level of velocity fluctuations in the near
wake is greatly sensitive to the aspect ratio of the domain size reported to the hull length
(L). The computational domain extended from 2.635 L behind the hull to 1.635 L in front of
it, 1.61 L on each side in the lateral direction, and 1.61 L below and above the hull in the
vertical direction. Unstructured computational meshes used in the present report were all
generated by making use of the HEXPRESS, a component of the NUMECA FineTM/Marine
suite. For the five flow cases reported in here, including the associated verification and
validation computations, more than fifteen different meshes were successively generated.
General requirements such as no zero/negative, nor twisted, neither concave cells were
imposed during the iterative generation, following the principles described previously
by the author [55–57]. Clustering inside the boundary layer of the hull, orthogonality
close to the solid surfaces, cells aspect ratio, expansion ratio, and equiangular skewness
were closely monitored during each of the five steps in which the generation of each
mesh was carried out. Four different grids were initially generated for the straight run
computations, not only for the grid independence test, but also for the verification and
validation study that will be presented in the followings. Let these grids be denoted by
G1 . . . G4, where G1, consisting of 6.51·106 cells, corresponds to the roughest mesh, whereas
the finest grid, G4, contains 5.322·107 cells. Intermediate grids G2 and G3 contained 2.01·107

and 3.75·107 cells, respectively. Twenty-eight layers of cells with a minimum thickness of
10−6 were used inside the boundary layer in all the computations reported in here. The
stretching factor was 1.2 everywhere. Four more grids were then generated for the static
drift computations set, one for each incidence angle. All the basic quality requirements
were imposed in this case as in the straight course computations. Given the particularities
of this second set of simulations, additional volumes of mesh clustering were a priori
considered inside the areas where the flow gradients were expected to manifest. For the
straight run such volumes were created around the hull, where the pressure was expected
to vary significantly, as shown in Figure 2a,b (the zone marked by “A” and “C” in the
picture). Additionally, another clustering volume denoted by “B” was paced in the wake
of the sail, as shown in Figure 2b, for a better capturing of the vortices released by both
the sail tip and the juncture with the fuselage, as described previously by the author
in [56,57]. Owing to the overwhelming role played in the static drift computations by the
oncoming flow direction, volumes of higher density of cells shifted at various angles were
placed inside of the wake of main hull and appendages, as shown in Figure 2c,d. They
are denoted by “A” and “D” in Figure 2b,d, which correspond to the largest incidence
angle considered in the present work, 22◦. Since the flow parameters are expected to have
significant variations in time, an additional grid refinement based on a flux-component
criterion that will be described below has been used for the computations reported in here.
The procedure developed for ISIS-CFD is integrated completely in the flow solver. The
method is entirely parallelized, including automatic redistribution of the grid over the
processors. During a computation, the refinement procedure is called repeatedly. In such a
call, first the refinement criterion is calculated, then in a separate step of the procedure the
grid is refined based on this criterion. For steady flow, the refinement procedure converges
if: once the grid is correctly refined according to the criterion, further calls to the procedure
no longer cause any changes [53–59].
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Figure 2. Computational mesh. (a)-around the hull extremities; (b)-side view of the mesh clustering;
(c)-top view of the mesh clustering; (d)-cross view from the aft region; (e)-cross view in the midsection.

The flux-component criterion may be regarded as a truncation error estimator. In a
finite-volume discretization, a part of the truncation error always comes from the error in
the fluxes, which is related to the interpolations of the different state variables from the cell
centers to the faces. With Hessians as approximations of the interpolation errors, a criterion
could be built from the Hessians of all the flow variables, weighted the way they appear in
the fluxes. However, for practical reasons only the convective and pressure part of the flux
were considered, while the turbulence modeling is ignored. Here, instead of considering all
the different products of velocity terms that occur in the fluxes, a weight expressed as ρV ,
is assigned to all the velocity Hessians, where the velocity vector is V =

√
u2 + v2 + w2.

Thus, the flux component criterion becomes:

C f c = (max(‖ H(p) ‖), ρV ‖ H(u) ‖, ρV ‖ H(v) ‖, ρ V ‖ H(w) ‖)α (10)

Solutions computed when the adaption based on this criterion proved to simulate
accurately the flow in which wakes could be well resolved and conserved over a long
distance.

5. Results and Discussions
5.1. Verification & Validation of the Straight Run Case

A series of trial computations were performed to verify and validate the numerical
models used in the research reported herein. Given the complexity of the subject of the
study, a very detailed V&V is proposed in the following. Since the main subject of the
present research is related to the DARPA Suboff hull hydrodynamic performances in a
static drift motion, an initial validation might be appropriately required for the straight run
working condition. Under such assumption, the overall performance of the hull moving
in straight course is evaluated at first. A grid independency test is performed for the four
meshes considered in the present study, followed by a V&V analysis of the computational
solutions against the existing experimental data. Because the static drift computations
require different meshes adapted to the different angular positions of the hull in respect to
the stream, several additional investigations are required for each particular computational
case to prove the accuracy of the numerical treatment. Because of the huge amount of data
computed for all the considered cases, i.e., four incidence angles and four grids for each
angle, the discussions related to the V&V will be, without restraining the generality of the
problem, focused on the most critical cases only.

5.1.1. Grid Sensitivity and Time Convergence Tests

The grid convergence study was carried out first to demonstrate grid independence on
the parallel computation solver. Four meshes denoted below by G1 . . . G4 were generated to
host the computations for the straight run case. The initial number of cells for the G1 . . . G4
meshes varied from 8.01·106 cells, corresponding to the coarsest grid, to 6.4·107 cells,
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corresponding to the finest. The intermediate values are tabulated in Table 2. The time step
size for the four simulation runs was kept unchanged at a value of ∆t = 10−6 s except for the
time step convergence study when it was successively modified, as will be discussed later
in the following sub-sections. The Reynolds numbers varied form 5.9·106 to 1.8·107. The
average increase ratio of the initial cell number between the two consecutive refinements
was around 2, as Table 2 shows. The consecutive computed grid ratio (rG)i+1,i i = 1 . . . 3
between two consecutive meshes, i.e., G2G1 · · ·G4G3, varied from 1.93 to 2.06 as also shown
in Table 2. Overall, the average grid ratio for the four grids, (rG)av, may be considered in
the followings as being equal to 2.

Table 2. Computational grids generated for the grid convergence study—hull in straight run.

G1 G2 G3 G4

Number of cells 8.01·106 1.65·107 3.19·107 6.41·107

(rG)i+1,i i = 1 . . . 3 2.06 1.93 2.01
(rG)av 2

Solutions based on the hybrid SST-IDDES model computed on the four grids were
compared to the experimental data (EFD hereafter) provided by Johnson et al. [60] to prove
the grid independency of the solution, as shown in Table 3 and Figure 3.

Table 3. Grid convergence test for the DARPA Suboff hull. Computations in straight run.

U0 EFD [60]
CFD

G1 G2 G3 G4

[knots] N R [N] |εG1 | R [N] |εG2 | R [N] |εG3 | R [N] |εG4 |

3 40.920 39.3118 4.09 39.6638 3.17 41.8407 2.20 41.6975 1.86
3.5 45.151 43.8045 3.07 44.0990 2.39 46.0967 2.05 45.9462 1.73
4 52.014 50.5589 2.88 50.8765 2.24 53.0340 1.92 52.8679 1.62

4.5 63.222 61.5700 2.68 61.9310 2.08 64.3974 1.83 64.2028 1.53
5 76.013 74.1174 2.56 74.5315 1.99 77.3582 1.74 77.1315 1.45

5.5 90.116 88.1816 2.19 88.5511 1.77 91.5337 1.55 91.2634 1.26
6 105.241 103.209 1.97 103.598 1.59 106.640 1.31 106.377 1.07

Figure 3. Grid convergence test performed for the (G1–G4) meshes. (a)-total resistance measured
(EFD) [53,60] and computed (CFD); (b)-absolute computational errors.

Data tabulated in Table 3 show that solutions computed on the two coarser meshes
slightly overestimate the experimental data, whereas the finer meshes slightly underes-
timate the measured data, as depicted in Figure 3a. The largest errors correspond to the
smaller velocities, as Figure 3b, which depicts the solutions tabulated in Table 3. This appar-
ently peculiar fact is attributable to the initial mesh generation process. That is, the settings
used when the grid was built up were exclusively based on the parameters associated to
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the largest Reynolds number. Obviously that choice seemed to be inappropriate for the
smaller velocity associated quality requirements since the boundary layer is thicker in those
cases. The reasons behind this choice were mainly related to the desire to maintaining the
associated computational effort for the grid generation at the lowest possible level. As
mentioned above, the flow starts from rest and is accelerated for 5 s on a half-sinusoidal
ramp for numerical stability. Solutions converge rather fast after the acceleration period,
regardless of the incoming flow velocity, as shown in Figure 4. The hull resistances shown
in Figure 4 are all computed on the finest mesh, based on the hybrid IDDES turbulence
model. The simulation is performed for 3·107 time steps, up to a tmax = 30 s.

Figure 4. Time histories of the resistance computed on the finest mesh for three advancing speeds.

A former study carried out by the author [12] for the same hull moving in a straight
course was entirely based on the hybrid SST-DES model of the turbulence closure, which
revealed its advantages over the classic RANS approach. The IDDES model is proposed
herein as an alternative aimed at describing better the local flow features. Since it might be
useful for the reader to have the differences brought by the different turbulence closure
approaches, a comparison with the experimental data of Johnson et al. [60] is proposed
in the following. Table 4 contains the computed total resistance of the Suboff hull, with
the three turbulence models for six oncoming flow velocities, against the corresponding
measured values.

Table 4. Verification for the turbulence models used to simulate the flow on the finest mesh.

U0 EFD [60]
CFD

RANS (k−ω) SST DES SST IDDES SST

[knots] R [N] R [N] |ε| [%] R [N] |ε| [%] R [N] |ε| [%]

3 40.921 39.6842 3.02 39.8274 2.67 41.69748 1.86
3.5 45.152 43.9987 2.55 44.1793 2.15 45.94615 1.73
4 52.012 50.8086 2.31 51.0270 1.89 52.86788 1.62

4.5 63.221 61.8544 2.16 62.0694 1.82 64.20278 1.53
5 76.013 74.4366 2.07 74.6798 1.75 77.13149 1.45

5.5 90.114 88.3619 1.94 88.5871 1.69 91.26341 1.26
6 105.241 103.3983 1.75 103.6509 1.51 106.3766 1.07

All the computations reported here were performed on the finest mesh. Based on the
data tabulated in Table 4, one may notice that the level of errors decreases with the increase
in the incoming speed.

As discussed above, this trend may be attributable to the computational grid, whose
minimum cell thickness was set based on the largest Reynolds number. Even though the
highest errors of the RANS simulations may be considered satisfactory from a practical
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engineering point of view, they may be unacceptable when the instantaneous local flow
details are of interest. Despite their higher CPU costs compared to the RANS-based solution,
the hybrid DES SST and IDDES solutions, whose absolute errors vary from 2.67% to 1.07%
can be considered satisfactory. From this point of view, they may be a good choice compared
to the more expensive LES approach. Data tabulated in Table 4 are drawn in Figure 5.
Figure 5a depicts the comparison between the total resistance measured (EFD) [60] and
computed (CFD), whereas Figure 5b bears out the corresponding absolute computational
errors. It is worth mentioning that all the absolute errors are below 3.02%, a fact that may
confirm the accuracy of the solver. Apart from that, it may be pointed out that the hybrid
turbulence models lead to smaller errors than the classical RANS (k−ω) SST.

Figure 5. Comparison between the experimental data [60] and the numerical solutions computed
by using different turbulence models on the finest mesh (a)-total resistance measured (EFD) and
computed (CFD); (b)-absolute computational errors.

Apart from the mesh fineness, the second key parameter of any numerical simulation
is the time step size. To quantify its influence on the accuracy of the solution, a time
convergence test was performed for the simpler flow around the hull moving in the straight
run case. Closure to turbulence is achieved through the hybrid SST-IDDES model only.
Velocities the test was performed at varied from 3 to 6 knots, being distributed in four
equally distributed steps. Three additional time steps were considered for this computation,
i.e., 1.25, 1.5 and 2.5 times the ∆t time step used for the grid convergence tests performed
above, which was taken as a basis for further discussions. Comparisons of the computed
solutions with the experimental [60] tabulated in Table 5 and depicted in Figure 6 revealed
that the increase in the time step size determines a significant loss in accuracy. This was
somehow expected since the augmentation of the time step leads to an increase in the
Courant number, with negative consequences on the overall accuracy.

Table 5. Time step convergence test for the DARPA Suboff hull. Computations in the straight run
case, IDDES turbulence model.

U0 EFD
CFD

∆t=10−6 s 1.25∆t 1.5∆t 2.5∆t

knots R [N] R [N] |ε|[%] R [N] |ε|[%] R [N] |ε|[%] R [N] |ε|[%]

3 40.92 41.6975 1.86 39.7685 2.90 39.2749 4.19 36.6516 11.65
4 52.014 52.8679 1.62 50.7301 2.53 50.1818 3.65 47.2303 10.13
5 76.013 77.1315 1.45 74.3298 2.26 73.6104 3.26 69.7012 9.06
6 105.241 106.377 1.07 103.512 1.67 102.767 2.41 98.6459 6.69
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Figure 6. Time step convergence test. (a)-total resistance measured (EFD) [60] and computed (CFD);
(b)-absolute computational errors.

The numerical scheme used in the research reported herein is of a second order of
accuracy in time, which means that the computational errors are proportional to the time
step at a power of two. The nominal errors tabulated in Table 5 confirm the theoretic issues
behind the numerics, therefore it may be considered that the numerical scheme proposed
in the present computational test should be considered as being accurate in time.

5.1.2. Verification and Validation

Furthermore, the grid uncertainty was evaluated by using the methodology for mono-
tonic convergence proposed in [61]. V&V of the computed total resistance was performed
for all the Suboff speeds considered in the mesh sensitivity study only for the smallest time
step. Data used for the V&V estimation for the total resistance are tabulated in Table 3;
Table 6. The calculated grid ratio (rG) tabulated in Table 2, the associated relative error
between the total resistance computed on the finest mesh G4 and the second finest mesh
G3, ε43%R4, the ratio between the estimated order of convergence and the theoretical or-
der of convergence pG/pG.th, the grid uncertainty UG%G4, the experimental uncertainty
UD%D, and the validation uncertainty UV% are tabulated in Table 6.

Table 6. Verification and validation for the total resistance in the straight run case.

Parameter Speed
[knots] rG ε43%R4

pG
pG, th

UG%G4 UD%D UV%

R [N]

3

2

0.34 1.236 1.921

1.78

2.619
3.5 0.32 1.156 1.872 2.583
4 0.30 1.197 1.816 1.543

4.5 0.30 1.264 1.805 2.535
5 0.29 1.208 1.713 2.470

5.5 0.29 1.123 1.711 2.469
6 0.24 1.152 1.704 2.464

The pG,th in Table 6 represents the theoretical order of accuracy, which is given by the
order of convection scheme, whereas the validation uncertainty is expressed as a function

of grid uncertainty and experimental uncertainty: UV =
√
(UG%G4)

2 + (UD%D)2. The
relative error between the finest mesh and the experimental data for the coefficient of total
resistance on the finest grid G4 is smaller than the Richardson-based validation numerical
uncertainty, see Tables 3 and 6, therefore the resistance prediction can be considered as
being validated. For more details on the V&V procedures, see also the ASME and ITTC
provisions [62,63].
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5.2. Verification & Validation of the Static Drift Cases
Grid Sensitivity Tests

Several sets of computations were carried out at this stage for checking the solution
accuracy based on the discretization resolution. All these additional computations were
necessary since different grids were drawn for each incidence angle of the flow (which will
be denoted by β hereafter) in respect to the Suboff hull. For the sake of similarity with the
straight run cases, only the IDDES-based computations will be considered in the followings.
For CPU costs reasons, verification and validation was carried out only for the incoming
velocities of 3, 4.5, and 6 knots. The analysis was performed for the total resistance force,

defined as R =
√

F2
x + F2

y , and yaw moment Mz. Fx and Fy are the streamwise and the
lateral components of the hydrodynamic resistance.

β = 10◦ case

Four additional computational meshes were generated to carry out the grid sensitivity
test in the smallest drift angle. The mesh sizes varying from 8.248·106 to 6.58·107 cells are
tabulated in Table 7, which also gives the grid ratios between two consecutive meshes,
(rG)i+1,i i = 1 . . . 3 and the whole averaged grid ratio (rG)av. The associated computational
errors of the total resistances and yaw moments on each computational mesh are tabulated
in Table 8 which shows that the maximum computational errors range between 1.24% and
3.35% for the total resistance force and between 1.84% and 4.32% for the yaw moment.

Table 7. Meshes generated for the grid convergence study. Drift angle β = 10o.

G1 G2 G3 G4

Number of cells 8.248·106 1.666·107 3.285·107 6.58·107

(rG)i+1,i i = 1 . . . 3 2.02 1.975 2.00
(rG)av 1.992

Table 8. Grid convergence study. Run at the drift angle β = 10o.

U0 EFD
CFD

G1 G2 G3 G4

knots R [N] R [N] |εG1| R [N] |εG2| R [N] |εG3| R [N] |εG4|

3 119.921 116.035 3.35 116.997 2.50 117.434 2.12 117.695 1.89
4.5 269.971 262.408 2.88 264.287 2.15 265.139 1.82 265.648 1.63
6 483.837 473.421 2.20 476.021 1.64 477.197 1.39 477.900 1.24

Mz[Nm] Mz[Nm] |εG1| Mz[Nm] |εG2| Mz[Nm] |εG3| Mz[Nm] |εG4|

3 188.199 180.406 4.32 181.553 3.66 182.536 3.10 193.412 2.77
4.5 426.614 411.904 3.57 414.082 3.03 415.946 2.56 436.383 2.29
6 733.504 713.0431 2.87 716.090 2.43 718.693 2.06 747.000 1.84

Since they both correspond to the coarsest grid denoted by G1, one may conclude that
the mesh sensitivity test confirms the solver robustness. The largest computational error
values correspond to the yaw moment, a fact that may suggest that the grid resolution
on each horizontal plane (i.e., in the longitudinal and lateral directions) should be better,
despite the higher associated CPU costs.

β = 14◦ case

Four more computational meshes were generated to carry out the grid sensitivity test
for the β = 14◦ drift angle. The mesh sizes varying from 8.622·106 to 6.931·107 cells are
tabulated in Table 9, which also gives the grid ratios between two consecutive meshes,
(rG)i+1,i i = 1 . . . 3 and the averaged grid ratio (rG)av, as above. The associated computa-
tional errors of the total resistances and yaw moments on each computational mesh are
tabulated in Table 10, which shows that the maximum computational errors range between
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1.33% and 3.53% for the total resistance force and between 1.94% and 5.16% for the yaw
moment. The errors are larger than those for the corresponding β = 10◦ case, a fact that
may again suggest that the finest grid used here should have been even finer.

Table 9. Meshes generated for the grid convergence study. Drift angle β = 14o.

G1 G2 G3 G4

Number of cells 8.248·106 1.666·107 3.285·107 6.58·107

(rG)i+1,i i = 1 . . . 3 2.02 1.975 2.00
(rG)av 1.992

Table 10. Grid convergence study. Run at the drift angle β = 14o.

U0 EFD
CFD

G1 G2 G3 G4

knots R [N] R [N] |εG1| R [N] |εG2| R [N] |εG3| R [N] |εG4|

3 119.921 116.035 3.35 116.997 2.50 117.434 2.12 117.695 1.89
4.5 269.971 262.408 2.88 264.287 2.15 265.139 1.82 265.648 1.63
6 483.837 473.421 2.20 476.021 1.64 477.197 1.39 477.900 1.24

Mz[Nm] Mz[Nm] |εG1| Mz[Nm] |εG2| Mz[Nm] |εG3| Mz[Nm] |εG4|

3 188.199 180.406 4.32 181.553 3.66 182.536 3.10 193.412 2.77
4.5 426.614 411.904 3.57 414.082 3.03 415.946 2.56 436.383 2.29
6 733.504 713.0431 2.87 716.090 2.43 718.693 2.06 747.000 1.84

All the numerical errors corresponding to the solutions for the smaller drift angle
simulations are shown in Figure 7. Figure 7a contains the errors in the β = 10◦ case,
whereas Figure 7b contains those computed in the β = 14◦ case. Errors computed for the
total resistance are drawn with solid lines, while those corresponding to the yaw moments
are drawn with broken lines. Obviously, the relative errors decrease monotonically with
the increase in the number of cells, as Figure 7 bears out. The monotonic decrease in the
absolute errors depicted in Figure 7 proves not only the accuracy of the numerical scheme
chosen for the present simulation, but also the robustness of the flow solver. The absolute
errors for the yaw moments are slightly larger than those of the total resistance, a fact that
may suggest that the mesh resolution in both x and y directions should be higher in both
computation sets. A pilot computation not reported here has shown that an increase by
41% in the number of cells led to a 69% reduction in the relative error, with an increased
cost in CPU time of 147% needed for the solution convergence. Having those figures at
hand, one may raise the question of the optimal balance between efficiency and accuracy
that should be targeted when such a flow problem has to be solved. Owing to the rather
low level of the hardware costs nowadays, it seems that a compromise between the two
might be the best choice for commonly practical applications, i.e., a solution computed on
a sufficiently fine mesh, eventually on more computing cores.
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Figure 7. Absolute errors in the grid convergence test for the static drift computations: (a)-β = 10◦;
(b)-β = 14◦.

Next the V&V computations were peformed for the most complex cases considered
in the present study since they refer to the larger drift angles of 18◦ and 22◦, which are
characterized by strong non-linearities induced by the significant flow separations. In this
particular case the mesh generation process had to be suited to cover with a better cell
density inside the areas where the flow is expected to host large velocity and pressure gra-
dients.

β = 18◦ case

The next set of computations refer to the drift angle of 18◦. The mesh sizes varying from
8.872·106 to 7.1731·107 cells are tabulated in Table 11. Grid ratios again vary around 2 and
the absolute computational errors are between 3.90% and 1.45% for the total resistance and
between 5.89% and 2.07% for the yaw moment, as tabulated in Table 12. Since the largest
values of computational errors correspond again to the coarsest grid, as in the smaller drift
angles discussed above, the conclusions drawn there remain valid here as well.

Table 11. Meshes generated for the grid convergence study. Drift angle β = 18o.

G1 G2 G3 G4

Number of cells 8.87·106 1.78·107 3.55·107 7.17·107

(rG)i+1,i i = 1 . . . 3 2.01 1.99 2.02
(rG)av 2.007

Table 12. Grid convergence study. Run at the drift angle β = 18o.

U0 EFD
CFD

G1 G2 G3 G4

knots R [N] R [N] |εG1| R [N] |εG2| R [N] |εG3| R [N] |εG4|

3 282.337 271.741 3.90 274.353 2.91 275.252 2.57 275.994 2.30
4.5 578.714 558.180 3.68 563.251 2.75 565.556 2.33 566.937 2.08
6 1009.380 984.123 2.57 990.411 1.92 993.259 1.62 994.961 1.45

Mz[Nm] Mz[Nm] |εG1| Mz[Nm] |εG2| Mz[Nm] |εG3| Mz[Nm] |εG4|

3 421.923 398.436 5.89 401.848 5.00 404.786 4.23 437.872 3.78
4.5 910.225 868.121 4.85 874.290 4.11 879.587 3.48 938.533 3.11
6 1423.98 1379.45 3.23 1386.066 2.74 1391.72 2.32 1453.46 2.07

β = 22◦ case

Mesh convergence computations referring to the drift angle of 22◦ were again per-
formed on four meshes whose sizes vary from 9.083·106 to 7.483·107 cells as tabulated in
Table 13. In this computational case, the grid ratios between every two grids are between
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1.98 and 2.04, with an average ratio of 2.02. The absolute computational errors vary from
4.07% to 1.44% for the total resistance and from 6.41% to 2.26% for the yaw moment, as
tabulated in Table 14. Again, the largest errors for the computed forces and moments
correspond to the coarsest mesh.

Table 13. Meshes generated for the grid convergence study. Drift angle β = 22o.

G1 G2 G3 G4

Number of cells 9.08·106 1.797·107 3.666·107 7.48·107

(rG)i+1,i i = 1 . . . 3 1.98 2.04 2.04
(rG)av 2.02

Table 14. Grid convergence study. Run at the drift angle β = 22o.

U0 EFD
CFD

G1 G2 G3 G4

knots R [N] R [N] |εG1| R [N] |εG2| R [N] |εG3| R [N] |εG4|

3 410.937 394.852 4.07 398.813 3.04 401.043 2.47 402.080 2.20
4.5 915.261 884.359 3.49 892.001 2.61 895.472 2.21 897.551 1.97
6 1509.28 1471.85 2.54 1481.17 1.90 1485.39 1.61 1487.92 1.44

Mz[Nm] Mz[Nm] |εG1| Mz[Nm] |εG2| Mz[Nm] |εG3| Mz[Nm] |εG4|

3 456.114 428.641 6.41 432.616 5.43 436.043 4.60 474.861 4.11
4.5 1105.82 1049.68 5.35 1057.87 4.53 1064.94 3.84 1143.75 3.43
6 1878.83 1814.86 3.52 1824.34 2.99 1832.44 2.53 1921.29 2.26

The numerical errors corresponding to the solutions of the 18o and 22◦ drift angles
simulations are shown in Figure 8. Figure 8a depicts the errors of the β = 18◦, while
those computed in the β = 22◦ case are drawn in Figure 8b. Errors computed for the total
resistance are drawn as in Figure 7 with solid lines, while those corresponding to the yaw
moments are drawn with broken lines. The relative errors drawn in Figure 8 decrease
monotonically with the increase in the number of cells, as in the cases of smaller drift angles.
Again, the absolute errors for the yaw moments are slightly larger than those of the total
resistance, as expected.

Figure 8. Absolute errors in the grid convergence test for the static drift computations: (a)-β = 18◦;
(b)-β = 22◦.

From the reported solutions one may notice that the largest errors for the total re-
sistance and yaw moment correspond to the 22◦ static drift angle, as expected. For that
reason, the verification and validation will be further performed only in this case in
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Tables 15 and 16, by using the same procedure as for the straight run case described at
Section 5.1.

Table 15. Verification and validation of the total resistance computed in the β = 22o drift angle case.

Parameter Speed
[knots] rG ε43%R pG

pG, th
UG%G4 UD%D UV%

R [N]
3

2.02
0.27 1.252 1.971

1.92
2.751

4.5 0.24 1.211 1.814 2.641
6 0.17 1.158 1.722 2.597

Table 16. Verification and validation for the yaw moment computed for β = 22o drift angle case.

Parameter Speed
[knots] rG ε43%Mz

pG
pG, th

UG%G4 UD%D UV%

Mz [Nm]
3

2.02
0.89 1.252 1.618

1.85
2.458

4.5 0.54 1.211 1.507 2.386
6 0.05 1.158 1.404 2.322

The relative errors between the solution computed on the finest mesh and the corre-
sponding experimental data for the total resistance and the yaw moment values on the
finest grid G4 are smaller than the Richardson-based validation of numerical uncertainty.
Based on that evidence, the numerical simulation can be therefore considered as being
validated for the largest drift angle run as it had been considered in the straight run case
discussed above. Wrapping up, based on the extensive V&V computations reported herein,
it may be concluded once again that both numerical method accuracy and the robustness
of the solver proposed in the present study are proven, regardless of the flow particulars.
Doubtlessly, the low level of the computed errors is encouraging the use of the theoret-
ical approaches based on the numerical simulations in determining the hydrodynamic
performances instead of the more expensive experimental methods.

5.3. Global Forces and Moments in the Static Drift Motion Case

A comparative analysis of the time history of the mean hydrodynamic forces and mo-
ments computed for the 18◦ and 22◦ drift angles cases is proposed in Figure 9. Streamwise
forces are drawn with lines, whereas the lateral forces are drawn with symbols in Figure 9a,c
respectively. The reported solutions were all computed by using the IDDES turbulence
model. All the graphs clearly show that after the five-second period of acceleration of the
flow, five more seconds were necessary for the solution to stabilize.

When the turbulence model was switched from the RANS-SST to the hybrid IDDES, a
slight additional change of the lateral force magnitude could be observed in the highest
velocity computational case. Seemingly, that change is attributable to the more appropriate
description of the separated flow with the IDDES SST model is. As mentioned above,
Figure 9 depicts the mean values of forces and yaw moments. However, the instantaneous
time histories show that the solutions manifest an oscillatory pattern around the mean
value, as Figure 10 bears out. This conclusion is valid for both IDDES-based solutions
computed either in the β = 18◦ case shown in Figure 10a or in the β = 22◦ case shown
in Figure 10b. Several animations not reported here have proven that the period of the
oscillations coincides with the period of the separated vortices release.
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Figure 9. Time histories of the streamwise and lateral forces and yaw moments computed for three
advancing speeds computed for the largest incidence angles: (a)-streamwise and lateral forces in
β = 18◦ case, (b)-yaw moment in β = 18◦ case, (c)-streamwise and lateral forces in β = 22◦ case,
(d)-yaw moment in β = 22◦ case.

Figure 10. Detailed time histories of the streamwise and lateral forces and yaw moments computed
for U0 = 6 knots: (a)-β = 18◦ case, (b)-β = 22◦ case.

5.4. Local Flow Features in the Straight Run Case

As stated above, the main purpose of the present paper is the investigation of the local
flow around and behind the Suboff hull, knowing how important it is to understand and
control the flow for the propulsive performances as well as for the level of the acoustic
signal. Since the hydroacustics ensure a long-range highly accurate communication between
surface ships and submarines, it requires the use of systems that use very-low-frequency
electromagnetic waves that eventually penetrate the ocean subsurface layer. Given its
importance, the numerical treatment of noise propagation in the presence of complex
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separated flows requires not only an understanding of the phenomena, but also an accurate
simulation. An inappropriate use of the numerical techniques may easily lead to spurious
numerical hydroacustic sources that may contaminate the correctness of the measures
needed to take in the initial design stage.

For consistency of the comparisons with the static drift solutions, that will be discussed
later, an analysis of the streamwise instant velocity and vorticity contours is firstly proposed.
Figures 11–13, depict the above-mentioned fields drawn for the three incoming velocities
considered. The instantaneous solutions were all computed at T = 30 s, using the DES-
SST model. The motivation for the author’s choice resides in the fact the corresponding
IDDES-based solution, which was predicted to be a better turbulence treatment did not
reveal significant differences compared to the DES-SST corresponding one model. The
streamwise non-dimensional velocity contours show a perfect symmetry in respect to the
center-line plane, as Figures 11a and 13a show. A similar conclusion regards the vorticity
distribution except only for the tip bridge released vortices, which show a slight asymmetry
at higher velocities, when the finite height of the bridge induces a significant influence on
the velocity distribution in the wake [12,64,65].

Figure 11. Instant streamwise non-dimensional velocity (a) and vorticity (b) contours computed at
T = 30 s. by using the DES-SST turbulence model for U0 = 3 knots and β = 0◦.

Figure 12. Instant streamwise non-dimensional velocity (a) and vorticity (b) contours computed at
T = 30 s. by using the DES-SST turbulence model for U0 = 4.5 knots and β = 0◦.

Figure 13. Instant streamwise non-dimensional velocity (a) and vorticity (b) contours computed at
T = 30 s. by using the DES-SST turbulence model for U0 = 6 knots and β = 0◦.
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5.5. Local Flow Features in the Static Drift Motion

Yawed axisymmetric bodies, such as the DARPA Suboff, experience complex, fully
three-dimensional flows. Flow regimes at distinct drift angles lead to a continuous modifi-
cation of the streamwise velocity component. At small incidence angles (β ≤ 10◦) the flow
remains attached, and the axial flow regime dominates, resistance forces are linearly related
to the drift angle, therefore the hull loadings should be well predicted by using linear
hydrodynamic derivatives. On the contrary, at moderate incidence angles (10◦ < β ≤ 15◦)
the crossflow boundary layer separates due to an adverse pressure gradient on the leeward
side. Vorticity shed from the boundary layer is convected away and coalesces to form a
steady symmetric body vortex pair on the leeward side of the hull. Crossflow separation
initiates towards the stern, as the incidence angle increases, the separation line moves
forwards and leeward. There is a non-linear increase in the lateral force with the incidence
angle, due to the low pressure associated with the core of the vortices released by the hull,
as shown in Section 5.3. At large drift angles (15◦ < β ≤ 20◦) secondary vortices may form
in the stern region of the hull. Body vortices become asymmetric, resulting in a significant
transverse force, as shown in Section 5.3. Finally, for very large incidence angles (β > 20◦)
the crossflow dominates, the flow pattern tends towards that of the flow around a cylinder,
where the boundary layer is shed in the form of a random wake.

Obviously, a thorough description of the local flow mechanism is of great importance,
not only for the accurate forecast of the hydrodynamic loads but also for a correct prediction
of the wake structure needed for the propulsive equipment design. Apart from that, the
hydrodynamic performances of the rudders and stabilizer fins are significantly affected by
the flow non-uniformities. The task is not straightforward at all since six different vortical
structures are cohabitant and interact with each other, as will be described in the following.
Three of the vortical systems are released by the sail, whereas the others are released by the
aft hull and by the tips and roots of the protuberances mounted there, as will be described
later. Given its complexity, a detailed comparative study of the flow features is further
proposed in terms of the influence of the incoming velocity value, of the drift angle, and of
the models used for the turbulence closure, respectively.

5.5.1. Influence of the Oncoming Flow Velocity

At first, a comparison between the pressure and vorticity fields on the hull and in
22 equidistant cross-sections computed for the three oncoming velocities is proposed in
Figure 14, where the relative pressure on the hull surface is drawn by a flood color and the
vorticity are drawn with lines. All the solutions are computed in the β = 10◦ case by using
a RANS-based technique that employs the K−ω turbulence model. The three numerical
solutions reveal that with the velocity increase, the relative pressure on the leeward of the
fairwater bridge decreases to negative values, as expected. The intensity of the bridge-tip
vortex increases as the vortices in the wake get stronger as well.
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Figure 14. Wake structure computed for β = 10◦ by using the k− ω SST turbulence model: (a)—
U0 = 3 knots, (b)—U0 = 4.5 knots, (c)—U0 = 6 knots.

Next, a comparison of the ensemble-averaged and time-averaged in-plane velocity
profiles across the center of the bridge-tip vortex core in three cross planes is shown in
Figure 15 with the vortex core centers aligned. Obviously, the hybrid DES-SST and IDDES,
models under-predict the vortex core in-plane velocity within 0.02L from the center of
the vortex core. On the contrary, the predictions match well with the PIV data for a
distance greater than 0.03L radially, regardless the turbulence model as Figure 15 bears out.
Obviously, this is the merit of the turbulence models that use LES for the flow away from
the solid boundaries. As the computational grid coarsens with the increasing distance from
the trailing edge of the fairwater bridge, in spite of the adaptive mesh refinement, a rather
strong dissipation of the coherent vortical structure was observed. This is most likely due
to a careless initial grid resolution in the vortex core region. This finding may also suggest
that the mesh refinement criteria were insufficiently well chosen for an accurate prediction
of the detailed flow development.

5.5.2. Influence of the Drift Angle

Once the drift angle increases, the anti-symmetric distribution seen in the lowest angle
case is affected, as depicted in Figure 16 which is drawn for β = 14◦. Obviously that
contamination is determined by the multiple interactions with the other vortical systems
formed by the hull, mostly with the hairpin vortices released by the trailing edge of the
sail. As a result of that interference, the strength of the tip vortex decreases, provoking a
decrease in the relative lateral velocity by 25–30%, regardless of the turbulence model, as
shown in Figure 16.

The conclusion above can also be drawn from Figure 17, where the velocity vectors
are superposed over the vorticity contour fields drawn comparatively in two different
cross-sections placed inside the aft region of the hull. Undoubtedly, the increase in the
drift angle makes the flow rather hectic in the aft part of the hull where significant areas of
positive and negative vorticity alternate, especially in the plane closer to the aft part of the
hull. The boisterous behavior should be related to the periodic variation of forces depicted
in Figure 10.
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Figure 15. Time-averaged and instant velocity profiles through the bridge-tip vortex core center
computed for β = 10◦ at U0 = 3 knots (top), U0 = 4.5 knots (middle) and U0 = 6 knots (down) in the
transverse directions at three different cross planes, where the vortex core centers from IDDES, DES,
RANS, and experimental PIV data [60] are aligned. Left column: x/L = 0.56; middle: x/L = 0.45;
right column: x/L = 0.34.

Figure 16. Time-averaged and instant velocity profiles through the bridge-tip vortex core centre
computed for = 14◦ at U0 = 3 knots in the transverse directions at three different cross planes,
where the vortex core centers from IDDES, DES, RANS and experimental PIV data [60] are aligned:
(a)-x/L = 0.56; (b)-x/L = 0.45; (c)-x/L = 0.34.
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Figure 17. Cross section distribution of instant vorticity and velocity vectors computed for
U0 = 6 knots at T = 30 s. by using IDDES turbulence model: (a)-β = 14◦, (b)-β = 18◦, (c)-β = 22◦.

Solutions depicted in Figure 17 are all instantaneous, computed at T = 30 s. Worth
mentioning is that the adaptive mesh refinement based on the criterion described in
Section 4.2 was applied periodically every different numbers of time steps, a fact that may
explain why the mesh refinement for β = 18◦ appears to work improperly.

As shown above, probably the most significant vortex of the multiple-released vortical
systems is that released by the tip of the fairwater bridge at small and moderate drift
angles. Its core longitudinal trajectory, which originates in the tip of the sail and develops
downstream with an obvious, but expected, departure from the hull surface, is depicted in
Figure 18. A reduction in its strength, which is obviously due to the viscous dissipation,
is also observed. The streamwise evolution of the vortex core shows a loss in the relative
vertical position to the hull, which is attributable to the interference of the other vortical
systems that develop around the hull.
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Figure 18. Instantaneous bridge-tip vortex trajectories computed for U0 = 6 knots at T = 30 s. by
using IDDES turbulence model: (a)-β = 10◦, (b)-β = 14◦.

The same behavior is true for the higher drift angles, as proven in Figure 19, which
bears out the instantaneous streamwise velocity and vorticity contours drawn for the
maximum incoming velocity case at T = 30 s for all the drift angles considered in the
present paper. For the sake of the accuracy of the comparison, all the reported solutions
were computed by using the IDDES turbulence model, as all the equidistant contour lines
are drawn for the same values. From Figure 19a,b one may see that the increase in the drift
angle leads to the augmentation of the area of negative relative streamwise velocity in the
leeward side of the sail. Then, the interference of the vortices released by the sail with those
developed around the main hull results in a contamination of the vortical flow-field not
only in terms of the main vortices trajectory, but also of their core intensity.

Figure 19. Non-dimensional instant streamwise velocity and vorticity contours computed for
U0 = 6 knots at T = 30 s: (a)-non-dimensional streamwise velocity, (b)-vorticity.

All the discussions related to the velocity- and vorticity fields’ dependence on the
drift angle shall be extended to the pressure, the other key parameter of the flow. As
expected, the increase in the drift angles influences the pressure distribution of the Suboff
hull as well, inasmuch as pressure and velocity are interlinked in the momentum equations.
Figure 20 shows the non-dimensional pressure fields on the Suboff hull computed in all
the considered drift angle cases at the highest incoming velocity. The increase in the drift
angle determines the migration of the stagnation points that are either on the hull or on
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its vertical protuberances towards the lateral pressure side. On the opposite, areas of low
relative pressures can be seen on the leeward side.

Figure 20. Comparison between the mean non-dimensional pressure fields on the hull computed
for U0 = 6 knots at T = 30 s.: (a)-β = 10◦, (b)-β = 14◦, (c)-β = 18◦, (d)-β = 22◦.

The pressure distributions on a horizontal plane that crosses the hull are shown in
Figure 21 for the four drift angles considered in here. In the straight run case portside and
starboard curves are coincident. On the contrary, in the static drift regime the non-zero
drift angle determines the loss of that distribution symmetry. Figure 21 proves that the
gap between the starboard and portside pressures increases with the drift angle increase,
which explains the increase in the lateral force. A similar gap increase is seen between the
longitudinal positions of the pressure peaks that correspond to the leading edges of the
horizontal fins at the aft body.

Figure 21. Comparison between the mean pressures on the Suboff hull computed for U0 = 6 knots at
T = 30 s. (a)-β = 10◦, (b)-β = 14◦, (c)-β = 18◦, and (d)-β = 22◦.

Unquestionably, the influence of the drift angle on the pressure distribution on the
hull manifests on the surrounding fluid domain as well. That is clearly shown in Figure 22,
which depicts the instantaneous relative pressure contours in a cross-section plane situated
at x/L = 0.9. The solutions at T = 30 seconds were all computed for the largest incoming
velocity, U0 = 6 knots. Closure to turbulence was achieved through the IDDES turbulence
model in all the draws. For the clarity of comparison, the pressure fields have the isobars
disposed at same level intervals. The figure shows that the increase in the drift angle leads
to a significant pressure change inside the fluid domain surrounding the hull, which is
correlated with the distributions depicted in Figures 20 and 21.
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Figure 22. Comparison between the non-dimensional mean pressure fields computed at x/L = 0.9
for U0 = 6 knots at T = 30 s : (a)-β = 10◦, (b)-β = 14◦, (c)-β = 18◦, (d)-β = 22◦.

5.5.3. Influence of the Turbulence Model

In the followings a comparative analysis of the vortex generation mechanisms is pro-
posed in Figure 23 to clarify the influence exerted by the models used for turbulence [65].
Solutions computed for U0 = 3 knots and β = 10◦ are compared for the k− ω SST, DES
and IDDES models, respectivly. The vortex formation mechanisms are described by the
isosurfaces of the the second invariant of velocity gradient (Q = 10, 000) colored by helic-
ity, which is defined as: H =

∫
V U·(∇×U)dV where U(x, y, z, t) isu (x,t) {\displaystyle

\mathbf {u} (x,t)} isi the velocity field and ∇ × u {\displaystyle \nabla \times \mathbf {u}
} ∇∇×U is the corresponding vorticity field.

Figure 23. Vortex formation mechanisms for U0 = 3 knots, β = 10◦ : (a)-k−ω SST model, (b)-DES
model, (c)-IDDES model.

Helicity as a pseudo-scalar quantity can be considered as a measure of the handedness
(or chirality) of the flow, being one of the only four integral invariants of the flow equations,
the other three being energy, momentum, and angular momentum, whose topological
interpretation is a measure of linkage and/or knottedness of vortex lines in the flow.
Figure 23 reveals the six vortical systems, which were mentioned above, in the lowest
advance velocity flow case. When the hybrid DES SST model is used, the sail root vortices
merge with the large-scale hairpin vortices, which become dominant in the wake, as shown
in Figure 23b. This fact is even more relevant when the IDDES model is used for the
turbulence closure, as the Figure 23c bears out.

The main necklace vortex associated with the horseshoe vortex system formed around
the bow base of the bridge is subjected to bimodal large-scale oscillations. The intensity of
the bimodal oscillations peaked at vertical sections cutting through the tip of the fairwater
bridge. Simulations reported here show the size of the region of high turbulence amplifica-
tion inside which the horseshoe vortex system extension decreased with the increase in the
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Reynolds number. Significant patches of vorticity were observed to detach from the leg
of the main necklace vortex and to be convected at a small distance from the Suboff hull.
Pilot computations proved that before dissipating, these patches could induce relatively
large values of the fuselage shear stress beneath. It was observed that their formation is
primarily determined by the interaction of the main necklace vortex with the leg of the
secondary necklace vortex rather than by the interaction of the main necklace vortex with
the tip of the sail. Figure 23 proves the superiority of the IDDES model in terms of ability
to resolve the separated flow at large scale. Certainly, this is only due to the ability of the
LES model to resolve the turbulence in areas placed away from the hull.

The next analysis regards the pressure and vorticity fields computed when the k−ω
SST and IDDES models were employed to solve the static drift flow for U0 = 3 knots and
β = 10◦, as shown comparatively in Figure 24. Similar to Figure 14, the relative pressure
on the hull surface is drawn by a flood color and the vorticity are drawn with lines. For the
sake of similarity, the vorticity fields are drawn in the same cross-sections and the intervals
between consecutive vorticity values are kept unchanged. First of all, one may notice that
the non-zero drift angle determines the looseness of the vertical symmetry of the solution
shown in Figure 11. Then, the contour lines drawn on the hull reveal the contagion of the
vorticity field as a result of the interaction between the horseshoe vortices and the boundary
layer developed there. This interference is shed in the downstream, decreases progressively
in intensity, and eventually vanishes as a result of the viscous dissipation.

Figure 24. Vorticity contours computed for U0 = 3 knots, β = 10◦ at T = 30 s. by using: (a)-k−ω

SST turbulence model, (b)-IDDES turbulence model.

To get a better insight on how the flow symmetry is affected by the drift angle, a
comparison of the solutions computed using the two turbulence models, a close-up view
of the vorticity contours is presented in Figure 25. For clarity of representation purposes,
the cross contours are drawn every second cross-plane shown in Figure 24. As shown
in the figure, the flow development in respect to the vertical and horizontal directions
denoted by I-I and II-II reveal the significant departure from the vertical symmetry, which
was expected for the non-zero drift angle. Another important point to mention is the
symmetric vorticity distribution in respect to the hull horizontal plane of symmetry when
the solution is computed with the k − ω SST turbulence model. This feature does not
remain valid for the solution computed with the IDDES model, whose better performance
in resolving the flow features unveils a significant non-symmetric distribution in the wake.
Comparative simulations employing all the turbulence models have proven that the degree
of deformation of the tube cores shed at the downstream part of the separated shear layer is
much larger in the IDDES model case. Obviously, this is providing additional information
on the mechanism for the amplification of the vertical vorticity in the aft near-hull region,
with immediate consequences for the velocity field structure needed for an optimal design
of a performant propeller, as shown previously by the author in [65,66].
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Figure 25. Details of wake vorticity contours computed for U0 = 3 knots, β = 10◦ at T = 30 s. by
using: (a)-k−ω SST turbulence model, (b)-IDDES turbulence model.

The next discussion is based on a comparison of the vortical topologies computed
when the turbulence closure is achieved by the IDDES model. The comparison is presented
in Figure 26, which depicts the instant isosurfaces of the second invariant of velocity
gradient computed for all the drift angles at U0 = 6 knots and T = 30 s. The comparison
reveals that with the drift angle augmentation, the presence of the hairpin vortices becomes
dominant, suggesting a violent flow separation. Large-scale hairpin-like structures form in
the downstream part of the separated shear layer. The legs of these vortices are positioned
parallel to the interface between the high-speed outer flow and the recirculating flow past
the sail and hull. Several computational tests have mainly proven two particulars:

– The lower legs of some of these hairpin vortices were located randomly in the imme-
diate vicinity of the hull;

– The shear stress distribution on the Suboff hull in the instantaneous flow fields dis-
played a streaky structure over a part of the separated shear layer region.

Figure 26. Instant isosurfaces of the second invariant of velocity gradient (Q = 10, 000) colored
by helicity and computed for U0 = 6 knots at T = 30 s. by using the IDDES turbulence model:
(a)-β = 10◦, (b)-β = 14◦, (c)-β = 18◦, and (d)-β = 22◦.

Trial computations that employed the IDDES model, not reported here, have proven
that due to the richer eddy content of the separated shear layer, the intensity of the non-
dimensional pressure root mean square fluctuations beneath the separated shear layer has
been found to be more than twice larger in the highest velocity simulations.
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6. Concluding Remarks

The paper describes a multiple numerical investigation aimed at clarifying the local
flow features around the DARPA Suboff hull running either on a straight course or at
various medium and large drift angles. Because of the diversity of the flow cases taken into
consideration, an in-depth V&V had to be performed to prove the robustness of the solver
as well as the correctness of the chosen numerical approach. Three turbulence closure
models were considered to fit the purpose and the solutions were comparatively discussed.
Summing up, more than 100 different computations were performed on 20 different meshes
generated for all the cases considered and a great deal of data was analyzed to emphasize
the main features that made each flow instance unique.

Based on the bird’s-eye view above, the following remarks may conclude the present
reported research:

– Flows in which significant separations take place could be properly resolved based on
a proper meshing of the computational domain combined with a sufficiently small
time step;

– The major contribution of this work is the overall quality of solutions brought by
the combined use of adaptive mesh refinement along with the DES or IDDES-based
turbulence closure models. Comparing the solutions reported here with the otherwise
faster but less accurate RANS methods [15,20], or with the more expensive LES-based
methods [23,35,66] one may notice not only the efficiency, but also the accuracy of the
method proposed here.

– Taking advantages of the IDDES-SST hybrid model as well as of the adaptive mesh
refinement, simulations reported in here could be performed efficiently on a reasonable
number of processors by keeping the number of cells at the lowest possible level;

– Extensive comparisons with the experimental data confirmed the overall accuracy of
the solutions for both global and local flow features, i.e., forces and moments as well
as the velocity and pressure distributions on the hull and in its immediate vicinity;

– High frequency oscillations of the streamwise and lateral forces and yaw moment
were observed when the turbulence closure was not based on Reynolds averaging;

– In spite of the slightly higher CPU costs, solutions computed with the hybrid IDDES-
SST turbulence model could assure an error about 40% smaller than the one based on
the k−ω SST model in the highest velocity case;

– The large scale vortical structures could be successfully resolved, regardless of the
drift angle the computations were carried out at.
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Appendix A

The hybrid Detached Eddy Simulation (DES) model is based on an implicit splitting
of the computational domain into two regions. In the first one, near solid walls, the conven-
tional RANS equations are solved, whereas in the second one, the governing equations are
the filtered Navier–Stokes equations of the Large Eddy Simulation (LES) approach. Hybrid
models are not linked to any specific turbulence model, so the model employed in the
present study is a variant based on the SST k−ω turbulence model of Menter et al. [41,42].
The DES modification of the SST model resides in the way the dissipation term in the k
transport equation is computed. While the dissipation term of the original model is given
by the following equation:

ρε = β∗ρkω, (A1)
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Dissipation in the DES model is expressed as:

ρε = β∗ρkωFDES (A2)

In the above equations ε is the dissipation rate, β∗ is a constant of the SST model,
whereas the FDES function reads as follows:

FDES = max
[

Lt

CDES∆
(1− FSST), 1

]
(A3)

Here the turbulent length scale Lt is defined as Lt =
√

k/(β∗ω). CDES = 0.78 is
a constant of calibration of the DES model proposed by Menter et al. [42] and ∆ is the
maximum local grid size defined as ∆ = max(∆x, ∆y, ∆z). The blending function FSST in
Equation (A3) is either 0 or the blending functions F1 or F2 of the SST model of Menter.
When FSST = 0, the model of Strelets [43] is recovered. Blending function F1 acts inside the
wake of the boundary layer while F2 extends further out into the boundary layer than F1.

F1 = tanh
(

arg14
)

and F2 = tanh
(

arg22
)

(A4)

The variable arg1 in the equation above is defined as:

arg1 = min

[
max

( √
k

0.09ωy
;

500ν

y2ω

)
;

4ρσω2k
CDkωy2

]
(A5)

where σω2 = 0.856 and y is the distance to the nearest wall. CDkω is computed with:

CDkω = max

(
2ρσω2

1
ω

∂k
∂xj

∂ω

∂xj
; 10−20

)
(A6)

On the other hand, arg2 in (A4) is defined as:

arg2 = max

(
2

√
k

0.09ωy
;

500ν

y2ω

)
(A7)

were ν is the kinematic viscosity of water. Transition from RANS to LES of the initial
version of DES is substantially dependent on mesh fineness. When the mesh is sufficiently
fine near the wall, the LES area tends to be activated too early even though the production
term and dissipated term are not yet balanced. This fact usually leads to mesh-induced
separation and modeled-stress depletion in the boundary layer, as described by Spalart [44].
The problem can be mitigated by the delayed DES (DDES), which incorporates a delay
factor that enhances the ability of the model to distinguish between the LES and RANS
regions on the meshes, as described by Spalart [44]. Improved DDES (IDDES) is the latest
edition of DES, which supplies selected wall-modeled LES (WMLES) capabilities to the
DES formulation, for more details see Shur et al. [45].

Appendix B

The governing equations of the present IDDES model, which complete the Equation
set (8), written in a tensor form, read as follows:

∂ρk
∂t + ∂

∂xj

(
ρũjk

)
= ∂

∂xj

[
(u + σKut)

∂k
∂xj

]
+ PK − ρ

√
k3

lIDDES

∂ρω
∂t + ∂

∂xj

(
ρũjω

)
= ∂

∂xj

[
(u + σωut)

∂ω
∂xj

]
+

+2(1− F1)
ρσω2

ω
∂k
∂xj

∂ω
∂xj

+ α
ρ
ut

Pk − βρω2

(A8)
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Here Pk is the production rate, whereas k is the turbulent kinetic energy, and ω is the
dissipation rate. The eddy viscosity, ut, appearing in equation above is defined as:

ut =
a1k

max(a1ω, F2S)
(A9)

Here a1 = 0.31 is a constant of the model, S is the magnitude of the strain rate tensor.
F1 in (A8) and F2 in (A9) are the SST blending function expressed as in (A13). The variable
arg1 in (A6) is now defined as follows:

arg1 = min

[
max

( √
k

Cuωy
;

500ν

y2ω

)
;

4ρσω2k
CDkωy2

]
(A10)

Here Cu = 0.09 is a constant of the model and CDkω is computed now with:

CDkω = max

(
2ρσω2

1
ω

∂k
∂xj

∂ω

∂xj
; 10−10

)
(A11)

lIDDES in Equation (A8) is the length scale defined as:

lIDDES = fd(1 + fe)lRANS +
(

1− fd

)
lLES (A12)

where

lLES = CDES∆ and lRANS =

√
k

Cuω
with CDES = CDES1F1 + CDES2(1− F1) (A13)

Here CDES1 = 0.78 and CDES2 = 0.68 are constants of the turbulence model. The LES
length scale ∆ appearing in Equation (A5) is now computed as:

∆ = min(Cwmax(y, hmax); hmax) (A14)

Here hmax is the maximum edge length of the cell. The empiric blending function fd in
Equation (A12) is defined as:

fd = max[(1− fdt), fb] (A15)

in which the empirical delay function fdt is given by:

fdt = 1− tanh
[
(Cdt1rdt)

Cdt2
]

(A16)

Here rdt is expressed as:

rdt =
νt

k2y2

√
0.5
(

S2 + Ω2
) (A17)

Ω in Equation (A17) is the magnitude of the vorticity tensor. fb appearing in Equation (A8)
is computed as follows:

fb = min
[
2 exp

(
−9α2

)
, 1.0

]
, where α = 0.25− y

hmax
(A18)

The elevation function fe in Equation (A12) is computed with:

fe = fe2max [( fe1 − 1.0), 0.0] (A19)
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in which functions fe1 and fe2 are respectively defined as:

fe1 =

{
2−11.09α2

, i f α ≥ 0
2−9α2

, i f α < 0
(A20)

fe2 = 1−max( ft, fl) (A21)

where
ft = tanh

[
(C2rdt)

3
]

(A22)

and
fl = tanh

[
(C1rdl)

10
]
, where rdl =

νl

k2y2

√
0.5
(

S2 + Ω2
) (A23)

Constants used in the IDDES model are taken as:

Cu = 0.09 k = 0.41 a1 = 0.31 Cd1 = 20 (A24)

Additionally, all the other the constants that belong to the classic k−ω SST model, are
as follows:

α1 = 5/9 β1 = 0.075 σk1 = 0.85 σω1 = 0.5
α2 = 0.44 β2 = 0.0828 σk2 = 1 σω2 = 0.856

(A25)
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